
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Silence Laboratories Silent Shard
Mobile App, Web & Cloud 06.-07.2023

Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati, B. Casaje, A. Kahla

Index
Introduction
Scope
Testing Methodology

WP1: Audits & pentests against Silent Shard Snap Android SDK & app
WP2: Source code audits & pentests against Silent Shard Snap web app UI / JS
WP3: Source code audits & pentests against Silent Shard Firebase Cloud F unctions

Identified Vulnerabilities
SIL-03-009 WP1: Seed phrase leak age in mobile application memory (Low)
SIL-03-010 WP1: Seed phrase leakage via dynamic instrumentation (Low)
SIL-03-011 WP1: Sign request screen handles newlines incorrectly (Low)
SIL-03-012 WP3: IDOR in sendMessage's Cloud F unctions API (Medium)
SIL-03-013 WP3: V alid JWT forgery containing arbitrary user IDs (High)

Miscellaneous Issues
SIL-03-001 WP1: Android a pplication lacks r oot d etection (Info)
SIL-03-002 WP1: I nsecure v1 signature support on Android (Info)
SIL-03-003 WP1: Android config hardening recommendations (Info)
SIL-03-004 WP1: Po tential user disruption via exported activity (Low)
SIL-03-005 WP1: Po tential leak age via absent security screen (Info)
SIL-03-006 WP1: Po tential phishing via StrandHogg 2.0 on Android (Info)
SIL-03-007 WP1: Android binary hardening recommendations (Info)
SIL-03-008 WP2/3: Multiple hardcoded credentials in source code (Low)

Conclusions

Cure53, Berlin · 09/07/23 1/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Silent Shard is an MPC-based TSS complemented by cyber-physical proofs for much
usable, secure, and truly decentralized support for digital wallets, exchanges and
institutional asset enterprises.”

From https://silencelaboratories.com/silent-shard/

This report - defined by the acronym SIL-03 - offers detailed information regarding a
Cure53 penetration test and source code audit against the Silent Shard Snap web and
Android applications, as well as Firebase Cloud Functions.

Following the proposition from the Silence Laboratories Pte. Ltd. maintainers in May
2023, this audit was scheduled for completion across June and early July 2023.
Specifically, a ten workday time frame was allocated and then fulfilled by four senior
Cure53 testers between CW24 and CW26.

Considering the variety of components scrutinized for this project, Cure53 deemed
grouping the facets into three Work Packages (WPs) apt for efficiency reasons. These
were described as follows:

• WP1: Source code audits & pentests against Silent Shard Snap Android SDK &
app

• WP2: Source code audits & pentests against Silent Shard Snap web app UI / JS
• WP3: Source code audits & pentests against Silent Shard Firebase Cloud

Functions

Notably, due to the division of the originally requested scope, this report complements
another corresponding project that focused on the Silent Shard Snap and codebase (see
SIL-02).

Cure53 leveraged a host of supporting entities that were provided by the client in
advance of the examinations, including sources, application builds, relevant
documentation, and other assorted items. Similarly to SIL-02, this assignment complied
with a white-box penetration testing methodology

Any outstanding preliminary procedures were completed in the week before the active
analysis phase, as per usual for Cure53 audits (in this case, CW23 2023). These
endeavors generally help to gain a complete understanding of the scope and negate any
hindering factors that may otherwise affect the project.

Cure53, Berlin · 09/07/23 2/29

https://cure53.de/
https://silencelaboratories.com/silent-shard/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

A dedicated and shared Slack channel was established to enable communications
between the Silence Laboratories and Cure53 teams. All employees from both
organizations that played an active role in this particular task were invited to partake in
the ongoing conversations, which were generally smooth and efficient. This medium also
facilitated the live reporting process, which essentially entailed divulging a selection of
issues at the point of detection for immediate proaction by the Silence Laboratories
team.

In relation to the findings, the testers’ highly satisfactory coverage over the
characteristics outlined in the three work packages yielded a total of thirteen. A lower
proportion of five were categorized as security vulnerabilities, whilst the remaining eight
were assigned to the Miscellaneous Issues section due to their reduced risk of
exploitation.

At this point, in order to provide a comprehensive appraisal of the security posture, it is
imperative to differentiate between the outcomes encountered for each work package,
i.e. the Android application (WP1), web application UI and JS (WP2), and Firebase
Cloud Functions (WP3).

Firstly, the WP1-related reviews against the Snap Android application revealed a
noteworthy volume of non-impactful flaws that were all assigned a Low or Informational
severity rating. These generally pertained to typical weaknesses or hardening guidance.
As such, the Android application garnered a relatively strong impression, though
opportunities for bolstering defense-in-depth could (and should) be integrated for
enhanced security efficacy.

The lack of tangible vulnerabilities concerning the web app UI and JS attests to the
substantial security paradigms already applied in this respect.

Conversely, Cure53’s examinations of Firebase Cloud Functions revealed fewer findings
in comparison, though these entail prominent threats due to the Medium and High
severity implications. The latter of which is particularly pertinent considering the ability to
forge valid JSON Web Tokens (JWTs) with arbitrary user IDs (see ticket SIL-03-013).
Thus, one can strongly suggest initiating mitigation actions as soon as possible to nullify
the involved risk.

To summarize, one can verify that the aspects scrutinized during this review offer robust
security defense on the whole, despite the partial discrepancies observed between each
work package. With this in mind, Cure53 believes that a first-rate industry standard can
be achieved should the Silence Laboratories team adhere to the guidance offered
throughout this report.

Cure53, Berlin · 09/07/23 3/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

From a structural viewpoint, the report is divided into a number of key chapters moving
forward. Firstly, the scope, general setup, and utilized materials are all stipulated in the
bullet points below. Following this, comprehensive information concerning the team’s
breadth of coverage and applied testing techniques is offered in the Testing
Methodology segment.

Next, the report lists all findings in ticket format and by order of detection, starting with
the Identified Vulnerabilities and culminating with the Miscellaneous Issues. All tickets
proffer an advanced technical overview, a Proof-of-Concept (PoC) or steps to reproduce
if required, relevant code excerpts and examples, and the suggested remediation
approaches for the developer team to implement.

To close proceedings, the Conclusions chapter aims to consolidate the varying
impressions gained throughout this test and provide a final estimation of the security
posture exhibited by the Silent Shard Snap web UI and Android applications, as well as
Firebase Cloud Functions.

Cure53, Berlin · 09/07/23 4/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Source code audits & penetration tests against Silent Shard app, web UI & cloud

functions
◦ WP1: Source code audits & pentests against Silent Shard Snap Android SDK & app

▪ Sources:
• Repository:

◦ silentshard-android-for-metamask-snap-integration/-/tree/v1
• Commit:

◦ c1bacc380aa031d7cc9becd6735dbfd62b84b6cc
• Documentation:

◦ Relevant Files:
▪ silentshard-android-for-metamask-snap-integration/-/blob/v1/

README.md
▪ silentshard-android-for-metamask-snap-integration/-/blob/v1/

silentshardsdk/README.md
◦ Commits:

▪ 3b83054400a443bc36b6f004c90358f1652f0986
▪ 394ca0c882465c1e152e1dbed25513f6b05aeed5

• Build:
◦ APK:

▪ silentshard-android-for-metamask-snap-integration/-/releases
◦ Commit:

▪ 3bb056dc7dafcb311f5cc2db3101d504cb1d128fc86d
◦ WP2: Source code audits & pentests against Silent Shard Snap web app UI / JS

▪ Sources:
• Repository:

◦ shard-metamask-snaps/silentshardnewui/
• Commit:

◦ f462638c29dfc31e0085bcfec92cedf550a12a84
◦ WP3: Source code audits & pentests against Silent Shard Firebase Cloud Functions

▪ Sources
• Repository:

◦ shard-metamask-snaps/metamask-snap-backend/
• Commit:

◦ a2559f6e9cfe32e59118787b1b6e6b1fc2ccb82d
• Documentation:

◦ README.md of metamask-snap-backend/main
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 09/07/23 5/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Testing Methodology
The Testing Methodology passages break down the myriad techniques applied and
consequential coverage achieved by the audit team against the focus targets stipulated
in WP1, WP2, and WP3. A dedicated section for each work package is provided for ease
of reference, should the client wish to ascertain the exact methods employed against the
Shard Snap SDK, mobile app, web app, and Firebase Cloud Functions. In essence,
Cure53 hopes that the information outlined forthwith attests to the rigorous efforts
instigated by the auditors during the course of this engagement.

WP1: Audits & pentests against Silent Shard Snap Android SDK & app
Cure53 initiated procedural analysis by reviewing all content held in the Android Manifest
file, which verified that the application fails to comprehensively mitigate hijacking attacks,
permits debugging, and does not explicitly set hasFragileUserData to false.

Nonetheless, the application disallows backups, as validated by the
android:allowBackup="false" setting. This prohibits a plethora of potential leak
occurrences in edge-case scenarios.

The team also materialized a list of all exported components from the internal Android
Manifest file information and invoked these activities with additional intents included and
omitted. Here, the ability to crash the app by invoking an exported activity with a
uniquely-crafted intent prior to user authentication was confirmed and documented in
ticket SIL-03-004.

The application’s behavioral traits were subjected to intense scrutiny, which raised a
security concern regarding the absence of a security screen to protect data displayed by
the app, as detailed in ticket SIL-03-005. Similarly, the app fails to integrate root
detection in any form, as stipulated in ticket SIL-03-001. Finally, Cure53 noted that the
wallet backup is saved in the SD card.

The auditors’ undertakings in this area also revealed that the application can be
executed on devices with SDK that are not supported, such as Android 5. Hence, any
would-be attacker could leverage the insecure v1 signature support to achieve certain
malicious goals, as discussed in ticket SIL-03-002.

The team operated the app similarly to any typical user whilst reviewing altered files in
the app folder, which served to demonstrate whether any sensitive information had been
written unencrypted to the device.

Cure53, Berlin · 09/07/23 6/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

These efforts confirmed that the app stores security-related wallet information, such as
keys, in an encrypted file with a hardcoded generic key. An unencrypted file with
Firebase authentication tokens was also detected.

To complement the aforementioned procedure, the logs generated by the application
were stringently reviewed, though Cure53 could not observe any pertinent data in the
associated records.

The testing team instigated a number of initiatives that aimed to intercept network traffic
between the device and backend servers, including advanced techniques such as self-
signed certificates, DNS spoofing, and similar. However, all of these attempts failed. The
testing team also attempted to spoof requests to Firestore, though the DNS server was
appropriately configured to block this behavior. In this area, Cure53 also sought to verify
that requests were performed via an encrypted protocol, such as HTTPS.

Elsewhere, the consultants prioritized assessing Android Keystore content, though in
actuality the verification was made that the application does not leverage it altogether.

The silentshard-android-for-metamask-snap-integration repository was scanned by
applying a variety of static analysis tools and manual audit methods in tandem. In this
respect, Cure53 observed that the application does not employ libraries to secure data
at rest, such as EncryptedSharedPreferences for instance. The team also acknowledged
the absence of beneficial code functionalities. Specifically, tapjacking protection (see
SIL-03-003) and FLAG_SECURE for screenshot protection were both omitted from the
configuration. Some related opportunities for hardening were also detected, as
highlighted in ticket SIL-03-007.

The team strove to enumerate any instances of insecure error logging, hardcoded
secrets in the source code, and vulnerable third-party dependencies. This raised a
persistent connected fault, which is outlined in ticket SIL-03-006.

The pairing flow and communication between the dApp and device were evaluated to
determine the capability for abuse or presence of logical defects. Positively, Cure53
confirmed that this process is resistant to tampering, considering that encryption protects
the communication process between the two devices. Additionally, the recovery phrase
and the key shares were generated using a secure random generator.

Cure53’s fuzzing procedures against unexpected user input to the Firebase Cloud
Functions were unfruitful in identifying any noteworthy findings, which attests to the
resilient exception handling capabilities established by the Silence Laboratories team.

Cure53, Berlin · 09/07/23 7/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In addition, the utilization of the libsodium library for cryptographic operations proved
highly robust.

The export and import backup functionality was meticulously probed. Here, particular
focus was placed on both the mechanism in general and the methods by which data
synchronization with Google Password Manager was achieved.

By conducting memory dumps of the application in various states, Cure53 successfully
uncovered a potential seed phrase leak following the wallet export process. Supporting
advice on this shortcoming is offered in ticket SIL-03-009.

Finally, during the application’s dynamic instrumentation phase, Cure53 determined that
the seed phrase is leakable under certain circumstances, primarily due to the absence of
runtime integrity checks. Moreover, the Android Keystore system should be adopted to
protect private keys and other pertinent data, as stipulated above. Please refer to ticket
SIL-03-010 for associated fix suggestions.

WP2: Source code audits & pentests against Silent Shard Snap web app UI / JS
To commence the WP2 assessment, the shared repositories were subjected to
extended inspections to determine any erroneous usage of dangerouslySetInnerHTML1,
due to its frequent overuse and high propensity for XSS issues.

Since the ReactJS framework does not handle URLs assigned to the HTML anchor tags’
href property, the source code was reviewed for any instances of this nature. Ultimately,
no assignment was found and the URL was confirmed comprehensively user-controlled.

Forthwith, the provided source code was audited for DOM XSS-related weaknesses,
including usage of location.href, window.open, and user-controlled URL parameters.

Notably, the team’s npm audit of the React application did not reveal any significant
findings, with the caveat of the minor vulnerability documented in the accompanying SIL-
02 report (see ticket SIL-02-002).

Furthermore, the audit team examined network requests - including requests to third-
party services - and error logs for any erroneous wallet information exposure, though no
correlating risk circumstances were identified.

1 https://reactjs.org/docs/dom-elements.html#dangerouslysetinnerhtml

Cure53, Berlin · 09/07/23 8/29

https://cure53.de/
https://reactjs.org/docs/dom-elements.html#dangerouslysetinnerhtml
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Lastly for WP2, the silentshardnewui repository was scanned by leveraging a host of
static analysis tools and manual audit approaches simultaneously. This yielded a
detrimental behavior concerning the location of a hardcoded API key, as described in
ticket SIL-03-008.

WP3: Source code audits & pentests against Silent Shard Firebase Cloud
Functions
In relation to Cure53’s efforts against the scope items defined in WP3, the metamask-
snap-backend repository was subjected to a scanning process similar to other
aforementioned repositories. Here, the audit team observed a hardcoded JWT token and
a private key, as documented in ticket SIL-03-008.

The testing team’s code analysis further corroborated that the application implements
authorization security controls in a safe manner. Moreover, all requests were achieved
via an encrypted protocol such as HTTPS, whilst all associated endpoints correctly
utilize an auth middleware for authentication purposes.

All endpoints exposed by the Cloud Functions API - specifically getToken, refreshToken,
and sendMessage - were systematically studied. This facilitated the discovery of two
issues pertaining to an authentication bypass and partial read/write access to the
Firebase database that permits valid JWT token forgery, as underlined in tickets SIL-03-
012 and SIL-03-013 respectively.

Despite stringent undertakings, Cure53 was unable to detect any Google sign-in
authentication flaws during the course of this exercise.

Access control configurations and security rules for Firestore were also appraised.
Despite the lack of associated weaknesses, Cure53 did observe pertinent flaws related
to usage of the Admin SDK that enabled full database privileges.

Cure53 finalized WP3 testing by reviewing JWT token handling and verifying whether
only optimal, state-of-the-art algorithms were permitted. The component’s propensity for
trivial weaknesses, such as omitting verification of the signing algorithms, was also
subjected to a validation process.

To close, the team positively acknowledged the JWT’s limited expiration date, which was
deemed appropriate and adhered to sound security paradigms. Generally speaking, best
practice stipulates avoiding the implementation of enduring tokens in order to neutralize
the impact of potential leakages.

Cure53, Berlin · 09/07/23 9/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, all tickets are given a unique identifier (e.g., SIL-03-001)
to facilitate any future follow-up correspondence.

SIL-03-009 WP1: Seed phrase leakage in mobile application memory (Low)
Cure53 confirmed that the seed phrase and key shares persist in memory following
requests to export the wallet. This data may be preserved in memory for an extended
duration, due to Android's behavior of retaining applications in memory until reclaimed.
Subsequently, an attacker with physical access to the device may exploit this
vulnerability by dumping the application memory. Additionally, the prevalence of publicly-
known Android kernel faults and the high likelihood of users operating on unpatched
Android devices expands the risk of malicious applications escalating their privileges to
access sensitive information in the memory.

To mitigate this issue, Cure53 discourages retaining sensitive data in memory longer
than absolutely required. The developer team should nullify any variables that hold the
key shares and seed phrase post-utilization. Furthermore, usage of immutable objects
such as strings for the purpose of storing sensitive information is generally suboptimal
and unadvisable. Alternatively, a char array could be applied to store sensitive data
since these can be explicitly overwritten, thereby minimizing the risk of data leakage.
Here, one must stipulate that references to immutable objects may remain in memory
until garbage collection occurs, even if they are removed or nulled. With this in mind,
Cure53 recommends implementing application mechanisms to enforce garbage
collection2, which will ensure prompt removal of sensitive data from memory.

2 https://kotlinlang.org/docs/native-memory-manager.html#enable-garbage-collection-manually

Cure53, Berlin · 09/07/23 10/29

https://cure53.de/
https://kotlinlang.org/docs/native-memory-manager.html#enable-garbage-collection-manually
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SIL-03-010 WP1: Seed phrase leakage via dynamic instrumentation (Low)
Testing verified a potential seed phrase leakage via dynamic instrumentation
techniques, whereby an attacker with physical access to the device can intercept and
manipulate the execution of the application at runtime, enabling them to retrieve the
seed phrase. To provide one example, this behavior could occur by hooking the
com.silencelaboratories.silentshardsdk.internal.Utils.generateSeedPhrase function and
monitoring its return value.

To mitigate this issue, Cure53 recommends implementing runtime integrity checks3

within the application to guarantee the integrity of the app's memory space. Additionally,
one can advise leveraging the security features provided by Android Keystore4 to
encrypt the seed phrase upon generation and decrypt only in instances deemed
absolutely fundamental for essential operations. Minimizing the attack surface via these
approaches will substantially reduce the risk of seed phrase exposure.

One effective solution in this respect represents the freely available DetectFrida5 library,
which will enhance the efficacy of the application's anti-tampering scheme. Nonetheless,
Cure53 must stipulate that suitably skilled and dedicated attackers may identify bypass
methods, in spite of the proposed defensive measures.

SIL-03-011 WP1: Sign request screen handles newlines incorrectly (Low)
The observation was made that the Silent Shard mobile app lacks optimal handling for
newlines that appear in the sign message request confirmation popup. Generally, a
transaction sign request can contain a custom message to be signed. When this custom
message is displayed on the mobile app, newline characters in the message shift the
remaining confirmation dialog down.

However, the popup on the mobile app does not allow users to scroll down and peruse
the rest of the content. Consequently, an attacker could send a transaction sign request
with a malicious message to obfuscate the reject and approve buttons.

To mitigate this issue, Cure53 recommends ensuring that both extended and newline-
inclusive messages are correctly handled in the app. This can be achieved by
guaranteeing that messages containing a multitude of newlines do not hide the action
buttons, as well as enforcing a definitive separation between the custom message and
the remaining transaction information.

3 https://bit.ly/runtime-checks
4 https://developer.android.com/training/articles/keystore
5 https://github.com/darvincisec/DetectFrida

Cure53, Berlin · 09/07/23 11/29

https://cure53.de/
https://github.com/darvincisec/DetectFrida
https://developer.android.com/training/articles/keystore
https://bit.ly/runtime-checks
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SIL-03-012 WP3: IDOR in sendMessage's Cloud Functions API (Medium)
Cure53 verified that the /sendMessage endpoint allows attackers to control the
collection name, docId, and data of objects prior to insertion into Silent Shard's Firestore
database. This behavior enables the ability to insert or modify arbitrary documents,
including (but not limited to) the users and backup collections.

The audit team’s procedures also confirmed that an adversary can read the entire data
for an object that matches the uid included in their authorization header, by simply
leveraging the check for the existence of the backup_data key in the document's data.

Affected file:
/metamask-snap-backend-master/functions/src/sendMessage.ts

Affected code:
const db = admin.firestore();

if (collection === "sign" && data.message && data.message.round==1) {
 await sendNotificationToUser(db,payload.uid,{notification: {
 title: "Transaction request",
 body: `Please approve this or deny`,
 },
 });
}

await db.collection(collection).doc(docId ?? payload.uid).set(data);

Steps to reproduce:
1. Ensure that the Silent Shard Browser Add-on is installed and paired with any

dApp.
2. Retrieve the Authorization token from any authenticated request initiated to us-

central1-mobile-wallet-mm-snap.cloudfunctions.net using a proxy of choice.
3. Perform the following cURL request. Note that {{token}} must be replaced with

the value extracted in Step 1.

cURL request:
curl -i -s -k -X $'POST' -H $'Host: us-central1-mobile-wallet-mm-
snap.cloudfunctions.net' -H $'Authorization: Bearer {{token}}' -H
$'Content-Type: application/json' --data-binary
$'{\"docId\":\"1337\",\"collection\":\"arbritary_collection\",\"data\":
{\"arbritary_data1\":\"arbritary_data2\"},\"expectResponse\":false}'
$'https://us-central1-mobile-wallet-mm-snap.cloudfunctions.net/sendMessag
e'

Cure53, Berlin · 09/07/23 12/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

4. Observe that the object will be created in the collection specified.

To mitigate this issue, Cure53 recommends checking the user-controlled collection
against a blocklist and disallowing the creation of new documents to collections such as
users. To prevent collection rewriting, one can advise storing the document creating
user’s uid in the document's data and validating whether the user's uid matches it. This
would prevent a malicious attacker from rewriting other users' existing documents.

SIL-03-013 WP3: Valid JWT forgery containing arbitrary user IDs (High)
The observation was made that one can forge a valid pairing document containing an
arbitrary user_id via the /getToken endpoint by leveraging the vulnerability described in
ticket SIL-02-002. This can be accomplished by adopting a known and valid
sign_public_key with its associated signature during the creation of the malicious pairing
document.

This document will subsequently be utilized by the backend to generate a valid JWT
token, which an attacker could in turn leverage to impersonate the user with the given
uid. To successfully instigate this attack, the prerequisite to possess the targeted victim's
uid is needed, which a malicious dApp may be able to extract given that its value is static
and associated with a user's device.

A number of plausible actions will be facilitated via this flaw, including reading and
editing a victim's FCM token, reading the encrypted backup data, as well as triggering
arbitrary sendNotificationToUser requests to the user's device.

Affected file:
/metamask-snap-backend-master/functions/src/getToken.ts

Affected code:
const db = admin.firestore();
const unSub = db
 .collection("pairing")
 .doc(pairing_id)
 .onSnapshot(
 async (snap) => {
 const pairingData = snap.data() as Pairing | undefined;
 if (pairingData) {
 [...]
 const signPublicKey = pairingData.sign_public_key;
 await _sodium.ready;
 try {
 _sodium.crypto_sign_verify_detached(
 _sodium.from_hex(signature),

Cure53, Berlin · 09/07/23 13/29

https://cure53.de/
https://docs.google.com/document/d/1udVyRgfPjioPSOiGZrlQmgiCucbncm7X5qT2yuQewMM/edit#heading=h.3mldds9dr31m
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 pairing_id,
 _sodium.from_hex(signPublicKey)
);
 } catch {
 [...]
 }
 const uid = pairingData.user_id;
 const token_expiration = Date.now() + 2 * 60 * 60 * 1000;
 const token = signJwt({
 uid,
 pairing_id,
 web_sign_public_key: signPublicKey,
 expiry: token_expiration,
 });

Steps to reproduce:
1. Ensure that the Silent Shard Browser Add-on is installed and paired with any

dApp.
2. Retrieve the Authorization token from any authenticated request initiated to us-

central1-mobile-wallet-mm-snap.cloudfunctions.net using a proxy of choice.
3. Perform the following cURL request. Note that {{token}} must be replaced with

the value extracted in Step 1.

cURL request:
curl -i -s -k -X $'POST' -H $'Authorization: Bearer {{token}}' -H
$'Content-Type: application/json' --data-binary
$'{\"docId\":\"3y38ibmODR1GgmZ9N7q\",\"collection\":\"pairing\",\"data\":
{\"is_backed_up\":true,\"backup_data\":\"true\", \"created_at\":
1688347519574, \"expiry\":
100000000000, \"sign_public_key\": \"df56361304c2d4552c9533f3f2d92b18c87
3adb57530537bd5ed96ecb194dafb\", \"user_id\": \"arbritary_userID\", \"p
hone_enc_public_key\": \"1\", \"device_name\": \"1\", \"backup_data\":
\"1\"},\"expectResponse\":true}' $'https://us-central1-mobile-wallet-mm-
snap.cloudfunctions.net/sendMessage'

4. Perform the following cURL command, then check the JWT that will be
generated in the response, which will be valid and assigned to the
arbritary_userID uid.

cURL command:
curl -i -s -k -X $'POST' -H $'Content-Type: application/json' --data-
binary
$'{\"pairing_id\":\"3y38ibmODR1GgmZ9N7q\",\"signature\":\"e19a257453927e1
083856b83d9f1a8caad0565fd3e2590e261bc95b97330e6e64d13ee85bf93fee545f8df3e
b460905d32844d469160d7c7e553877d4ab78d03\"}' $'https://us-central1-
mobile-wallet-mm-snap.cloudfunctions.net/getToken'

Cure53, Berlin · 09/07/23 14/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 recommends storing the uid of the user that created the
pairing in the object's data. Furthermore, the developer team could restrict the ability to
directly set the user_id attribute with user-controlled values.

Cure53, Berlin · 09/07/23 15/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

SIL-03-001 WP1: Android application lacks root detection (Info)
Cure53 verified that the Silent Shard Android app and Android SDK lack root detection
implementation at the time of writing. Consequently, the application fails to alert users
regarding the myriad security implications of operating the app in an environment of this
nature6. To validate this limitation, simply install the application on a rooted device and
note the complete lack of application warning.

To mitigate this issue, Cure53 recommends implementing a comprehensive root
detection solution. The free-to-download rootbeer library7 for Android could be installed
to alert users concerning the risk of operating on the app on a rooted device.

However, one must stipulate that the aforementioned measure would not
comprehensively eliminate the bypass potential, particularly if the adversary in question
is highly proficient. Moreover, considering that the user holds root access and the
application does not, the application will always be disadvantaged in this context.

SIL-03-002 WP1: Insecure v1 signature support on Android (Info)
The test team verified that the Android build is signed with an insecure v1 APK
signature, which increases the app’s susceptibility to the known Janus8 vulnerability on
devices operating Android versions older than 7.

Specifically, this fault grants attackers the opportunity to smuggle malicious code into the
APK without breaking the signature. At the time of writing, the app supports a minimum
SDK of 21 (Android 5), which also utilizes the v1 signature. Furthermore, Android 5
devices no longer receive updates and are vulnerable to a plethora of security
weaknesses.

6 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
7 https://github.com/scottyab/rootbeer
8 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta[...]affecting-their-signatures

Cure53, Berlin · 09/07/23 16/29

https://cure53.de/
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://github.com/scottyab/rootbeer
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Thus, one should assume that any installed malicious app can trivially obtain root
privileges on those devices using public exploits9 10 11.

This erroneous behavior enables adversaries to manipulate users into installing a
malicious attacker-controlled APK that matches the v1 APK signature of the legitimate
Android application. As a result, a transparent update would be possible without any
ensuing warnings appearing in Android, effectively taking over the existing application
and all data held within.

To mitigate this issue, Cure53 recommends increasing the minimum supported SDK
level to at least 24 (Android 7) to ensure that this known vulnerability cannot be exploited
on devices running deprecated Android versions. In addition, future production builds
should only be signed with APK signatures representing v2 and above.

SIL-03-003 WP1: Android config hardening recommendations (Info)
Cure53’s analysis verified that the Silent Shard Android app fails to leverage optimal
values for a number of security-related configurations, which unnecessarily weakens the
application’s security posture on the whole. To provide one example, the application
neglects to mitigate potential tapjacking and screen capture attacks. The associated
deficiencies are outlined below.

Issue #1: Lack of tapjacking protection
The Android app accepts user taps whilst alternative apps render any arbitrary overlay.
Malicious attackers may leverage this weakness to impersonate users using a crafted
app, which launches the victim app in the background whilst another entity is rendered
on top. Please note that this attack vector is mitigated from Android 1212 onward. Since
the app supports Android 5, this renders all users operating Android versions lower than
12 vulnerable to this attack. The following command confirms that tapjacking protections
are absent both on the provided source code and decompiled app.

Command:
grep -r 'filterTouchesWhenObscured' * | wc -l

Output:
0

9 https://www.exploit-db.com/exploits/35711
10 https://github.com/davidqphan/DirtyCow
11 https://en.wikipedia.org/wiki/Dirty_COW
12 https://developer.android.com/topic/security/risks/tapjacking#mitigations

Cure53, Berlin · 09/07/23 17/29

https://cure53.de/
https://developer.android.com/topic/security/risks/tapjacking#mitigations
https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises implement the filterTouchesWhenObscured1314

attribute at the Android WebView level15, which will ensure that taps are ignored in the
event the Android app is not displayed on top.

Issue #2: Lack of FLAG_SECURE for screenshot protection
The Android app allows applications to capture all information displayed on-screen.
Malicious apps without any special permissions may accomplish this by simply
prompting the user for screen capture access, which is common on Android for
screenshot and video recording apps. Notably, a malicious app can accomplish this
without any user warnings or prompts if it possesses root privileges, which is achievable
by simply prompting the user for them, adopting a rooted device, or exploiting any
number of publicly known Android vulnerabilities16 on unpatched devices (common). To
compound this risk assessment, the University of Cambridge’s Security Metrics for the
Android Ecosystem17 paper demonstrated that root privileges can in fact be gained on
87.7% of Android phones via a security vulnerability.

This issue can be verified on a physical device or emulator with the following commands,
which - utilizing a non-root adb session - will capture all screen content whilst the
Android app is open and subsequently download it to the computer.

Commands:
adb shell screencap -p /sdcard/screenshot1.png
adb pull /sdcard/screenshot1.png

To mitigate this issue, Cure53 advises ensuring that all WebViews set the Android
FLAG_SECURE flag18, which will guarantee that even apps running with root privileges
cannot directly capture the information displayed by the app. A centralized security
control would be optimal for this implementation, such as a base activity’s onCreate
event that all other activities inherit.

Proposed fix:
public class BaseActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

13 http://developer.android.com/reference/[...]/View.html#setFilterTouchesWhenObscured(boolean)
14 http://developer.android.com/reference/[...]/View.html#attr_android:filterTouchesWhenObscured
15 https://developer.android.com/reference/android/view/View#security
16 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&[...]
17 https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf
18 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE

Cure53, Berlin · 09/07/23 18/29

https://cure53.de/
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf
https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=968&sha=d2f005e0a59d1049528076a1d0f311143d802d4a
https://developer.android.com/reference/android/view/View#security
http://developer.android.com/reference/android/view/View.html#attr_android:filterTouchesWhenObscured
http://developer.android.com/reference/android/view/View.html#setFilterTouchesWhenObscured(boolean)
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 getWindow().setFlags(LayoutParams.FLAG_SECURE,
 LayoutParams.FLAG_SECURE);
 }

Issue #3: Usage of android:debuggable="true"
The application allows debugging under the current implementation, which may allow
local attackers with access to an unlocked device to enable USB debugging and access
application secrets.

Affected file:
AndroidManifest.xml

Affected code:
<application android:theme="@style/Theme.SilentShard"
android:label="@string/app_name" android:icon="@mipmap/ic_launcher"
android:name="com.silencelaboratories.silentshard.base.Application"
android:debuggable="true" android:allowBackup="false" android:supportsRtl="true"
android:appComponentFactory="androidx.core.app.CoreComponentFactory">>

To mitigate this issue, Cure53 recommends applying the false value for
android:debuggable.

Issue #4: Undefined android:hasFragileUserData
Since Android 10, one can specify whether application data should survive when apps
are uninstalled via the android:hasFragileUserData attribute. When set to true, the user
will be prompted to retain app information despite uninstallation.

Fig.: Uninstall prompt with checkbox for app data retention.

Since the default value is false, this behavior does not incur any direct security impact.
However, Cure53 strongly suggests setting this to false explicitly to define the app’s
intention to protect user information and ensure all data is deleted post-app
uninstallation. Notably, this option is only applicable in the event the user attempts to

Cure53, Berlin · 09/07/23 19/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

uninstall the app from the native settings. If the user uninstalls the app from Google Play,
a prompt will not be offered to request whether data should be preserved.

SIL-03-004 WP1: Potential user disruption via exported activity (Low)
The assessment confirmed the ability to crash the Silent Shard Android app by invoking
an exported activity with specifically-crafted intents. Malicious apps installed on the
same Android device could leverage this weakness to continuously crash the app,
effectively discouraging users from utilizing it.

Nonetheless, this fault’s impact is drastically lowered in this context, due to the fact that
the application only crashes when the user is logged out. Furthermore, initiating activities
from apps sent via the background is only possible on API level 28 and below. On newer
Android versions, intents can only be sent if the app is in the foreground19.

Affected exported activity:
com.silencelaboratories.silentshard.presentations.main.MainActivity

Steps to reproduce:
1. Open the Silent Shard app and push it to the background whilst running.
2. Record the Android logs locally via:

adb logcat > log.txt
3. Open the IntentFuzzer20 app.
4. Select NonSystemApps → com.silencelaboratories.silentshard.
5. Scroll down in the activities.
6. Long-press a MainActivity until a serializable intent is sent.
7. Confirm that a serializable intent has caused a fatal crash in

com.silencelaboratories.silentshard.presentations.main.MainActivity by perusing
the Logcat output.

Resulting crash output in Logcat:
E FATAL EXCEPTION: main
E Process: com.silencelaboratories.silentshard, PID: 8118
E java.lang.RuntimeException: Unable to start activity
ComponentInfo{com.silencelaboratories.silentshard/com.silencelaboratories.silent
shard.presentations.main.MainActivity}: android.view.InflateException: Binary
XML file line #18 in com.silencelaboratories.silentshard:layout/activity_main:
Binary XML file line #18 in
com.silencelaboratories.silentshard:layout/activity_main: Error inflating class
androidx.fragment.app.FragmentContainerView

19 https://developer.android.com/guide/components/activities/background-starts
20 https://github.com/MindMac/IntentFuzzer

Cure53, Berlin · 09/07/23 20/29

https://cure53.de/
https://github.com/MindMac/IntentFuzzer
https://developer.android.com/guide/components/activities/background-starts
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

E at
android.app.ActivityThread.performLaunchActivity(ActivityThread.java:3374)
E at
android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:3513)
[...]

To mitigate this issue, Cure53 recommends exporting the minimum possible volume of
activities for the application to function. Following this, the Silence Laboratories team can
fortify some of the remaining exported activities with appropriate Android permissions.
For additional mitigation guidance and contextual information regarding the protection of
Android activities with permissions, please refer to the slides entitled An In-Depth
Introduction to the Android Permission Model21, as well as the Stack Overflow discussion
concerning How to use custom permissions in Android22. For activities that must be
exported and cannot be protected, adequate input validation and exception handling
should be established to definitively eliminate this attack vector.

SIL-03-005 WP1: Potential leakage via absent security screen (Info)
Cure53 observed that the Silent Shard Android app and SDK fail to render a security
screen when the app is backgrounded. This allows attackers with physical access to an
unlocked device to peruse data displayed by the app before it disappears into the
background. A malicious application or attacker with physical access to the device could
exploit these weaknesses to gain access to user information, such as wallet balances
and recent transactions. Notably, whilst the potentially disclosed data is also publicly
accessible to attackers with knowledge of the crypto address23, an attacker with physical
access but without the aforementioned information could gain insight regarding a victim
user’s overall financial status via this attack vector.

To replicate this issue in Android, simply navigate to a sensitive screen and send the
application to the background. Subsequently, observe the open app and note that the
input text is now user-legible. This text will remain readable even post-device reboot.

21 https://www.owasp.org/...How_to_Secure_MultiComponent_Applications.pdf
22 https://stackoverflow.com/questions/8816623/how-to-use-custom-permissions-in-android
23 https://sepolia.etherscan.io/tx/0xe22[...]

Cure53, Berlin · 09/07/23 21/29

https://cure53.de/
https://sepolia.etherscan.io/tx/0xe22d0c4093af25f3a971a7420f9a3460947bb1b0112178584319b8e74dee635a
https://stackoverflow.com/questions/8816623/how-to-use-custom-permissions-in-android
https://www.owasp.org/images/c/ca/ASDC12-An_InDepth_Introduction_to_the_Android_Permissions_Modeland_How_to_Secure_MultiComponent_Applications.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Side-channel leak via absent security screen on Android.

This shortcoming’s root cause can be verified in the Android application’s relevant files,
which do not currently capture the relevant events to display a security screen when the
application is backgrounded.

For example, the Android app apparently does not offer any code that captures
backgrounding events to implement a security screen. This can be confirmed by
searching globally for Android events in the source code provided, as well as the
decompiled Android APK:

Command:
egrep -Ir '(onActivityPause|ON_PAUSE)' * |egrep -v
"(androidx|google|android/support)" |wc -l

Output:
0

To mitigate this issue, Cure53 recommends rendering a security screen overlay when
the app is due to be backgrounded. For Android apps, this can be achieved by capturing
the relevant backgrounding events; typically onActivityPause24 or the ON_PAUSE

24 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused[...]

Cure53, Berlin · 09/07/23 22/29

https://cure53.de/
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Lifecycle event25 are leveraged for this purpose. Following this, the developer team
should ensure that all views set the Android FLAG_SECURE flag26 if feasible. This will
guarantee that even apps running with root privileges are unable to directly capture
information displayed by the app on screen. Alternatively, a base activity file could be
amended to always set this flag, regardless of the focus.

In addition to the measures stipulated above, some apps can implement an app-specific
PIN or password to unlock it, thereby bolstering defense-in-depth. However, solutions
such as Face ID or Touch ID offer greater versatility in this context, considering that
user-friendliness and security resilience are simultaneously provided.

SIL-03-006 WP1: Potential phishing via StrandHogg 2.0 on Android (Info)
Testing confirmed that the Android app and SDK are currently vulnerable to a number of
task hijacking attacks. The launchMode for the app-launcher activity is currently not set
and hence defaults to standard27, which mitigates task hijacking via StrandHogg28 and
other deprecated techniques documented since 201529, whilst rendering the app
vulnerable to StrandHogg 2.030. Notably, this vulnerability affects Android versions 3-
9.x31 but was only patched by Google on Android 8-932. Since the app supports devices
operating Android 5 (API level 21), this renders all users running Android 5-7.x
vulnerable, as well as users running unpatched Android 8-9.x devices (which is
commonly encountered in the modern era).

As a result, a malicious app could leverage this limitation to manipulate the way in which
users interact with the app. Specifically, this would be implemented by relocating a
malicious attacker-controlled activity in the user’s screen flow, which may prove useful
toward instigating phishing, Denial-of-Service (DoS), or user credential theft. This fault
has been exploited by banking malware Trojans in the past, as confirmed by a number
of publicly documented cases33.

For StrandHogg and regular task hijacking attacks, malicious applications typically adopt
one or a selection of the following techniques:

25 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
26 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
27 https://developer.android.com/guide/topics/manifest/activity-element#lmode
28 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
29 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
30 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
31 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
32 https://source.android.com/security/bulletin/2020-05-01
33 https://arstechnica.com/[...]/[...]fully-patched-android-phones-under-active-attack-by-bank-thieves/

Cure53, Berlin · 09/07/23 23/29

https://cure53.de/
https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://developer.android.com/guide/topics/manifest/activity-element#lmode
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Task Affinity Manipulation: The malicious application offers two activities, M1
and M2, wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting
= true. In the event the malicious app is opened on M2, once the victim
application has initiated, M2 will be relocated to the front and the user will interact
with the malicious application.

• Single Task Mode: In the event the victim application has set launchMode to
singleTask, malicious applications can apply M2.taskAffinity = com.victim.app to
hijack the victim application’s task stack.

• Task Reparenting: In the event the victim application has set taskReparenting to
true, malicious applications can transfer the victim application task to the
malicious application stack.

However, in relation to StrandHogg 2.0, all exported activities lacking a launchMode of
singleTask or singleInstance are affected on vulnerable Android versions34. This
deficiency can be confirmed by reviewing the Android application’s AndroidManifest.

Affected file:
AndroidManifest.xml

Affected code:
<activity
android:name="com.silencelaboratories.silentshard.presentations.main.MainActivit
y" android:exported="true"/>

As one can deduce, launchMode is not set and hence defaults to standard.

To elucidate this area of concern and demonstrate its exploitation potential, an example
of a malicious app was created and offered below.

PoC demo:
https://7as.es/SilentShard_3rA3QbO8v/Task_Hijacking_PoC.mp4

To mitigate this issue, Cure53 advises implementing as many of the following
countermeasures as deemed feasible by the development team

34 https://www.xda-developers.com/strandhogg-2-0[...]/

Cure53, Berlin · 09/07/23 24/29

https://cure53.de/
https://7as.es/SilentShard_3rA3QbO8v/Task_Hijacking_PoC.mp4
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Firstly, the task affinity should be set to an empty string. This is optimally
implemented in the Android Manifest at the application level, which will protect all
activities and ensure the fix functions even after launcher activity amendments.
The application should adopt a randomly generated task affinity rather than the
package name to prevent task hijacking, since malicious apps will not be offered
a predictable task affinity to target.

• Subsequently, the launchMode should be altered to singleInstance (rather than
singleTask). This will ensure continuous mitigation in StrandHogg 2.035 whilst
enhancing security strength against older task hijacking techniques36.

• A custom onBackPressed() function could be implemented to override the default
behavior.

• Lastly, the FLAG_ACTIVITY_NEW_TASK should not be set in activity launch
intents. However, if this configuration is deemed absolutely necessary, one
should apply it in tandem with the FLAG_ACTIVITY_CLEAR_TASK flag37.

Affected file:
AndroidManifest.xml

Proposed fix:
<application android:theme="@style/Theme.SilentShard"
android:label="@string/app_name" android:icon="@mipmap/ic_launcher"
android:name="com.silencelaboratories.silentshard.base.Application"
android:debuggable="true" android:allowBackup="false" android:supportsRtl="true"
android:appComponentFactory="androidx.core.app.CoreComponentFactory"
android:taskAffinity="">
[...]
<activity android:theme="@style/Theme.SilentShard"
android:name="com.silencelaboratories.silentshard.presentations.splash.SplashAct
ivity" android:exported="true" android:launchMode="singleInstance">

35 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained[...]/
36 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
37 https://www.slideshare.net/phdays/android-task-hijacking

Cure53, Berlin · 09/07/23 25/29

https://cure53.de/
https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SIL-03-007 WP1: Android binary hardening recommendations (Info)
Cure53 acknowledged that a plethora of binaries embedded into the Silent Shard
Android application do not currently leverage the available compiler flags to neutralize
potential memory corruption vulnerabilities, which superfluously elevates the
application’s susceptibility to issues of this nature.

Absent flag:
-D_FORTIFY_SOURCE=2

The omission of this flag means that typical libc functions lack buffer overflow checks,
which increases the application’s proneness to memory corruption defects. Pertinently,
the vast majority of binaries are affected, though the following list is reduced for
concision reasons.

Example binaries (from decompiled build app):
• lib/x86/libsodiumjni.so
• lib/armeabi-v7a/libsodiumjni.so

To mitigate this issue, Cure53 suggests compiling all binaries via the -
D_FORTIFY_SOURCE=2 argument to guarantee that common and insecure glibc
functions, such as memcpy, are automatically safeguarded with buffer overflow checks.

SIL-03-008 WP2/3: Multiple hardcoded credentials in source code (Low)
During the code audit, Cure53 noted that the source code provided contains an
abundant volume of hardcoded credentials. In the event of a source code leak from a
developer laptop or source control server, this weakness may allow an attacker to gain
access to sensitive information, such as the Etherscan API key and private keys. The
following examples illustrate the present fault.

Affected project:
shard-metamask-snaps/silentshardnewui/

Affected file:
src/utils/web3Utils.ts

Affected code:
apikey=3JS[...]

Cure53, Berlin · 09/07/23 26/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected project:
shard-metamask-snaps/metamask-snap-backend/

Affected file:
functions/src/utils/jwt.ts

Affected code:
const JWT_TOKEN_KEY ="cc5[...]";

Affected project:
shard-metamask-snaps/metamask-snap-backend/

Affected file:
functions/src/index.ts

Affected code:
credential: admin.credential.cert({
 clientEmail: "firebase-admin[...]",
 privateKey: "-----BEGIN PRIVATE KEY-----\nMII[...]
}),

To mitigate this issue, Cure53 recommends completely removing all credentials, tokens,
and secrets from the source code. Alternatively, the applications should retrieve these at
runtime using a robust approach, for instance via access to a secure password vault
such as AWS Secrets Manager38. Supplementary guidance regarding this concern and
proposed mitigation methods is offered in the Common Weakness Enumeration (CWE)
definition’s CWE-798: Use of Hard-coded Credentials page39, as well as the OWASP
Cryptographic Storage Cheat Sheet40.

38 https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
39 https://cwe.mitre.org/data/definitions/798.html
40 https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

Cure53, Berlin · 09/07/23 27/29

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/798.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The following passages serve to extrapolate the coverage achieved and findings
encountered by the pentesters during this assignment, thereby materializing a
conclusive overview of the security efficacy offered by the components in scope. Cure53
concludes this project with a mixed impression of the work packages in scope, which all
yielded varying impressions from a security perspective. Nonetheless, the general
opinion of the grouped characteristics is positive and one can confirm that a decent
security standard has already been achieved, though the multitude of tickets
documented herein should be internally addressed at the earliest opportunity.

During Cure53’s stringent evaluation procedures to detect any potential exposure of
confidential data, the likelihood of insecure data logging and storage was estimated in
depth. Positively, despite meticulous efforts, the test team was unable to locate any
associated risk scenarios.

The source code review phase pertaining to the Android SDK and app similarly proved
unfruitful, considering the lack of identified faults in this area. Likewise, the pairing flow
and communication between the dApp and device were subjected to a deep dive
appraisal process to locate any potential abuse opportunities or logical flaws, though this
ultimately verified the framework’s sufficient safeguarding.

In addition, the export/import backup functionality withstood rigorous compromise
attempts, with the general objective of pinpointing any potential abusable vectors in the
synchronization with Google Password Manager.

Concerning some of the pertinent findings encountered, Cure53 acknowledged that the
seed phrase is leakable in the mobile application memory, as outlined in ticket SIL-03-
009.

Furthermore, the audit team observed that the current implementation does not leverage
the security features provided by Android Keystore and lacks anti-instrumentation
detection mechanisms. This deficiency raises concern regarding the possibility of seed
phrase leakage, as highlighted in ticket SIL-03-010.

During the assessment, the Cure53 consultants also acknowledged that the
implementation lacks root detection procedures, which would otherwise render the
debugging process easier to achieve (see ticket SIL-03-001). Additionally, auxiliary
source code reviews indicated that the application supports insecure v1 signatures on
Android and lacks essential hardening recommendations, as documented in tickets SIL-

Cure53, Berlin · 09/07/23 28/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

03-002 and SIL-03-007 respectively. These effective measures are deemed essential
toward enhancing the application's overall security posture, particularly in relation to
sensitive information handling.

The careful inspection of the Android Manifest file disclosed misconfigurations that
facilitated a plethora of detrimental security traits, including potential phishing via
StrandHogg 2.0 - as addressed in ticket SIL-03-006 - and the capability to instigate user
disruption via an exported activity, as detailed in ticket SIL-03-004.

The communication between the Snap and mobile application via the Cloud Functions
API evoked problematic tendencies, with issues related to the arbitrary manipulation of
the data stored in the Firestore database (see ticket SIL-02-012) and valid authorization
token forgery (see ticket SIL-02-013).

Cure53 also painstakingly evaluated the cryptography leveraged by the various systems
in scope to determine the propensity for implementational flaws. Here, the team verified
that the majority of systems integrated encryption, decryption, and other cryptographic
primitives via the cryptographic library libsodium. All locations wherein this library was
adopted were scoured to guarantee none exhibited any security-related threats, which
ultimately proved correct.

An array of general hardening improvements can be incorporated to bolster the Android
app’s security posture. Whilst these miscellaneous findings do not directly incur
exploitation or damage potential, one can nevertheless recommend resolving all tickets
to minimize the application’s attack surface.

In conclusion, this Cure53 security assessment against the diverse range of components
in focus revealed a notably resilient security posture for the first two work packages,
considering that these areas repelled any major risk circumstances and yielded only
miscellaneous pitfalls on the whole. Resolving the aforementioned findings will
undoubtedly imbue the application with a performant and commendable security
foundation. However, Cloud Functions exhibited ample opportunities for hardening - as
corroborated by the numerous connected Medium and High rated tickets - which must
be installed to raise security robustness to a similar level.

Cure53 would like to thank Andrei Bytes, Jay Prakash and Daksh Garg from the Silence
Laboratories Pte. Ltd. team for their excellent project coordination, support, and
assistance, both before and during this assignment.

Cure53, Berlin · 09/07/23 29/29

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Silence Laboratories Silent Shard Mobile App, Web & Cloud 06.-07.2023
	Index
	Introduction
	Scope
	Testing Methodology
	WP1: Audits & pentests against Silent Shard Snap Android SDK & app
	WP2: Source code audits & pentests against Silent Shard Snap web app UI / JS
	WP3: Source code audits & pentests against Silent Shard Firebase Cloud Functions

	Identified Vulnerabilities
	SIL-03-009 WP1: Seed phrase leakage in mobile application memory (Low)
	SIL-03-010 WP1: Seed phrase leakage via dynamic instrumentation (Low)
	SIL-03-011 WP1: Sign request screen handles newlines incorrectly (Low)
	SIL-03-012 WP3: IDOR in sendMessage's Cloud Functions API (Medium)
	SIL-03-013 WP3: Valid JWT forgery containing arbitrary user IDs (High)

	Miscellaneous Issues
	SIL-03-001 WP1: Android application lacks root detection (Info)
	SIL-03-002 WP1: Insecure v1 signature support on Android (Info)
	SIL-03-003 WP1: Android config hardening recommendations (Info)
	SIL-03-004 WP1: Potential user disruption via exported activity (Low)
	SIL-03-005 WP1: Potential leakage via absent security screen (Info)
	SIL-03-006 WP1: Potential phishing via StrandHogg 2.0 on Android (Info)
	SIL-03-007 WP1: Android binary hardening recommendations (Info)
	SIL-03-008 WP2/3: Multiple hardcoded credentials in source code (Low)

	Conclusions

