
Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Audit-Report Rubic MetaMask Snap Build & Codebase
02.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index
Introduction

Scope

Test Methodology

Preparation Phase
White-Box Audit

Identified Vulnerabilities

RUB-01-001 WP2: Imprecise ETH address validation (Medium)
Conclusions

Cure53, Berlin · Feb 22, 24 1/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Introduction
“As one of the seasoned players in the cross-chain market, Rubic has elaborated on the
robust practices of maintaining security for its users along with SDK and widget integrators.”

From https://docs.rubic.finance/rubic/security

This document presents the findings of a combined penetration test and source code audit
conducted against the Rubic MetaMask Snap and associated server-side APIs. The
engagement was initiated at the request of Chapter LTD (Rubic) in February 2024 and
executed by Cure53 in the same month (week CW07). A total of three days were dedicated
to achieving the desired coverage for this project.

The assessment was divided into two distinct work packages (WPs):

• WP1: Source code audits against Rubic MetaMask Snap build & sources
• WP2: Code audits & feature reviews against Rubic MetaMask Snap & server API

For this engagement, Cure53 employed a white-box methodology and was granted full
access to source code, URLs, documentation, and other necessary materials. A dedicated
team of two senior testers prepared, executed, and finalized the project. All preparatory
initiatives were conducted in early February 2024 (week CW06) to ensure a seamless
commencement of testing.

Clear and consistent communication was facilitated through a shared Telegram channel
established solely for this project. Representatives from both Rubic and Cure53 actively
participated in this channel, minimizing disruptions and maintaining smooth dialogue. The
well-defined and comprehensive scope proved effective, leading to efficient testing with no
significant roadblocks encountered throughout the process.

Cure53 provided regular status updates regarding the assessment and its findings. While
live-reporting was not explicitly requested for this engagement, the team remained
committed to transparent communication.

Through extended testing across the WP1 and WP2 scope, Cure53 identified a single
vulnerability requiring attention. This finding, documented as ticket RUB-01-001, was
assigned a Medium impact score. Generally, the examination of the Rubic MetaMask Snap
build and codebase revealed an overall robust security posture, with only this sole
vulnerability noted.

The identified vulnerability pertains to insufficient validation of Ethereum addresses within
the application. Specifically, the checks for valid hexadecimal characters and EIP-55
checksums were found to be inadequate. This could potentially allow exploitation by
malicious actors seeking to introduce invalid addresses into the system.

Cure53, Berlin · Feb 22, 24 2/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The security assessment was conducted using a thorough methodology that combined
deployment-based and source-code-based testing techniques. This comprehensive
approach was essential in identifying the single vulnerability, despite the generally
safeguarded environment. In conclusion, the Rubic MetaMask Snap and associated server-
side APIs exhibited a commendable security posture, confirmed by the presence of only one
discovered flaw.

Onward, the Scope chapter next details the defined composition of the assessment,
outlining the specific components of the Rubic MetaMask Snap and server-side APIs
included in the testing. This section is followed by a breakdown of the comprehensive testing
strategies utilized during the evaluation. This will offer transparency to the client and
demonstrate the thoroughness of the review process, despite the limited number of
identified vulnerabilities. Next, all identified vulnerabilities and general weaknesses
discovered during the assessment are provided in ticket format and in chronological order.
These are accompanied by a high-level rundown, Proof-of-Concept (PoC) and/or steps to
reproduce, and recommendations for mitigation or remediation.

The concluding section will summarize the key findings and overall security posture of the
Rubic MetaMask Snap and server-side APIs based on the assessment results. Cure53 will
offer its professional insights and recommendations for further enhancing the security
posture of the application.

Cure53, Berlin · Feb 22, 24 3/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Scope
• Code audits & security reviews against Rubic MetaMask Snap build & codebase

◦ WP1: Source code audits against Rubic MetaMask Snap build & sources
▪ Test environment Docker container:

• https://github.com/Cryptorubic/rubic-snap-frontend/tree/audit
▪ Source code:

• All relevant code was shared with Cure53 in the form of a .zip file.
• rubic-snap-backend-develop.zip

▪ Primary focus:
• General tests & attacks against browser add-ons and extension snap-ins,

independently of specific use case as a MetaMask snap.
◦ WP2: Code audits & feature reviews against Rubic MetaMask Snap & server API

▪ Test environment Docker container:
• https://github.com/Cryptorubic/rubic-snap-frontend/tree/audit

▪ Source code:
• All relevant code was shared with Cure53 in the form of a .zip file
• rubic-snap-backend-develop.zip

▪ Primary focus:
• Specific features, reliability, and security of relevant server-side APIs, protection

against UI spoofing and UI redressing attacks, falsified results, general
spoofing, etc.

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Feb 22, 24 4/10

https://github.com/Cryptorubic/rubic-snap-frontend/tree/audit
https://github.com/Cryptorubic/rubic-snap-frontend/tree/audit
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Test Methodology
The test methodology adopted for the security audit of the Rubic MetaMask Snap build and
codebase was designed to provide comprehensive analysis of both the application’s source
code and its operational environment. This methodology encompassed a combination of
deployment- and source-code-based testing, aiming at identifying potential security
vulnerabilities and operational weaknesses that could impact the security posture of the
application.

Preparation Phase
The preparatory phase of the engagement focused on establishing a firm foundation for
successful testing. This involved two key activities: firstly the material review, whereby all
essential testing materials provided through Google Drive and other platforms were
meticulously perused. This comprehensive analysis examined the application's architecture,
functionality, and potential attack surfaces, ensuring a deep understanding of the system
under assessment.

Subsequent to the material review, the team constructed a controlled testing environment
replicating the production environment as closely as possible. This involved deploying the
Rubic MetaMask Snap build, server-side APIs, and any required dependent services. This
mirrored architecture ensured that testing activities would not interfere with live operations,
upholding data integrity and system functionality. This rigorous preparation provided an
intimate understanding of the application and enabled precise planning for the subsequent
testing phases.

White-Box Audit
The white-box audit phase consisted of several key activities designed to comprehensively
assess the application's security. This phase commenced with a thorough source code
audit, with the Cure53 consultants reviewing the codebase with particular emphasis on
critical components such as the storage backend. The objective was to uncover security
vulnerabilities, identify potential code quality issues ("code smells"), and pinpoint areas for
optimization. This rigorous scrutiny ensured that the most essential elements of the
application were evaluated for potential security risks.

Further bolstering the white-box code analysis was a rigorous examination of the project's
dependencies. Leveraging tools like OWASP Dependency-Check alongside others tailored
for Django environments, this analysis sought to expose any known vulnerabilities residing
within external components. Identifying and rectifying such weaknesses within
dependencies is often neglected, yet remains critical for robust software security.

Cure53, Berlin · Feb 22, 24 5/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Complementing these activities, manual penetration testing was conducted within the
provided Docker environment. This focused assessment scrutinized critical areas like
authentication, session management, and input validation. Particular attention was paid to
replicating production conditions, simulating real-world attack scenarios to rigorously
evaluate the application's resilience against advanced threats.

The combined efforts of penetration testing and a thorough source code review provided a
holistic understanding of the application's security posture. This iterative process ensured a
responsive and adaptable approach, dynamically refining the audit's focus based on
emergent findings to address the evolving security landscape.

The audit's results, particularly the absence of significant findings in areas such as input
validation, reflect the development team’s effective implementation of security measures.
The robust input validation mechanisms in place were instrumental toward nullifying
common vulnerabilities such as SQL injection, XSS, and command injection. Additionally,
the limited attack surface presented by the MetaMask Snap's architecture, operating within a
sandboxed environment, significantly reduced potential attack vectors. This not only
constrained direct access to critical blockchain functionalities and user assets, but also
minimized the potential impact of a security breach. The audit concluded with one finding,
RUB-01-001, which was promptly reported to the Rubic team and addressed the next
business day. In tandem, the aforementioned factors underscored an environment with
minimal exploitable vulnerabilities, attesting to the Rubic team’s prioritization of security for
their design and coding practices.

Cure53, Berlin · Feb 22, 24 6/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., RUB-01-001) to
facilitate any future follow-up correspondence.

RUB-01-001 WP2: Imprecise ETH address validation (Medium)
Cure53 noted that the current implementation of Ethereum-like (ETH) address validation in
the ethlike_address_is_valid method checks for two conditions only: the length of the
address (which should comprise 42 characters, including the 0x prefix) and the presence of
the 0x prefix itself. While these checks are necessary, they are insufficient for the purpose of
accurately validating an ETH address. Post-hashing, ethereum addresses are represented
as 40 hexadecimal characters prefixed with 0x; thus, the total length constitutes 42
characters. However, not all 42-character strings starting with 0x are valid Ethereum
addresses. The insufficiencies regarding the current validation protocols are detailed next:

• Hexadecimal characters: The current validation does not ensure that the
characters following the 0x prefix are hexadecimal (0-9, a-f, or A-F). Non-
hexadecimal characters would render the address invalid but would pass the current
validation.

• Checksum validation: Ethereum addresses generated from EIP-55 contain a
checksum to protect against typos or case errors. The current validation does not
check for EIP-55 checksum compliance, which is crucial for verifying that the
address has not been tampered with or mistyped.

The affected code snippet for validating the Ethereum address is displayed below.

Affected file:
storage_backend/base/utils.py

Affected code:
def ethlike_address_is_valid(address: ETHLikeAddress) -> bool:
 if len(address) != 42 or not address.startswith('0x'):
 return False
 return True

To mitigate this issue, Cure53 recommends adopting a two-pronged approach, as
extrapolated below:

Cure53, Berlin · Feb 22, 24 7/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

• Hexadecimal check: After verifying the presence of the 0x prefix and the correct
length, one must insert a check to ensure that the remainder of the address consists
only of hexadecimal characters. This can be achieved using a regular expression or
a similar method to validate each character.

• EIP-55 checksum implementation: Introduce the EIP-55 checksum validation to
enhance the address verification process. This involves converting the address to a
specific case format based on the hash of the lowercase hexadecimal address.
Libraries or utilities that already perform EIP-55 checks should be utilized to simplify
this implementation.

An implementation of the fix recommendation outlined above could resemble the following:

Example code containing fixes:
import re
from eth_utils import is_checksum_address, to_checksum_address

def ethlike_address_is_valid(address: str) -> bool:
 # Check for correct length and '0x' prefix
 if len(address) != 42 or not address.startswith('0x'):
 return False
 # Ensure the address is hexadecimal
 if not re.fullmatch(r'0x[a-fA-F0-9]{40}', address):
 return False
 # Validate against EIP-55 checksum (optional, based on use case)
 if not is_checksum_address(address):
 # Attempt to convert to checksum address and compare
 try:
 checksum_address = to_checksum_address(address)
 return address == checksum_address
 except ValueError:
 return False
 return True

By enhancing the ethlike_address_is_valid function to include hexadecimal validation and
EIP-55 checksum verification, the accuracy and security of Ethereum address validation can
be significantly improved. This will help prevent errors and potential vulnerabilities related to
the handling of Ethereum addresses in the application.

Cure53, Berlin · Feb 22, 24 8/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report, which details and extrapolates on all findings
identified during the CW07 2024 testing against the Rubic MetaMask Snap and server-side
APIs by Cure53, will now be discussed at length. To summarize, the confirmation can be
made that the components under scrutiny have garnered an excellent impression, as
corroborated by the detection of only one security-relevant finding. Albeit, this verdict is likely
attributable to the highly constrained scope and attack surface.

The security assessment identified a single Medium-severity vulnerability within the Rubic
MetaMask Snap build and codebase, designated as RUB-01-001. This vulnerability
stemmed from insufficiently stringent validation of Ethereum addresses, a critically important
function within the Rubic ecosystem.

The comprehensive test methodology, encompassing both deployment-based and source
code-based testing, facilitated the successful detection of this issue despite the absence of
further vulnerabilities. This combined approach ensured a thorough evaluation, covering
both potential operational and code-level weaknesses.

The assessment extended beyond a traditional source code review, incorporating both
dependency analysis and environment penetration testing. This approach ensured a
rigorous examination of potential vulnerabilities within external components and the
application's operating environment. While no specific vulnerabilities were identified in these
areas, the findings suggest a well-configured and secure dependency setup.

While the identified vulnerability pertaining to insufficient Ethereum address validation
presents a limited attack surface within the Rubic MetaMask Snap build and codebase, its
significance cannot be understated. This vulnerability arises due to the Snap's constrained
interaction model with the Ethereum blockchain, typically restricting direct access to critical
functionalities and user assets. This inherent limitation naturally focuses potential attack
vectors on specific operational functionalities such as address validation, increasing the
relevancy of the identified issue despite the narrow attack surface.

The inherently limited attack surface found in MetaMask snaps is a direct consequence of
their sandboxed design, restricting access to the Ethereum network and user data. This
architecture significantly bolsters security by isolating snaps from sensitive components.

However, this very isolation necessitates meticulous validation of all external inputs and
blockchain interactions. Even minor vulnerabilities within these tightly scoped functionalities
can have magnified consequences due to the restricted operational environment.

Cure53, Berlin · Feb 22, 24 9/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

To conclude, the Rubic MetaMask Snap and associated server-side APIs demonstrated a
commendable security posture throughout the assessment. This is evidenced by the limited
attack surface observed and the identification of only a single Medium-severity vulnerability.
While the overall attack surface may be inherently restricted due to the snap architecture,
this finding reaffirms the effectiveness of the security measures implemented.

Cure53 would like to thank Stanislav Iliutkin, Ilya S., and Dmitrii Sleta from the Chapter LTD
(Rubic) team for their excellent project coordination, support, and assistance, both before
and during this assignment.

Cure53, Berlin · Feb 22, 24 10/10

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report Rubic MetaMask Snap Build & Codebase 02.2024
	Index
	Introduction
	Scope
	Test Methodology
	Preparation Phase
	White-Box Audit

	Identified Vulnerabilities
	RUB-01-001 WP2: Imprecise ETH address validation (Medium)

	Conclusions

