
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security Review & Audit Report rustls 05.-06.2020
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, Dr. N. Kobeissi, Dipl.-Inf. G. Kopf

Index
Introduction

Scope

Test Methodology and Coverage

General Code Quality Checks

Code Robustness Analysis

Auditing Protocol Handlers and Cryptographic Primitives

Miscellaneous Issues

TLS-01-001 Rustls: Formally Verified Cryptography Recommendations (Info)

TLS-01-002 Rustls: Unchecked usage of unwrap (Info)

TLS-01-003 Webpki: Support for Non-Contiguous Subnet Masks (Low)

TLS-01-004 Rustls: Data Truncation in DER Encoding Implementation (Low)

Conclusions

Cure53, Berlin · 06/15/20 1/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Rustls is a modern TLS library written in Rust. It's pronounced 'rustles'. It uses ring for
cryptography and libwebpki for certificate verification.”

From https://github.com/ctz/rustls

This report describes the results of a security assessment targeting the rustls complex,
which is a TLS library written in Rust. While the project was completed by Cure53, it
should be noted that this audit was requested and sponsored by CNCF. This can be
seen in connection to rustls being a frequent dependency for several CNCF projects, for
instance Linkerd1.

In terms of timeline and resources, the work was executed in late May and early June
2020. Four members of the Cure53 team selected on the basis of best-matching
expertise were tasks with this examination of rustles and spent a total of thirty days on
the project. In cooperation with CNCF and rustls, Cure53 worked against a two-pronged
scope. The primary target was the mentioned rustls library, while the secondary items of
relevance entailed peripheral libraries and key dependencies, such as rustls-native-
certs, sct.rs, ring and webpki.

Two work packages were derived from that scope, with WP1 addressing a cryptography
and performing a code audit of rustls in versions 0.16.0 or newer. Rounding up the
scope, WP2 centered on audits aimed at the ring, webpki, sct.rs, and rustls-native-certs
libraries. All in all, this review encompassed five different but very much related scope
objects, with rustls standing as a key priority for the auditors.

Because software in scope is all available as open source on GitHub, the project’s
methods correspondingly highlight white-box approaches. Before and during the
assignment, Cure53 was in frequent contact with the maintainers, receiving a briefing
about their expectations as well. A private Slack channel was created by Cure53 to
enable communications. Representatives of each project in scope were invited to
contribute to the discussions with feedback, scope clarifications, answers to questions
and so forth. All exchanges were smooth and helpful, supporting the audit team in terms
of correct focal areas.

The audit and reviews progressed efficiently and without any hindrance. Cure53
periodically updated the maintainer teams about test coverage, verifying that the project
was going in the right direction. The assessment was concluded as planned in early
June 2020 without any delay. The testing team identified only four minor findings, none
of them classified as vulnerabilities but rather as general weaknesses. They mostly

1 https://github.com/linkerd/linkerd2-proxy/blob/5264573433ceea....0a0/linkerd/identity/src/lib.rs

Cure53, Berlin · 06/15/20 2/12

https://cure53.de/
https://github.com/linkerd/linkerd2-proxy/blob/5264573433ceea37f9d66c9ca95c458a604350a0/linkerd/identity/src/lib.rs
https://github.com/ctz/rustls
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

represent security recommendations or noteworthy yet unexploitable issues. None of the
findings appear to indicate the presence of bug patterns, pointing instead to minor
oversight or manifesting further hardening options for the code and its reliability

In the following sections, the report will first shed light on the scope and key test
parameters. After that, a dedicated chapter about test coverage and methodology will
detail the areas the Cure53 looked at without spotting findings. Next, all flaws will be
discussed in a chronological order alongside technical descriptions, as well as PoC and
mitigation advice when applicable. Finally, the report will close with broader conclusions
about this 2020 project. Cure53 elaborates on the general impressions and reiterates the
verdict based on the testing team’s observations and collected evidence. Tailored
hardening recommendations for rustls are also incorporated into the final section.

Scope
• Cryptography Review & Code Audit against rustls and related libraries

◦ WP1: Cryptography Review & Code Audit against “rustls v0.16.0” or newer
▪ https://github.com/ctz/rustls

◦ WP2: Code Audits against libraries: ring, webpki, sct.rs, rustls-native-certs
▪ https://github.com/ctz/rustls-native-certs
▪ https://github.com/ctz/sct.rs
▪ https://github.com/briansmith/ring
▪ https://github.com/briansmith/webpki

• Sources were shared with Cure53 (all available as OSS)

Cure53, Berlin · 06/15/20 3/12

https://cure53.de/
https://github.com/briansmith/webpki
https://github.com/briansmith/ring
https://github.com/ctz/sct.rs
https://github.com/ctz/rustls-native-certs
https://github.com/ctz/rustls
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology and Coverage
This section describes the testing methodology and resulting coverage of the security
audit against rustls and its different components. While the first of the following sections
covers the broader and more typical aspects of the code quality, the next two sections
report on deep dives into specific areas of rustls. Especially the latter two chapters try to
give a more detailed overview of common security issues in Rust code, while also
focusing on the context and purpose of rustls itself.

General Code Quality Checks

Cure53 here addresses broader “over-the-top” aspects of the audit. Since this is part of
the initial tasks when covering a new project to audit, the process described here helps
with kicking off the security analysis and gives an impression of the targeted source
code. Additionally, some of the aspects listed here help to uncover potential low-hanging
fruit (as in: easily identifiable security issues) with the aid of automatic processes.

Starting a security analysis of any application with given source code, it is usually helpful
to run an automated scanner that might be able to instantly spot red flags inside the
project’s codebase. For applications written in Rust, Clippy2 is an excellent lint collection
to spot inconsistencies and warnings inside the targets. Running it across the entire
scope items of this audit revealed a few recommendations about redundant imports and
readability improvements. Clippy also warned about redundant struct fields and pass-by-
reference optimizations. However, none of the generated warnings led to any visible
security impact. Since they are also easily reproducible, they are omitted from this
report.

Having a good testing setup to easily confirm expected code correctness in the form of
unit or fuzz testing is another important factor of modern software development,
especially for codebases that are expected to work correctly in a security sensitive
context. Rustls heavily falls into this category. Cure53 ran every unit-test for the given
scope items and kept track of untested components for deep dives. Rustls makes use of
libfuzzer-sys (a wrapper around LLVM’s libfuzzer) with corpora around client and server
messages as sample inputs. Since the given test-cases already covered a wide range of
sample inputs for alert and handshake messages, Cure53 did not focus on fuzzing
attempts any further.

Lastly, Cure53 made sure that all dependencies of the given code were correct.
However, since Cargo with its cargo update functionality already makes it easy to keep
track of any out-of-date components, it was not surprising to find that dependencies
were generally up-to-date. A few exceptions include minor version changes for several

2 https://github.com/rust-lang/rust-clippy

Cure53, Berlin · 06/15/20 4/12

https://cure53.de/
https://github.com/rust-lang/rust-clippy
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cargo dependencies. Cure53 made sure that they did not introduce fixes for the already
known security issues. Since no problems were encountered here either, Cure53
continued to focus on targeted code audits for selected functionalities across the scope.

Code Robustness Analysis

This section covers some details about the audit process of language specifics without
going too much into details about the correctness of all provided functionality and
protocols, which are instead addressed in WP2.

As Rust is a modern language with built-in memory safety and error handling features
(e.g., via sum-types), an emphasis was placed on general best practices for resilient
implementations. Such practices include - from a meta and advancement-oriented point
of view - ensuring the totality of the used functions, limiting the computational complexity
of the code at runtime, avoiding unsafe constructs (e.g., the C FFI or unsafe blocks) and
ensuring correct failure modes. The code generally makes a positive impression in this
regard. One recommendation for further strengthening the implementation is provided in
TLS-01-002.

Furthermore, besides analyzing general coding best practices, Cure53 investigated the
correctness of the code in terms of its application logic. This includes, for instance,
aspects like the correctness of the TLS state machine implementation, proper handling
of integer arithmetic and possible truncation issues, as well as the correctness of the
protocol parsing and generating code, rounded up by the handling of sensitive memory
contents. One observation regarding integer handling in the code is described in TLS-
01-004.

Particular focus concerned reviewing code that might contain severe logic issues, such
as the hostname verification code in webpki. Even subtle problems in such
implementations can lead to critical consequences, as previous research results
indicate3. This led to the observation described in TLS-01-003.

3 https://ioactive.com/pdfs/PKILayerCake.pdf

Cure53, Berlin · 06/15/20 5/12

https://cure53.de/
https://ioactive.com/pdfs/PKILayerCake.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Auditing Protocol Handlers and Cryptographic Primitives

From a cryptographic point of view, this part of the assessment focused on identifying
implementation issues, such as side-channel problems (e.g., due to non-hardened
comparison functions, branches depending on secret bits etc.), functional correctness of
the cryptographic primitives, incorrect NONCE handling, etc. All analysis steps are
described in detail next.

Correctness of Supported Protocols
Rustls offers a comprehensive implementation of TLS 1.2 and TLS 1.3, choosing not to
support prior (and now deprecated) versions of TLS.

The goal of this audit component was to verify the correct implementation of TLS 1.2 and
TLS 1.3, the resilience of the state machine and to the codebase against misbehaving or
malicious connections from third-party clients and servers. In addition, the auditors
sought to ensure that cryptographic primitives were employed correctly.

The following elements of TLS 1.2 and TLS 1.3 were checked for functional correctness
and the absence of unexpected or exploitable behavior:

• State Machines: A lot of time was spent on verifying the functional correctness
of the state transition and session state management logic in rustls. This includes
the full protocol handshake and session between client and server in TLS 1.2
and TLS 1.3. Each state transition was checked in the code and special attention
was given to detecting invalid state transitions or non-abortions in scenarios in
which session negotiation is not supposed to be completed successfully.

• Forward Secrecy and Session Resumption: The auditors wanted to determine
if forward-secure modes in TLS 1.3 were being activated at the appropriate
moments in session handshake initialization and handling.

• QUIC: The QUIC implementation was checked for conforming to the IETF
specification and achieving functional correctness. No other checks were made.

Core Cryptography of ring

The ring cryptographic library acts as a provider of various cryptographic primitives and
constructions by exposing the most appropriate implementation type for each primitive
via a Rust API. These low-level implementations are written in C, ASM or in Rust.
depending on what is most appropriate for the protocol.

Cure53, Berlin · 06/15/20 6/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The following elements were examined during this audit:

• AEAD Constructions: The correct implementation of block-cipher-based
AEADs, such as AES-GCM, was verified. Critical elements, such as nonce
generation, were checked to adhere with the requisite uniform randomness and
uniqueness standards. ChaCha20 bindings were similarly checked for functional
correctness.

• Elliptic Curve Cryptography: The fundamental elliptic curve arithmetic for
Curve25519 was checked for functional correctness. The primitives implemented
on top of it, such as X25519 for Diffie-Hellman and Ed25519 for digital
signatures, were also verified for functional correctness.

• Constant Time Comparison: Each of the constant-time comparison functions
exposed by the ring library was checked for functional correctness.

• Poly1305: Poly1305’s bindings were checked for correct usage. However, the
underlying ASM implementation of Poly1305 was not checked in any way and is
simply assumed to be correct.

• HKDF: The HKDF implementation was checked for functional correctness.
• RSA, ECDSA: Special attention was paid to the supported RSA PKCS standards

and offered padding methods. For ECDSA, the auditors verified non-applicability
of recent attacks that focus on biased nonce generation, such as LadderLeak.4

• AES: Special attention concerned making the determination about the offered
AES implementations’ presenting sidechannel characteristics due to s-box or
similar constructions.

4 https://eprint.iacr.org/2020/615

Cure53, Berlin · 06/15/20 7/12

https://cure53.de/
https://eprint.iacr.org/2020/615
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

TLS-01-001 Rustls: Formally Verified Cryptography Recommendations (Info)

While rustls offers a variety of reliable implementations of cryptographic primitives in
ASM, C and Rust, none of the provided primitives benefit from formally verified
functional correctness or resistance to side-channel attacks. The EverCrypt project5 is an
open-source cryptographic provider structured very much in the same way as ring (in
that it provides an interface for primitives implemented in different languages). The
difference is that the EverCrypt library also provides formally verified guarantees of side-
channel attack resistance and functional correctness.

In the future, it might be worthwhile to investigate the adoption of some or all EverCrypt
primitives either into ring or into rustls directly, as there does not seem to be any
performance cost to doing so, while the increased assurance on the reliability and
correctness of the primitives could be a significant advantage.

TLS-01-002 Rustls: Unchecked usage of unwrap (Info)

During the review of rustls, it was found that the code does not always statically enforce
a correct handling of Option values. This includes code constructs such as if
foo.is_some() { … foo.unwrap() }, which are obviously safe but could potentially be
handled more strictly by using the if let syntax. However, there were also instances that
are harder to verify. To give an example, one such instance is described below.

Affected File:
rustls/src/client/tls13.rs

Affected Code:
fn handle_new_ticket_tls13(&mut self, sess: &mut ClientSessionImpl, m: Message)
-> Result<(), TLSError> {
let nst = extract_handshake!(m,
HandshakePayload::NewSessionTicketTLS13).unwrap();

It can be observed in the code that the handle_new_ticket_tls13 function attempts to
unwrap an Option value. Before unwrapping, no checks are performed on whether the
Option actually represents a Some. This pattern can generally lead to a panic!, which in

5 https://www.microsoft.com/en-us/research/publication/evercrypt-a-fast-ver...rm-cryptographic-provider/

Cure53, Berlin · 06/15/20 8/12

https://cure53.de/
https://www.microsoft.com/en-us/research/publication/evercrypt-a-fast-veri%EF%AC%81ed-cross-platform-cryptographic-provider/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

turn might lead to a DoS condition. It should be noted that the above unwrap is in fact
safe, which is however not directly evident from the handle_new_ticket_tls13 function.
As the code already operates in a Result context, one solution to address the issue
could be to rely on a syntax like extract_handshake!(m, Handshake-
Payload::NewSessionTicketTLS13).ok_or(SomeError)?.

TLS-01-003 Webpki: Support for Non-Contiguous Subnet Masks (Low)

While reviewing the webpki implementation, it was found that the name constraints code
allows for non-contiguous subnet masks. This means that a subnet mask like
42.42.42.42 would be treated as valid by the verifier, which might have unintended
consequences.

Affected File:
webpki/src/name.rs

Affected Code:
loop {
 let name_byte = name.read_byte().unwrap();
 let constraint_address_byte = constraint_address.read_byte().unwrap();
 let constraint_mask_byte = constraint_mask.read_byte().unwrap();
 if ((name_byte ^ constraint_address_byte) & constraint_mask_byte) != 0 {
 return Ok(false);
 }
 if name.at_end() {
 break;
 }
}

Typically, subnet masks should be contiguous and the presence of a non-contiguous
mask might indicate a typo (such as 225.255.255.0 vs. 255.255.255.0), or potentially an
attempt to bypass an access control scheme. Therefore, it is recommended to treat
certificates containing non-contiguous subnet masks in their name constraints as invalid.

TLS-01-004 Rustls: Data Truncation in DER Encoding Implementation (Low)

While reviewing the DER parsing and generating code, it was found that the
wrap_in_asn1_len function in the rustls/src/x509.rs file does not operate properly on
input sequences longer than 0xffff bytes. The code excerpt below provides an example.

Affected File:
rustls/src/x509.rs

Cure53, Berlin · 06/15/20 9/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
fn wrap_in_asn1_len(bytes: &mut Vec<u8>) {

let len = bytes.len();

if len <= 0x7f {
 bytes.insert(0, len as u8);

} else if len <= 0xff {
 bytes.insert(0, 0x81u8);
 bytes.insert(1, len as u8);

} else if len <= 0xffff {
 bytes.insert(0, 0x82u8);
 bytes.insert(1, ((len >> 8) & 0xff) as u8);
 bytes.insert(2, (len & 0xff) as u8);

}
}

It can be observed that the code only handles input smaller than 0xffff bytes. This code
is used for creating DER sequences later in the code flow. As the function
wrap_in_asn1_len fails silently, this behavior could result in creating DER output that
does not match the intended semantics.

It is recommended to address the issue by introducing a more explicit failure mode - for
instance by making the function wrap_in_asn1_len return an Error type.

Cure53, Berlin · 06/15/20 10/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
During this 2020 project targeting rustls and its surroundings, Cure53 was unable to
uncover any application-breaking security flaws. After spending thirty days on the scope
in late May and early June of 2020, the team of auditors considered the general code
quality to be exceptional and can attest to a solid impression left consistently by all
scope items. Naturally, this is partially thanks to the usage of Rust as the preferred
language for the entire implementation of the rustls project.

The examined code was consistently well-documented and readable, demonstrating that
security processes are ingrained in the development and documentation processes at
the rustls complex. Both from a design point of view as from an implementation
perspective the entire scope can be considered of exceptionally high standard. Using the
type system to statically encode properties such as the TLS state transition function is
one just one example of great defense-in-depth design decisions. Furthermore, the code
is typically explicit about the expected input and the possible failure modes.

The parsing code, for example deployed during certificate handling, relies on a strict
approach. This is evident from it often demanding that all available input has to be
consumed by a parser. No overly long messages are accepted and the general
approach of using a combinator-like scheme for parsing message contents furthermore
makes the parser implementation easily readable. While a number of recommendations
have been provided (see TLS-01-002 to TLS-01-004) in order to further strengthen the
implementation, no directly exploitable weaknesses could be identified.

From a cryptographic point of view, the code left a positive impression as well. It appears
to have been developed with all previously known issue-types in mind; furthermore, its
missing support for insecure or outdated protocols and primitives indicates a security-
conscious development approach. Rustls’ implementation of TLS takes security and
cryptographic engineering very seriously. A very high standard of care is observable in
engineering a reliable, complete, well-implemented TLS stack that follows the standard
specification. Cryptographic operations are implemented and managed with great care.
It can be said that in terms of cryptographic engineering, the level of care and quality
exhibited by this codebase is exceptional both across the protocol layer and the
primitives’ layer.

No issues were found with regards to the cryptographic engineering of rustls or its
underlying ring library. A recommendation is provided in TLS-01-001 to optionally
supplement the already solid cryptographic library with another cryptographic provider
(EverCrypt) with an added benefit of formally verified cryptographic primitives. Overall, it
is very clear that the developers of rustls have an extensive knowledge on how to

Cure53, Berlin · 06/15/20 11/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

correctly implement the TLS stack whilst avoiding the common pitfalls that surround the
TLS ecosystem. This knowledge has translated reliably into an implementation of
exceptional quality.

The technical observations additionally shined through in the multiple discussions within
the shared Slack channel where both Cure53 and the rustls development team were
actively engaged. Misconceptions and questions about the provided source code were
quickly resolved. The developer’s intent to provide a high-quality TLS implementation is
very clear and this goal can be considered as achieved successfully. With that said,
Cure53 has no negative feedback about security at rustls. Minor recommendations here
and there are always possible for any project, but this does not change the fact that
there is really not much to improve at rustls. Cure53 had the rare pleasure of being
impressed with the exceptional quality of the presented software.

Cure53 would like to thank Dirkjan Ochtman, Joe Birr-Pixton, Oliver Gould and Brian
Smith as well as Chris Aniszczyk of The Linux Foundation, for their excellent project
coordination, support and assistance, both before and during this assignment. Special
gratitude also needs to be extended to The Linux Foundation for sponsoring this project.

Cure53, Berlin · 06/15/20 12/12

https://cure53.de/
mailto:mario@cure53.de

	Security Review & Audit Report rustls 05.-06.2020
	Index
	Introduction
	Scope
	Test Methodology and Coverage
	General Code Quality Checks
	Code Robustness Analysis
	Auditing Protocol Handlers and Cryptographic Primitives

	Miscellaneous Issues
	TLS-01-001 Rustls: Formally Verified Cryptography Recommendations (Info)
	TLS-01-002 Rustls: Unchecked usage of unwrap (Info)
	TLS-01-003 Webpki: Support for Non-Contiguous Subnet Masks (Low)
	TLS-01-004 Rustls: Data Truncation in DER Encoding Implementation (Low)

	Conclusions

