
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security Audit-Report Safing Jess Library 01.2020
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index

Introduction

Scope

Identified Vulnerabilities

SAF-01-001 Crypto: Secure key deletion ineffective (Medium)

SAF-01-002 Crypto: Password KDF vulnerable to GPU/ASIC attacks (Medium)

SAF-01-003 Crypto: Secure channel protocol weaknesses (High)

SAF-01-004 Crypto: Key management/encryption with 1-byte key (Critical)

Miscellaneous Issues

SAF-01-005 Crypto: Unnecessary configurability considered dangerous (Medium)

Conclusions

Introduction
“Jess is a cryptographic library and cli tool that focuses on usability and freedom.”

From https://github.com/safing/jess/

This report documents the findings of a security assessment targeting the Safing Jess
library. Carried out by Cure53 in January 2020, this project looked at the Safing Jess
complex as a cryptographic library and a command line interface tool focused on
usability and freedom. Therefore, the assessment entailed an audit of the Safing Jess
cryptography, as well as a more general security review of its premise.

Resources-wise, this project involved two senior-testers of the Cure53 team and was
executed in January 2020, taking a total of five person-days to complete. The
methodological approach entailed white-box testing since Cure53 had access to the
public source available on GitHub as open source (OSS). In addition, the testers were
informed about the commits relevant for the audit and supplied with further
documentation and material. A detailed and very thorough briefing was held by Cure53
and the Safing maintainer, facilitating understanding of the scope.

Cure53, Berlin · 01/25/20 1/9

https://cure53.de/
https://github.com/safing/jess/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In addition to the kick-off, the audit was accompanied by several fruitful discussions,
allowing the team to have an in-depth familiarity with the scope and, consequently,
leveraging a very good coverage level of this audit. The discussions also covered the
findings Cure53 spotted. The testers and the maintainer of the Safing Jess shared their
views on possible remediations and conducted fix verifications for some of the findings
that were addressed right after being live-reported. All in all, this audit was a textbook
example of a productive and effective assessment, excellently managed by the Safing
Jess maintainer in cooperation with Cure53.

As for the findings, the Cure53 team discovered five issues, four classified as security
vulnerabilities and one representing a general weakness. One problem was given the
Critical severity rating with another item marked as High in terms of risk. All other issues
were flagged as Medium threats. The bug noted as Critical had already been fixed and
Cure53 verified this fix, confirming that the problem no longer exists on the scope.

In the following sections, the report will first reiterate the areas featured in the test’s
scope in more detail, noting the relevant GitHub URLs and commit ID. The discussions
then move on to dedicated, chronologically discussed tickets, which present the
discoveries one-by-one. Alongside technical aspects like PoCs, Cure53 furnishes
mitigation advice and comments on the status of fixes where applicable. The report
closes with Conclusions in which Cure53 summarizes this early 2020 project and voices
a verdict about the security premise of the investigated Safing Jess complex.

Note: All issues were addressed with fixes and all fixes were inspected by Cure53 and
verified as working. Fix notes were added to each ticket, the rest of the report was left
untouched.

Scope
• Source Code Audits & Cryptography Review against Safing Jess Library

◦ https://github.com/safing/jess
◦ Relevant commit is 648d16d1cc8185ed3704373e43c84a6ab4315498

▪ https://github.com/safing/jess/commit/
648d16d1cc8185ed3704373e43c84a6ab4315498

Cure53, Berlin · 01/25/20 2/9

https://cure53.de/
https://github.com/safing/jess/commit/648d16d1cc8185ed3704373e43c84a6ab4315498
https://github.com/safing/jess/commit/648d16d1cc8185ed3704373e43c84a6ab4315498
https://github.com/safing/jess
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. SAF-01-001) for the purpose of facilitating any
future follow-up correspondence.

SAF-01-001 Crypto: Secure key deletion ineffective (Medium)

Note: This issue has been discussed with the Safing team and a fix has been confirmed
by the Cure53 team.

In many instances, Jess calls helper functions that appear to be designed as a way to
“burn” cryptographic keys and similarly sensitive material from the device’s memory in
order to prevent recovery. These “burn” functions are called frequently throughout the
cryptographic stack of Jess, including locations in the Signet, RSA, X25519 and NIST
components.

However, the tactic used in order to achieve key erasure is likely ineffective, due to the
limitations of the Go’s garbage collection-based memory management model1.
Furthermore, it does not attempt to target residual values, such as intermediate
computations, which thus may remain in memory.

Affected Files:
helper.go
tools/ecdh/nist.go

Affected Code:
// Burn gets rid of the given []byte slice(s).
func Burn(data ...[]byte) {
 for _, slice := range data {
 for i := 0; i < len(slice); i++ {
 slice[i] = 0xFF
 }
 }
}

[...]

func (ec *NistCurve) BurnKey(signet tools.SignetInt) error {
 pubKey := signet.PublicKey()

1 https://github.com/golang/go/issues/21865

Cure53, Berlin · 01/25/20 3/9

https://cure53.de/
https://github.com/golang/go/issues/21865
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 privKey := signet.PrivateKey()
 if pubKey != nil {
 point, ok := pubKey.(*ecdh.Point)
 if ok {
 point.X.Set(big.NewInt(0))
 point.Y.Set(big.NewInt(0))
 }
 }
 if privKey != nil {
 data, ok := privKey.([]byte)
 if ok {
 ec.Helper().Burn(data)
 }
 }
 return nil
}

It is recommended to not communicate any guarantees regarding secure key erasure to
users. Cure53 proposes to instead wait until this feature is officially provided in some
way or another by the Go programming language. Third-party implementations of such
features on top of the Go’s memory management model are unlikely to yield effective
results and should be avoided.

SAF-01-002 Crypto: Password KDF vulnerable to GPU/ASIC attacks (Medium)

Note: This issue has been discussed with the Safing team and a fix has been confirmed
by the Cure53 team.

It was observed that Jess uses the PBKDF2 password hashing function for the purpose
of strengthening user-passwords before they are employed for deriving encryption and
authentication of symmetric keys. In this realm, 20 000 rounds of PBKDF2 are used,
which gives the password hashing functionality a relatively high security margin.2

However, two weaknesses inherent to PBKDF2 remain:

• Vulnerability of speeding-up via optimizations. Research shows that PBKDF2
can be accelerated by 50% or more through different optimizations relying on
hashing through precomputed values3 or other acceleration attacks4.

• Vulnerability of speeding-up via GPU attacks. PBKDF2 is vulnerable to fast
brute-force via the usage of hardware that can perform the underlying hash
function with high throughput. This can range from commodity GPUs to custom

2 https://cryptosense.com/blog/parameter-choice-for-pbkdf2/
3 https://link.springer.com/chapter/10.1007/978-3-319-26823-1_9
4 https://www.usenix.org/conference/woot16/workshop-program/presentation/ruddick

Cure53, Berlin · 01/25/20 4/9

https://cure53.de/
https://www.usenix.org/conference/woot16/workshop-program/presentation/ruddick
https://link.springer.com/chapter/10.1007/978-3-319-26823-1_9
https://cryptosense.com/blog/parameter-choice-for-pbkdf2/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ASICs, with such hardware being prevalent due to its usefulness for
cryptocurrency mining.

It is recommended to instead use a password hashing function that is resistant to these
attacks, such as scrypt5. Since Jess deals with generating cipher-text that is vulnerable
to offline attacks, it is recommended to adopt the parameters generally used for offline
scrypt key derivation (i.e. N=220, r=8, p=1).

SAF-01-003 Crypto: Secure channel protocol weaknesses (High)

Note: This issue has been discussed with the Safing team and a fix has been confirmed
by the Cure53 team.

Fig.: Jess’ Diffie-Hellman secure channel protocol, based on the NK6 Noise Protocol
Framework Handshake Pattern.

The secure channel protocol deployed by Jess - in both Diffie-Hellman and Key
Encapsulation variants, was modeled and evaluated using the Verifpal automated
protocol analysis software7. The results were the following:

Result • authentication? Client -> Server: enc1: When the following values are
mutated by the attacker:
 ge1 → G^nil (originally G^e1)
 enc1, sent by Client and resolving to AEAD_ENC(G^se^e1, msg1,
nil), is successfully used in primitive AEAD_DEC(G^nil^se, AEAD_ENC(G^se^e1,

5 https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2
6 https://noiseexplorer.com/patterns/NK/
7 https://verifpal.com

Cure53, Berlin · 01/25/20 5/9

https://cure53.de/
https://verifpal.com/
https://noiseexplorer.com/patterns/NK/
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

msg1, nil), nil)? in Server's state, despite it being vulnerable to tampering by
Attacker.

 Result • confidentiality? msg2: When the following values are mutated by the
attacker:
 ge1 → G^nil (originally G^e1)
 enc1 → AEAD_ENC(G^nil^se, nil, nil) (originally AEAD_ENC(G^nil^se,
nil, nil))
 msg2 is obtained by the attacker as msg2

These results outline that due to the lack of long-term public key being provided by the
client, it is impossible for the Jess secure channel protocol to provide client
authentication. Therefore, the first message sent from the client to the server will never
benefit from authentication. In case of an early session compromise by an active
attacker, responses from the server can always be decrypted and manipulated by
adversaries. Since no real fix to this problem can omit providing long-term keys for
clients, it is recommended to instead wait until a handshake is completed before
communicating sensitive payloads. This revised approach may render the attack
somewhat more expensive to carry out for a potential active attacker on the network.

SAF-01-004 Crypto: Key management/encryption with 1-byte key (Critical)

Note: This issue has been discussed with the Safing team and a fix has been confirmed
by the Cure53 team.

When Jess is initialized with an envelope that is set to use symmetric keys for
encryption, it will always mandate a symmetric key size being provided manually by the
user with the --symkeysize command-line option. It was found that passing --
symkeysize=1 Jess would result in an envelope configuration with a 1-byte key. Said key
could then successfully be used for authenticated encryption and decryption. The
resulting encryption would be trivially easy to break due to the effective key space of
only 256 possible keys.

Affected File:
session.go

Affected Code:
err := e.LoopSecrets(SignetSchemeKey, func(signet *Signet) error {
 totalSignetsSeen++
 keySourceAvailable = true
 // FIXME
 return nil
 })

Cure53, Berlin · 01/25/20 6/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This issue has been reported to Safing, which responded by adding the appropriate
session.calcAndCheckSecurityLevel check to the code mentioned above. By doing so,
the necessary checks to avoid small key sizes can be seen as implemented
successfully.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SAF-01-005 Crypto: Unnecessary configurability considered dangerous (Medium)

Note: This issue has been discussed with the Safing team and a fix has been confirmed
by the Cure53 team.

Whenever a new envelope configuration is instantiated in Jess, the user is required to
configure both a set of security requirements and a cipher-suite. The security
requirements rely on standard definitions: payload confidentiality and integrity as well as
sender and recipient authentication for messages. The proposed cipher-suites include
key derivation functions (HKDF-SHA2), symmetric ciphers (ChaCha20-Poly1305, AES-
CTR, AES-GCM, Salsa20), RSA for public-key encryption, and asymmetric elliptic-curve
cryptography (P224, P256, P384, P521, Curve25519) for Diffie-Hellman and signing
operations.

Fig.: Ciphers offered during envelope configuration,
independent from security requirements.

Cure53, Berlin · 01/25/20 7/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The following issues are present with this arrangement:

• Cipher-suites can be manually chosen, independently from security
requirements. After setting the security requirements, users are expected to
also figure out which combination of primitives can satisfy these requirements.
From there, they are also expected to choose suitable primitives from a pool that
contains many primitives performing the same functionality, with some offering
drawbacks over the others. In the event that an inadequate cipher-suite is
chosen by the user, Jess simply exits.

• Cipher-suite malleability has no benefits and presents drawbacks. Besides
the potential for user error, there is simply no benefit to custom cipher-suites.
Especially because Jess does not perform public key encryption, RSA can be
removed entirely and replaced with Diffie-Hellman key agreement, which benefits
from more modern primitives such as Curve25519 (superior both in terms of
security and performance to the NIST curves also offered by Jess). AES-based
symmetric ciphers, unauthenticated ciphers and HMAC functions can also be
ruled out entirely and replaced with a single modern authenticated symmetric
encryption primitive such as ChaCha20-Poly1305.

Protocol versioning can be adopted to ensure that a set of optimal cipher-suites is
chosen for each version. Next, version upgrades could occur only if it is necessary to
make changes to the optimal cipher-suite, concurrently to the upgrade period of the
previous version becoming deprecated and removed from circulation.

After discussing the issue with Safing, decisions have been made about optimal cipher-
suite for version 1 of the Jess secure channel protocols. This was done on the basis of
security, performance and compatibility considerations:

key_v1: HKDF(BLAKE2b-256), CHACHA20-POLY1305
pw_v1: SCRYPT, HKDF(BLAKE2b-256), CHACHA20-POLY1305
rcpt_v1: ECDH-X25519, HKDF(BLAKE2b-256), CHACHA20-POLY1305
sign_v1: Ed25519(BLAKE2b-256)
v1: ECDH-X25519, Ed25519(BLAKE2b-256),HKDF(BLAKE2b-256), CHACHA20-POLY1305
wire_v1: ECDH-X25519, HKDF(BLAKE2b-256), CHACHA20-POLY1305

Cure53, Berlin · 01/25/20 8/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Despite spotting five issues containing problems of Critical and High severities, this
January 2020 assessment of the Safing Jess complex concludes on a positive note.
After spending five days on the scope and acquiring a complete coverage, two members
of the Cure53 team can attest to the proper cryptographic premise and commend the
knowledge and engagement of the maintainer responsible for security of the Safing Jess
compound.

All of the proposed cryptographic constructions were evaluated, with the Go code found
to be clean, readable and well-documented. The accompanying protocols are well-
specified, even though there is a fundamental limitation in the Go memory management
model. This signifies some minor setbacks for the project, as documented in SAF-01-
001. Next, it was found that the password-based key derivation primitive was obsolete
due to its vulnerability to optimization attacks as well as GPU and ASIC attacks. A
replacement primitive was recommended in SAF-01-002.

Moving on, certain weaknesses in the Jess secure channel protocol were documented
via the analysis performed with the Verifpal automated cryptographic protocol analyzer
(see SAF-01-003). Most concerning vulnerability marked as Critical had been spotted
next. This problem relates to Jess allowing users to encrypt and decrypt with 1-byte
keys, rendering all encrypted payloads trivially easy to break. This is documented in
SAF-01-004. While no immediate security concerns were identified as a result of SAF-
01-005, Cure53 discusses how the requirements that the users can specify when
manually selecting cipher-suites for Jess can work independently from their security
goals. This could result in problems down the road, as well as signifies major
inconvenience for usability and deployment of Jess.

To conclude, Cure53 is impressed with the quality of collaboration, especially since all
issues have been thoroughly discussed with Safing and examined in relation to possible
remediation. With all fixes already verified, Cure53 can only finalized this project by
concluding that the Safing Jess complex has certainly become safer and more secure as
a result of this January 2020 assessment. The Safing Jess complex is definitely on the
right track in terms of security.

Cure53 would like to thank Daniel Hovie and Raphael Fiedler from the Safing team for
their excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 01/25/20 9/9

https://cure53.de/
mailto:mario@cure53.de

	Security Audit-Report Safing Jess Library 01.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	SAF-01-001 Crypto: Secure key deletion ineffective (Medium)
	SAF-01-002 Crypto: Password KDF vulnerable to GPU/ASIC attacks (Medium)
	SAF-01-003 Crypto: Secure channel protocol weaknesses (High)
	SAF-01-004 Crypto: Key management/encryption with 1-byte key (Critical)

	Miscellaneous Issues
	SAF-01-005 Crypto: Unnecessary configurability considered dangerous (Medium)

	Conclusions

