
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report WalletChat MetaMask Snap 07.2023
Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati

Index
Introduction
Scope
Identified Vulnerabilities

WAC-01-001 WP2: Arbitrary DApp can retrieve access token (High)
WAC-01-002 WP1: Restrict Snap RPC access to trusted origins (Medium)
WAC-01-006 WP2: Unsafe wild card targetOrigin usage in postMessage (Low)

Miscellaneous Issues
WAC-01-003 Web: General HTTP security headers missing on Snap Site (Low)
WAC-01-004 Web: Lack of Content-Security-Policy header on Snap Site (Low)
WAC-01-005 WP2: Unsanitized URLs passed to anchor tag href attribute (Low)
WAC-01-007 WP1: Client-side path traversal in Snap fetch requests (Info)

Conclusions

Cure53, Berlin · 07/12/23 1/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Turn any dapp social. Chat wallet-to-wallet. Market-leading web3 messaging. Connect
with others directly, using your wallet. Integrate inside your dapp via our out-of-the-box
widget or API.”

From https://www.walletchat.fun/

This report describes the results of a security assessment of the WalletChat MetaMask
Snap, with focus on its codebase and integration. The project, which included a
penetration test and a dedicated source code audit, was carried out by Cure53 in July
2023.

Registered as WAC-01, the examination was requested by WalletChat Labs, Inc in June
2023 and then scheduled to start the following month, i.e., in July 2023. Since this
project marked the first cooperation between Cure53 and WalletChat, it was important
for both sides to have sufficient time to prepare.

In terms of the exact timeline and specific resources allocated to WAC-01, Cure53
completed the research in early July 2023, namely in CW27. In order to achieve the
expected coverage for this task, a total of two days were invested. In addition, it should
be noted that a team of two senior testers was formed and assigned to prepare, execute,
and deliver this project.

For optimal structuring and tracking of tasks, the examination was split into two separate
work packages (WPs):

• WP1: Source code audits against WalletChat MetaMask Snap & codebase
• WP2: Code audits & feature reviews against WalletChat MetaMask Snap &

integration

As can be deduced from the formulations of the WP titles, white-box methodology was
utilized. Cure53 was provided with documentation, a list of focus items, as well as all
further means of access required to complete the tests. Additionally, all sources
corresponding to the test-targets were shared to make sure the project can be executed
in line with the agreed-upon framework.

Overall, the project progressed effectively. To facilitate a smooth transition into the
testing phase, all preparations were completed in CW26. Throughout the engagement,
communications were conducted via a private, dedicated and shared Slack channel.
Stakeholders - including the Cure53 testers and the internal staff from WalletChat Labs
- could participate in discussions in this space.

Cure53, Berlin · 07/12/23 2/14

https://cure53.de/
https://www.walletchat.fun/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The quality of the interactions throughout the test was excellent, with no outstanding
queries. These steady exchanges contributed positively to the overall outcomes of this
project. The scope was well prepared and clear, which played a major role in avoiding
significant roadblocks during the test. Cure53 also offered frequent status updates about
the test and the emerging findings.

The Cure53 team succeeded in achieving very good coverage of the WP1-WP2 scope
items. Of the seven security-related discoveries, three were classified as security
vulnerabilities and four were categorized as general weaknesses with lower exploitation
potential. It should be noted that the total number of problems is moderate, which
indicates that the tested MetaMask components are already effective in defending
against various attacks and major risks.

Nevertheless, it is important to highlight one of the findings which was ranked as a High-
level risk. This problem demonstrates a scenario, in which an arbitrary DApp can retrieve
the access token (see WAC-01-001). It is recommended to swiftly resolve this issue in
order to ensure that good levels of security can be maintained.

The following sections first describe the scope and key test parameters, as well as how
the WPs were structured and organized. Next, all findings are discussed in grouped
vulnerability and miscellaneous categories. Flaws assigned to each group are then
discussed chronologically. In addition to technical descriptions, PoC and mitigation
advice will be provided where applicable.

The report closes with drawing broader conclusions relevant to this July 2023 project.
Based on the test team's observations and collected evidence, Cure53 elaborates on the
general impressions and reiterates the verdict. The final section also includes tailored
hardening recommendations for the WalletChat MetaMask Snap complex, with the focus
on its codebase and integrations.

Cure53, Berlin · 07/12/23 3/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Source code audits & security reviews of WalletChat MetaMask Snap & Codebase

◦ WP1: Source code audits against WalletChat MetaMask Snap & codebase
▪ Focus areas:

• General tests & attacks against browser add-ons, extension Snap-ins,
independent of the specific crypto-wallet snap use-case

▪ Source:
• https://github.com/Wallet-Chat/walletchat-metamask-snap

▪ Documentation:
• https://docs.walletchat.fun/metamask-integration
• https://snaps.walletchat.fun

▪ Audited commit
• fec67c2a588fb9db132501b70165e8ef75d100ec

◦ WP2: Code audits & feature reviews of WalletChat MetaMask Snap & integration
▪ Focus areas:

• Specific features including - but not limited to - chat features, message
management and delegation, user and chat partner discovery, possible
information leaks via chat and message handling, authentication & login.

▪ Sources and documentation:
• See WP1

▪ Audited commit:
• fec67c2a588fb9db132501b70165e8ef75d100ec

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 07/12/23 4/14

https://cure53.de/
https://snaps.walletchat.fun/
https://docs.walletchat.fun/metamask-integration
https://github.com/Wallet-Chat/walletchat-metamask-snap
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, each ticket is given a unique identifier (e.g., WAC-01-
001) to facilitate any future follow-up correspondence.

WAC-01-001 WP2: Arbitrary DApp can retrieve access token (High)
Fix note: The bug was fixed during the testing phase and the Cure53 team validated the
proposed fix.

Fix commit hash: c63cfc27ecd8fdb1ca38d8391aeb298c0a3f6ab4

While auditing the SIWE flow, it was noticed that arbitrary DApps can retrieve access
tokens for WalletChat. This is due to the endpoint at /users/{public_key}/nonce, which
allows retrieval of nonce for a specific public key of a wallet without any authentication.
Moreover, the sign-in endpoint allows any valid signed message. This means that an
arbitrary DApp can request a signature for an arbitrary message using personal_sign
RPC. From there, it can use the signature and the nonce to retrieve the access token
from the backend. Using the token, an adversary can retrieve messages from the
walletchat user.

Below is a request to the API endpoint with the nonce retrieved without any
authentication for a specific public key and a signature for arbitrary message "asdf".

Request
POST /signin HTTP/2
Host: api.v2.walletchat.fun
Content-Length: 270
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

{"name":"1","address":"0x899813CF950E6fa211fe600dEEEcfb1849427B47","nonce":"8917
09733339459865090355668444831796351","msg":"asdf","sig":"0x08e4128fa14de93fd709c
2b551ac1c6d47a93387fc70179c14d0fed756270dbd3c729762b49a0559f61b978a4b2353f24b028
8a985fb600f04682f92731d1dca1b"}

It is recommended to fix the vulnerability by tying the nonce to a specific session and,
more importantly, validate the signed message to be in a SIWE format. The latter should
contain WalletChat domain, nonce and other information instead of arbitrary messages
in the backend. This means a user can judge if the signed message is coming from the
valid WalletChat domain before signing, which is because the MetaMask will show a
deceptive domain’s warning in the pop-up.

Cure53, Berlin · 07/12/23 5/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

WAC-01-002 WP1: Restrict Snap RPC access to trusted origins (Medium)
Fix note: The bug was fixed during the testing phase and the Cure53 team validated the
fix.

Fix commit hash: 1c7385d3cd2728603ca3a2daab05934809f69c79

Testing confirmed that the onRpcRequest handler failed to validate the origin of the
request. This effectively signifies connections to the WalletChat Snap instance from
arbitrary websites which could then send RPC requests. A connected website can set
the Snap state with an adversary-controlled account's apiKey using set_snap_state
method.

As a consequence, an adversary can log into their account via the victim's MetaMask
Snap, hence masquerading as a legitimate victim's account. More importantly, the
MetaMask Snap's popup does not include any information regarding the currently
logged-in user, as shown in the below figure. This also facilitates obfuscation and may
clearly make it easier to successfully perform phishing-related attacks.

Fig.: MetaMask WalletChat Snap notification popup masqueraded as victim's account.

Cure53, Berlin · 07/12/23 6/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
walletchat-metamask-snap/packages/snap/src/index.ts

Affected code:
export const onRpcRequest: OnRpcRequestHandler = async ({ request }) => {
 switch (request.method) {
[...]
 case 'set_snap_state':
 if (
 (request.params &&
 'apiKey' in request.params &&
 typeof request.params.apiKey === 'string') &&
 request.params &&
 'address' in request.params &&
 typeof request.params.address === 'string'
) {
 await setSnapState(request.params.apiKey, request.params.address);
 return true;
 }
[...]

It is recommended to fix the vulnerability by validating the origin. Only specific domains
related to the WalletChat application should be allowed in this context.

WAC-01-006 WP2: Unsafe wild card targetOrigin usage in postMessage (Low)
The WalletChat Snap Site has an insecure postMessage wild card, which lets a web
application embed the site and leak information using the postMessage handler.
However, it was noticed that the postMessage did not leak any sensitive data through
this component, which explains a reduced impact being ascribed to this problem.

PoC:
https://ctf.s1r1us.ninja/xss.php?code=<embed src="https://snaps.walletchat.fun/"
style="width:100%; height: calc(100vh - 180px); border: 1px solid lightgrey;">
<script>window.onmessage=function(e){if(e.origin=='https://snaps.walletchat.fun')
{console.log(e.data)}} </script>

Affected file:
src/context/UnreadCountProvider.js

Cure53, Berlin · 07/12/23 7/14

https://cure53.de/
https://ctf.s1r1us.ninja/xss.php?code=%3Cembed%20src=%22https://snaps.walletchat.fun/%22%20style=%22width:100%25;%20height:%20calc(100vh%20-%20180px);%20border:%201px%20solid%20lightgrey;%22%3E%20%3Cscript%3Ewindow.onmessage=function(e)%7Bif(e.origin=='https://snaps.walletchat.fun')%7Bconsole.log(e.data)%7D%7D%20%3C/script%3E
https://ctf.s1r1us.ninja/xss.php?code=%3Cembed%20src=%22https://snaps.walletchat.fun/%22%20style=%22width:100%25;%20height:%20calc(100vh%20-%20180px);%20border:%201px%20solid%20lightgrey;%22%3E%20%3Cscript%3Ewindow.onmessage=function(e)%7Bif(e.origin=='https://snaps.walletchat.fun')%7Bconsole.log(e.data)%7D%7D%20%3C/script%3E
https://ctf.s1r1us.ninja/xss.php?code=%3Cembed%20src=%22https://snaps.walletchat.fun/%22%20style=%22width:100%25;%20height:%20calc(100vh%20-%20180px);%20border:%201px%20solid%20lightgrey;%22%3E%20%3Cscript%3Ewindow.onmessage=function(e)%7Bif(e.origin=='https://snaps.walletchat.fun')%7Bconsole.log(e.data)%7D%7D%20%3C/script%3E
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
[...]
 let msg = {
 "data": total_cnt,
 "target": "unread_cnt"
 }
 window.parent.postMessage(msg, "*"); //targertOrigin should be
a .env variable
[...]
 window.parent.postMessage(
 {
 data: 1,
 target: 'unread_cnt',
 },
 '*' // targertOrigin should be a .env variable
)

To fix this vulnerability, a specific origin in targetOrigin should be used instead of using
the wild card. Furthermore, it is also recommended to use the X-Frame-Options header
to disallow embedding of the Snap site.

Cure53, Berlin · 07/12/23 8/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

WAC-01-003 Web: General HTTP security headers missing on Snap Site (Low)
It was found that the WalletChat Snap Site platform is missing certain HTTP security
headers in HTTP responses. This does not directly lead to a security issue, yet it might
aid attackers in their efforts to exploit other problems. For instance, a malicious site can
frame the snaps.walletchat.fun and perform clickjacking attacks. The following list
enumerates the headers that need to be reviewed to prevent flaws linked to headers.

• X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent Clickjacking attacks, there are
many other attacks which can be achieved when a web page is frameable1. It is
recommended to set the value to either SAMEORIGIN or DENY.

• Note that the CSP framework offers similar protection to X-Frame-Options in
ways that overcome some of the shortcomings of the aforementioned header. To
optimally protect users of older browsers and modern browsers at the same time,
it is recommended to consider deploying the Content-Security-Policy: frame-
ancestors 'none'; header as well.

• X-Content-Type-Options: This header determines whether the browser should
perform MIME Sniffing on the resource. The most common attack abusing the
lack of this header is tricking the browser to render a resource as a HTML
document, effectively leading to Cross-Site Scripting (XSS).

Overall, missing security headers is a bad practice that should be avoided. It is
recommended to add the aforementioned headers to every server response, including
error responses like 4xx items.

More broadly, it is recommended to reiterate the importance of having all HTTP headers
set at a specific, shared and central place rather than setting them randomly. This
should either be handled by a load balancing server or a similar infrastructure. If the
latter is not possible, mitigation can be achieved by using the web server configuration
and a matching module.

1 https://cure53.de/xfo-clickjacking.pdf

Cure53, Berlin · 07/12/23 9/14

https://cure53.de/
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

WAC-01-004 Web: Lack of Content-Security-Policy header on Snap Site (Low)
Testing confirmed that the WalletChat Snap Site application did not currently utilize the
Content-Security-Policy2 (CSP) HTTP response header. This signifies that associated
benefits of this header are not leveraged by the complex, even though it provides
additional defense-in-depth by allowing definition of policies for certain HTML tags,
including script elements.

In addition, the CSP header enables specifying the origin from which a resource can be
loaded. The primary purpose of this header is to prevent or significantly impede
malicious HTML injections. An XSS in Snap Site would mean direct interaction with
MetaMask WalletChat Snap RPC methods, therefore, it is important to have CSP
deployed to further strengthen the Snaps.

To address this issue, Cure53 recommends implementing the CSP header for the
WalletChat Snap Site application. It is important to note that an effective CSP ruleset
can only be achieved through the strictest configuration possible, especially in terms of
the handling of JavaScript execution with the script-src directive. Depending on the
complexity of the web applications currently in use, this may require significant
engineering effort, as integrated CSP rules have the potential to disrupt benign aspects
of an application, and therefore require careful review prior to deployment.

WAC-01-005 WP2: Unsanitized URLs passed to anchor tag href attribute (Low)
While auditing the frontend JavaScript for DOM-based XSS, it was noticed that the
external_url and the discord_url in the NFT record were not sanitized before being
assigned to the anchor tag href attribute. This leads to XSS if these links contain
dangerous JavaScript protocol URLs.

The following code snippets show the affected code where the collectionLInk and
sourceLink are added to the anchor tag without sanitization.

Affected file #1:
src/scenes/NFT/scenes/NFTByContract/NFTByContract.tsx

Affected code #1:
[...]
 {nftData?.external_url && (
 <Tooltip label="Visit website">
 <Link
 href={nftData.external_url}

2 https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Cure53, Berlin · 07/12/23 10/14

https://cure53.de/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 target="_blank"
 d="inline-block"
 verticalAlign="middle"
 mr={1}
 >
[...]
 {nftData?.discord_url && (
 <Tooltip label="Discord">
 <Link
 href={nftData.discord_url}
 target="_blank"
 d="inline-block"
 verticalAlign="middle"
 mr={1}
[...]

Affected file #2:
src/scenes/NFT/scenes/POAPById/POAPById.tsx

Affected code #2:
[...]
<Button
 size="xs"
 href={poapEvent?.event_url}
 as={CLink}
 >
[...]

To fix this vulnerability, the URL should be sanitized and only HTTP(S) protocol links
should be permitted.

WAC-01-007 WP1: Client-side path traversal in Snap fetch requests (Info)
The WalletChat MetaMask Snap utilizes user-controlled address variables to craft HTTP
API requests. During the assessment two instances were detected with these variables
and could be leveraged to create an HTTP path without applying any validation.

A would-be attacker could, on this basis, craft a URL that modifies the intended API
endpoint and targets an arbitrary endpoint instead. It is important to note that the
address variable can only be modified by a connected site via set_snap_state RPC.
Notably, this behavior does not introduce a security issue in isolation, but could prove
highly beneficial in the context of exploiting more significant attack vectors and web
vulnerabilities.

Cure53, Berlin · 07/12/23 11/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
packages/snap/src/index.ts

Affected code:
[...]
const getUnreadCountFromAPI = async (apiKey: string, address: string) => {
 let retVal = 0

 await fetch(
 ` https://api.v2.walletchat.fun/v1/get_unread_cnt/${address}`,

[...]
const getLastUnreadMessage = async (apiKey: string, address: string) => {
 let chatData = ''

 await fetch(
 ` https://api.v2.walletchat.fun/v1/get_last_unread/${address}`,
 {
 method: 'GET',
 headers: {
 'Content-Type': 'application/json',
 Authorization: `Bearer ${apiKey}`,
 },
 }

To mitigate this issue, one can recommend validating address variables before using
them in subsequent HTTP paths. It can be considered that the addresses are alpha-
numeric only which, generally speaking, means they should never contain any URL-
relevant characters such as "./#?&". Hence, simply checking the specified address to
ensure that it is alpha-numeric would be sufficient.

Cure53, Berlin · 07/12/23 12/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Cure53 concludes that the codebase and integrations of the WalletChat MetaMask Snap
project demonstrate an already well-secured foundation. However, the findings from this
July 2023 examination also showcase that there is still room for improvement on the
tested scope. Some more work and effort need to be invested by the WalletChat team in
order to achieve an excellent level of security.

The testing started off by Cure53 auditing the Snap manifest and configuration for
insecure configuration patterns, including overly lax permissions. The testing team
concluded that the Snap element only requests required permissions and no
misconfigurations could be spotted during this WAC-01 investigation.

Despite the highly constrained attack surface, the Cure53 team evaluated every
exposed RPC method accessible in an attempt to uncover any negative security
implications. No major issues were identified in the RPC handlers, but a minor issue
revealed that the address variables were not sanitized before being appended to the
path of the request made from fetch API (see WAC-01-007).

Due to the nature of the WalletChat Snap application, the team noticed that the Snap
should not allow RPC requests from all origins, as this makes it possible for attackers to
masquerade as legitimate users in the notifications. More details on this can be found in
WAC-01-002.

Additional checks for issues associated with the interaction between unauthorized
DApps and Snap were conducted, but all attempts failed. The approaches of the testers
were, in other words, successfully prevented by MetaMask's security checks.

Moving on to the Snap Site component, the team conducted thorough checks in the
frontend, focusing on XSS vulnerabilities. This is because such flaws could directly
influence Snap from the site. It was then assessed whether any client-side-related
security issues associated with XSS, postMessage, and prototype-pollution could be
located.

Toward this, the testing team noted that the majority of the frontend utilizes the ReactJS
framework, which features a well-tested escaping mechanism. As such, it prevents many
XSS-related issues by default. Since the ReactJS framework does not supervise the
URLs assigned to the href property of the HTML anchor tags, the source code was
searched for these issues. This led to the identification of WAC-01-005, as well as
several miscellaneous issues documented in WAC-01-003, WAC-01-006 and WAC-01-
004.

Cure53, Berlin · 07/12/23 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In addition, risk-laden instances of window.open, window.location and usage of similar
items were inspected. Positively, no associated findings were identified in this area,
which corroborates the strong impression gained by the add-on. Lastly, the team
concentrated on looking for issues in the authentication of the Snap via Sign-In with
Ethereum mechanism. It was hoped that misconfigurations or vulnerabilities would be
spotted, but only the issues mentioned in WAC-01-001 were specified.

In conclusion, following the completion of this WAC-01 security audit, Cure53 garnered a
positive impression over the security premise established by the WalletChat MetaMask
Snap installed in the MetaMask. However, the Snap Site appears to be slightly less
secure and this viewpoint is corroborated by the discovery of the High impact issue,
alongside some miscellaneous issues. Once these issues are fixed, the whole
WalletChat MetaMask Snap can more consistently accomplish a better-protected
security posture.

Cure53 would like to thank Kevin Larson and Michal Kubis from the WalletChat Labs, Inc
team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · 07/12/23 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report WalletChat MetaMask Snap 07.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	WAC-01-001 WP2: Arbitrary DApp can retrieve access token (High)
	WAC-01-002 WP1: Restrict Snap RPC access to trusted origins (Medium)
	WAC-01-006 WP2: Unsafe wild card targetOrigin usage in postMessage (Low)

	Miscellaneous Issues
	WAC-01-003 Web: General HTTP security headers missing on Snap Site (Low)
	WAC-01-004 Web: Lack of Content-Security-Policy header on Snap Site (Low)
	WAC-01-005 WP2: Unsanitized URLs passed to anchor tag href attribute (Low)
	WAC-01-007 WP1: Client-side path traversal in Snap fetch requests (Info)

	Conclusions

