
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Safeheron WASM MPC & Snap 09.2023
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi, A. Ahelleya

Index
Introduction
Scope
Identified Vulnerabilities

SFH-01-001 WP2: Key generation overwrites previous MPC account (Medium) FIXED
SFH-01-002 WP2: Request signatures require no user-modal interaction (Info)
SFH-01-003 WP2: Private key logged in the console (Medium) FIXED
SFH-01-004 WP2: Lack of payload validation in Snaps (Low) FIXED
SFH-01-005 WP2: Backup flow exports private keys as plaintext (Medium) FIXED
SFH-01-006 WP2: Suboptimal state follows request flow (Low) FIXED
SFH-01-007 WP2: Use of deprecated MetaMask permissions in Snaps (Low) FIXED
SFH-01-008 WP2: localhost string included on the allow-list (Low) FIXED

Conclusions

Cure53, Berlin · 01/18/24 1/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“More Than Just a Wallet, It's the Next-Generation Digital Asset Custody - Compared to
the previous generation of custody products, Safeheron offers enhanced digital asset
security without losing private key control. Customers retain 100% control over their
private keys and asset ownership, enjoying institutional-grade security and efficient
management.”

From https://www.safeheron.com/en-US/mpc-wallet/

This report describes the results of a penetration test and source code audit targeting
the code repositories and implementations of two Safeheron components, namely the
Safeheron WASM MPC and the Safeheron Multi-MPC Snap.

The work was requested by Safeheron Pte. Ltd. in August 2023 and carried out by
Cure53 in September 2023. The project began in CW37 and the testing was finalized in
CW39.

To comment on the resources allocated to this project, registered as SFH-01, a total of
eighteen days were invested to reach the expected coverage. Moreover, a team
consisting of three senior testers was assigned to the examination’s preparation,
execution and finalization.

The work was split into two separate work packages (WPs):

• WP1: Black-box penetration testing & code auditing of Safeheron WASM MPC
code and implementation

• WP2: White-box penetration testing & code auditing of Safeheron Multi-MPC
Snap code and implementation

Cure53 was provided with sources, a list of key items in focus, as well as all further
means of access required to complete the tests. Originally, the methodology chosen for
both WPs was white-box. However, due to some complications during the setup and
preparation phases, it was mutually agreed to change the methodology of WP1 into
black-box.

All preparations were done in September 2023, namely CW36, so that the Cure53
testing team could have a smooth start. Communications during the test were done
using a dedicated shared Slack channel, which was set up to connect the Safeheron and
Cure53 teams. Involved personnel from both parties could join discussions on Slack.

Cure53, Berlin · 01/18/24 2/14

https://cure53.de/
https://www.safeheron.com/en-US/mpc-wallet/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

While the exchanges on Slack were helpful, it was notable that several questions had to
be asked. This was due to the prepared source material, which led to several issues,
mainly in the frames of WP1. Ultimately, this was the reason for the methodology
change in WP1, as well as a stronger emphasis on WP2 targets. No further noteworthy
roadblocks were encountered during the test.

Cure53 gave frequent status updates about the test and the related findings. Live-
reporting was offered by Cure53 and was executed via the aforementioned Slack
channel.

Very good coverage was reached over the WP1-WP2 scope items. All eight findings
were classified to be security vulnerabilities, meaning that no general weaknesses could
be observed. The overall number of findings can be seen as acceptable and can be
interpreted as a positive indicator for the security of the Safeheron MPC's MetaMask
Snap. This is further supported by the fact that no vulnerabilities of High or Critical
severity were identified during this audit.

Yet, it should once again be mentioned that the WP1 targets, spanning the Safeheron
WASM MPC code and implementation, were not fully testable. This was caused by the
unanticipated restrictions within the provided sources.

The report will now shed more light on the scope and test setup as well as the available
material for testing. After that, the report will list all vulnerabilities in chronological order
of discovery. Each finding will be accompanied with a technical description, a PoC where
possible as well as mitigation or fix advice.

The report will then close with a conclusion in which Cure53 will elaborate on the
impressions and recommendations formulated on the basis of this test. Moreover, the
testing team will issue a more general verdict about the perceived security posture of the
scope that comprises the Safeheron WASM MPC, as well as the Safeheron Multi-MPC
Snap.

Cure53, Berlin · 01/18/24 3/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration testing & code auditing of Safeheron WASM MPC & Multi-MPC Snap

code and implementations
◦ WP1: Black-box penetration testing & code auditing of Safeheron WASM MPC code

and implementation
▪ Sources:

• https://github.com/Safeheron/mpc-wasm-sdk
▪ Audited Commit:

• 27ec4b6ee5ebb56401852df00417d9186aa9cae3
▪ The resources given for WP1 do not allow for the fulfillment of the described

scope. Therefore, the methodology was changed from white-box into black-box.
◦ WP2: White-box penetration testing & code auditing of the Safeheron Multi-MPC

Snap code and implementation
▪ Sources:

• https://github.com/Safeheron/multi-mpc-snap-monorepo
▪ Audited Commit:

• 80c59cc48c0e7c003e80c5d30a6895aa6d5d2eba
▪ Commit for Fix Verification

• d37b291c1874f98f919142a60fee51ab29b07ce3
◦ Key focus areas:

▪ Architectural design and infrastructure
▪ Data storage and encryption mechanisms
▪ Authentication and authorization protocols
▪ Network security measures
▪ Incident response and recovery procedures

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 01/18/24 4/14

https://cure53.de/
https://github.com/Safeheron/multi-mpc-snap-monorepo
https://github.com/Safeheron/mpc-wasm-sdk
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, each ticket has been given a unique identifier (e.g.,
SFH-01-001) to facilitate any future follow-up correspondence.

SFH-01-001 WP2: Key generation overwrites previous MPC account (Medium)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

Safeheron MPC's state management layer for the MetaMask Snap only stores one
wallet/account at a time. If a key-shard already exists in the storage but a keygen flow is
re-initiated at the Snap level, the user would not be warned that their existing key-shard
will be overwritten. Consequently, the newly generated key will overwrite the state,
resulting in key loss.

Affected file:
packages/snap/src/mpc-flow/KeyGenFlow.ts

In order to generate a key-shard, the Safeheron Snap calls methods in KeyGenFlow.ts.
First, the shard is initiated using keyGenApproval:

async keyGenApproval(
walletName: string,
party: Party
): Promise<SnapRpcResponse<string>> {
 await requestConfirm(
 panel([
 heading('Confirm to create an MPC wallet?'),
 text(`Wallet Name: ${walletName}`),
])
)

 this.keyGen = this.mpcInstance.KeyGen.getCoSigner()

 this.walletName = walletName
 this.sessionId = uuidV4()
 this.keyGen!.setLocalParty(party.party_id, party.index)

 return succeed(this.sessionId)
}

Cure53, Berlin · 01/18/24 5/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Then, the createWalletSuccess method stores the key-shard in the Snap's state
manager, which synchronizes with MetaMask's encrypted storage1:

async createWalletSuccess(
 sessionId: string
): Promise<SnapRpcResponse<AccountItem>> {
 this.verifySession(sessionId)

 // TODO validate pubkey
 const backuped = false
 const address = ethers.utils.computeAddress(`0x${this.pubKey}`)

 const snapAccount: SnapAccount = {
 id: uuidV4(),
 name: this.walletName!,
 address,
 options: {},
 supportedMethods: SUPPORTED_METHODS,
 type: 'eip155:eoa',
 backuped: false,
 pubkey: this.pubKey!,
 signKey: this.signKey,
 }

 await this.stateManager.saveOrUpdateAccount(snapAccount)

 return succeed({
 walletName: this.walletName!,
 address,
 backuped,
 })
 }

It is recommended that users receive warnings whenever the local state is about to be
overwritten. Moreover, they should be informed about the consequences of key-
regeneration actions. Alternatively, the key generation flow may be disabled if an
account already exists locally, up until the key-shard is removed from the local state via
a user-initiated account reset flow or similar.

1 https://docs.metamask.io/snaps/reference/rpc-api/#snap_managestate

Cure53, Berlin · 01/18/24 6/14

https://cure53.de/
https://docs.metamask.io/snaps/reference/rpc-api/#snap_managestate
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SFH-01-002 WP2: Request signatures require no user-modal interaction (Info)
Safeheron's MPC MetaMask Snap allows for requests to be signed without user-
interaction. This means that the Safeheron dApp can sign requests on behalf of the key-
shard stored in the Snap without active user presence.

Affected files:
packages/snap/src/mpc-flow/SignerFlow.ts

Safeheron MPC's MetaMask Snap initiates and approves request signatures through the
signApproval method in SignerFlow.ts:

async signApproval(
method: KeyringAccount['supportedMethods'][number],
params: Record<string, any>,
requestId?: string

): Promise<SnapRpcResponse<string>> {
const wallet = this.getWalletWithError()

if (requestId) {
 const requestIdIsValid = this.stateManager.isValidRequest(requestId)
 if (!requestIdIsValid) {
 throw new Error('Invalid request id: ' + requestId)
 }
 this.metamaskRequestId = requestId

}

this.sessionId = uuidV4()
this.requestOrigin = Boolean(requestId) ? 'metamask' : 'website'
this.signMethod = method
this.signParams = params
if (isTransaction(this.signMethod)) {

 this.normalizedTx = normalizeTx(params as TransactionObject)
}
this.signKey = wallet.signKey

this.signer = this.mpcInstance.Signer.getCoSigner()

return succeed(this.sessionId)
 }

The above method is called without any request for user approval. As a result, the
Safeheron dApp will be able to sign requests on behalf of the key-shard that is stored in
the Snap without their permission. Additionally, any client-side vulnerabilities in the dApp

Cure53, Berlin · 01/18/24 7/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

will be able to force signing requests (including transactions) on the user's behalf, doing
so without their permission.

It is recommended to seek active user approval before signature requests can be
generated. Generally speaking, confirming user presence before any authenticating
cryptographic operation occurs is an industry standard. This can be seen, for example,
in Yubikeys, where users are required to touch the Yubikey to allow it to authenticate,
despite it being plugged into the computer and, in theory, programmable to dispense
authenticating functions at any time.

SFH-01-003 WP2: Private key logged in the console (Medium)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

Safeheron MPC's MetaMask Snap logs the user's private signing key directly in the web
renderer's console. Given the extremely high sensitivity of the key material, this should
be stopped.

Affected file:
packages/snap/src/StateManager.ts

In StateManager.ts's loadState method, the user's private signing key is logged into the
console:

console.debug('State Manager init: ', state.account, state.requests)

The property state.account is of type SnapAccount. This means it stores private signing
keys:

export type SnapAccount = KeyringAccount & {
 signKey: string
 backuped: boolean
 pubkey: string

It is recommended to case logging of long-term private keys in consoles. Ideally, they
should sit either in the program's namespacing or memory, such that they can never be
read or accessed directly anyway. In that sense, they should exclusively be usable
indirectly via wrapper functions that never expose or bring the key itself to the surface.
Using the Snap’s persistent storage (see SFH-01-005) should be considered in this
context.

Cure53, Berlin · 01/18/24 8/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SFH-01-004 WP2: Lack of payload validation in Snaps (Low)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

The Safeheron MPC MetaMask Snap uses the superstruct npm library2 to validate the
request body at runtime. However, it was observed that it failed to validate the type of
request payloads, as well as their lengths at runtime, in certain areas.

Affected files:
• packages/snap/src/rpc/internalMPCHander.ts
• packages/snap/src/mpc-flow/RecoveryFlow.ts
• packages/snap/src/mpc-flow/KeyGenFlow.ts

In internalMPCHandler.ts, the mpc_signApproval method's request parameters have
three properties with no input validation of any kind, namely method, params and
requestId. To be more specific:

• method is asserted to be of type "personal_sign" | "eth_sign" |
"eth_signTransaction" | "eth_sendTransaction" | "eth_signTypedData" |
"eth_signTypedData_v1" | "eth_signTypedData_v3" | "eth_signTypedData_v4"
without being validated at runtime.

• params is type-asserted to be of type Record <string, unknown>. This value is
not type-validated at runtime; furthermore, at compile/transpile time, it is asserted
to have properties that it may not have. Specifically, in signApproval, params is
asserted to be of TransactionObject type.

• In the recovery flow's recoverPrepare method, and in the key generation flow's
keyGenApproval method, the lengths of walletName are not validated.

It is recommended to validate method at runtime using superstruct. This could otherwise
have harmful implications when chained with a client-side vulnerability. Moreover, it
should be acknowledged that the signing flow does not require user approval. Thus, an
attacker would be able to call arbitrary methods on the user's behalf without their
knowledge. For params, set a narrower TransactionObject instead of Record <string,
unknown> and also validate it at runtime using superstruct.

2 https://www.npmjs.com/package/superstruct

Cure53, Berlin · 01/18/24 9/14

https://cure53.de/
https://www.npmjs.com/package/superstruct
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SFH-01-005 WP2: Backup flow exports private keys as plaintext (Medium)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

The wallet management methods checkMnemonic and recoverApproval return key-
shard mnemonics in plaintext. This is in violation of MetaMask's own recommendations
for key backup management, as shown in the figure below.

Affected files:
packages/snap/src/mpc-flow/walletManage.ts

Fig.: MetaMask's recommendations for responsible key management3

It is recommended to follow MetaMask's recommendations in the available
documentation. Recovery keys could be stored in Snaps’ persistent storage, or
otherwise exported in an encrypted form with user-passwords.

3 https://docs.metamask.io/snaps/how-to/manage-keys/#responsible-key-management

Cure53, Berlin · 01/18/24 10/14

https://cure53.de/
https://docs.metamask.io/snaps/how-to/manage-keys/#responsible-key-management
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SFH-01-006 WP2: Suboptimal state follows request flow (Low)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

In both signer and recovery flows, private values such as signKey are retrieved from
StateManager and stored in their respective object property in an unencrypted form.
Furthermore, both flows fail to clear the object properties properly (including the signKey
property) after their flow/session is finished.

Affected file:
packages/snap/src/StateManager.ts

While this state may be overwritten in any subsequent sessions, during the period
between these two sessions, properties such as signKey stay in the object unencrypted.

It is recommended to clear the entire state including all object properties rather than just
signKey. This should take place as soon as the round is finished, also in the context of
inclusion for the runRound method in signer flow and the refreshSuccess method in the
recovery flow.

SFH-01-007 WP2: Use of deprecated MetaMask permissions in Snaps (Low)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

MetaMask Snaps include the deprecated endowment:long-running from stable releases,
which is currently available only in MetaMask Flask4. This permission5 means that a
Snap can run indefinitely, essentially bypassing the lifecycle requirements6 set for
Snaps.

Affected file:
packages/snap/snap.manifest.json

While no exploits were found for this permission during this audit, this could still have
potential security consequences if not removed.

4 https://github.com/MetaMask/snaps/issues/945
5 https://docs.metamask.io/snaps/reference/permissions/\#endowmentlong-running
6 https://docs.metamask.io/snaps/concepts/lifecycle/

Cure53, Berlin · 01/18/24 11/14

https://cure53.de/
https://docs.metamask.io/snaps/concepts/lifecycle/
https://docs.metamask.io/snaps/reference/permissions/%5C#endowmentlong-running
https://github.com/MetaMask/snaps/issues/945
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In addition, the Safeheron Snap uses mpc_snapKeepAlive method which keeps the
Snap alive, without needing endowment:long-running. Therefore, it is recommended to
remove the endowment:long-running endowment from the Snap config entirely.

SFH-01-008 WP2: localhost string included on the allow-list (Low)
Note: This issue was fixed by the development team during the test. The fix was
reviewed and verified successfully by Cure53. The problem no longer exists.

The Safeheron Snap's allow-list includes localhost, which may offer an option for a
malicious local application to conduct rogue signatures. This would hinge on chaining
this vulnerability with SFH-01-002. Note that the Safeheron Snap uses the allow-list to
keep requests to the Snap limited to the featured domains.

Affected file:
packages/snap/src/rpc/permissions.ts

Affected code:
const local_websites = [
 'http://localhost:8080',
 'http://127.0.0.1:8080',
 'https://test-mpcsnap.safeheron.com',
 'https://mpcsnap.safeheron.com',
]

No other domains apart from those on the list are allowed to send requests to the Snap.
However, a malicious app hosted on localhost by a user can perform actions with the
same permissions as the dApp.

Combined with the existing vulnerability where signing flow does not require user
permission (see SFH-01-002), a malicious app someone deploys on their localhost
would be capable of signing requests on the user's behalf and without their permission.

It is recommended to remove localhost from the allow-list. Simply deleting the localhost
entry from the allow-list is advised, with the caution for identifying both entries of this
kind.

Cure53, Berlin · 01/18/24 12/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Cure53 can conclude that the Safeheron MPC's MetaMask Snap already boasts a good
security posture. However, it is still strongly recommended to swiftly resolve all of the
spotted problems, as they clearly indicate that further refinement of the security
implementation is needed.

To reiterate, the work completed in the frames of SFH-01 was split into two WPs, both
leveraging penetration testing and code auditing. WP1 focused on the Safeheron WASM
MPC code and implementation, whereas WP2 targeted the Safeheron Multi-MPC Snap
code and implementation. Three members of Cure53 completed the project over the
period of eighteen days in September 2023.

Even though both WPs were originally expected to be completed with white-box
methods, some problems and complications arose during the setup and preparations for
WP1. Ultimately, black-box methods were deployed in WP1.

During the assessment, Cure53 identified several areas where security practices could
be enhanced. While the technical details are given in individual tickets, the overarching
observation is that some security measures are in place, but gaps are also present.

In total, eight vulnerabilities were identified. Importantly, their severity scores were Low
and Medium, with no grave risks pinpointed. The first finding concerns overwriting of
previous MPC account data (SFH-01-001), which is driven by the current state
management layer’s failure to warn users about overwriting the existing key-shard data.
The problem could lead to potential key loss.

The second finding demonstrates that no user-interaction is required for request
signatures in certain scenarios (SFH-01-002). Specifically, the Snap allows such
requests and that can lead to unauthorized signatures. The next two findings
respectively cover logging of private keys directly in the web renderer’s console (SFH-
01-003) and the fact that the Snap fails to validate the type and lengths of request
payloads in certain areas (SFH-01-004).

Cure53 also found that the backup flow exposes key-shard mnemonics in plaintext
(SFH-01-005), which is against MetaMask's own recommendations. The Snap also does
not clear object properties, including sensitive ones, after the flow/session concludes, as
discussed in SFH-01-006.

Cure53, Berlin · 01/18/24 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Final two concerns pertain to the usage of deprecated MetaMask Snap permissions
(SFH-01-007) and a peculiar inclusion of localhost on the allow-list (SFH-01-008), which
needs to be removed to prevent exploitation by malicious local applications.

Recommendations have been provided for each vulnerability as a guideline on how to
enhance the security posture of the Snap. It is imperative for Safeheron to address these
vulnerabilities promptly, as this will foster trustworthiness and safe operations of the
platform for the user-base.

During the audit, the testing team gained an overall impression that Safeheron has made
efforts in securing their platform. However, there is still room for improvement. The
vulnerabilities identified stem from a combination of oversight in code implementation,
lack of user-interaction in critical processes, and non-adherence to industry best
practices. Some of these vulnerabilities, if exploited, could compromise user-data and
trust. Notably the following aspects are deemed especially improvement-worthy:

• User-interaction: Critical processes, such as key generation and request
signatures, lack sufficient user-interaction. This could lead to unintended actions
without users’ knowledge.

• Logging practices: Logging of sensitive information, especially private keys, is a
significant concern. This is a basic security principle that was overlooked by
Safeheron.

• Validation mechanisms: Payload validation is inconsistent, which could be
exploited by malicious actors to perform unauthorized actions.

• Deprecated practices: The use of deprecated permissions and inclusion of
localhost on the allow-list indicate a pronounced need for regular updates and
adherence to constantly evolving best practices.

While these are the primary concerns, there were other minor issues that, when
combined, could pose a risk. More rigorous implementation and regular reviews are
needed to capitalize on the existing security-foundation of the Safeheron complex.

To conclude, the Safeheron MPC's MetaMask Snap has potential, but the security
implementation calls for refinement. Cure53 strongly recommends collaborative and
comprehensive approaches, possibly involving further training and scheduling additional
security assessments to bolster adherence to best practices and solidity of the deployed
protective measures.

Cure53 would like to thank Qian Yisijie and Yan Jie from the Safeheron Pte. Ltd. team
for their excellent project coordination, support and assistance, both before and during
this assignment.

Cure53, Berlin · 01/18/24 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Safeheron WASM MPC & Snap 09.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	SFH-01-001 WP2: Key generation overwrites previous MPC account (Medium)
	SFH-01-002 WP2: Request signatures require no user-modal interaction (Info)
	SFH-01-003 WP2: Private key logged in the console (Medium)
	SFH-01-004 WP2: Lack of payload validation in Snaps (Low)
	SFH-01-005 WP2: Backup flow exports private keys as plaintext (Medium)
	SFH-01-006 WP2: Suboptimal state follows request flow (Low)
	SFH-01-007 WP2: Use of deprecated MetaMask permissions in Snaps (Low)
	SFH-01-008 WP2: localhost string included on the allow-list (Low)

	Conclusions

