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Introduction
“Request enables your users with a common way to request payments while providing
full control over their financial data. From simple peer-to-peer payment requests to full
business invoices.”

From https://request.network/en/

This report describes the results of a security audit and cryptography review carried out
against the Request network complex, specifically targeting its TypeScript codebase and
cryptographic architecture. The project was completed by Cure53 in May 2020.

To give some context, it can be clarified that two members of the Cure53 executed this
assessment, following a specific timeline for the work being delivered in Calendar Weeks
20 and 21 of 2020. The tasks have been completed over the course of six person-days
budget allocated to Cure53 by the Request team.
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In order to make sure that all areas are covered and various goals are fulfilled, Cure53
split  the  work  into  two  Work  Packages.  In  WP1,  the  testing  team  performed  a
cryptographic  review and audited  the  TypeScript  codebase  of  the  Request  network.
Then, in WP2, an explicit  focus was placed on the questions that the Request team
formulated and needed to get answers to from a security perspective. In this realm,
Cure53 zoomed in on the cryptography-specific matters.

The project was well-prepared, started on time and progressed efficiently. The Cure53
team could leverage the advantages of a white-box methodology. Under this premise,
Cure53 was granted access to all  relevant  material  from the Request  network team.
Among other data, Cure53 received a detailed scope document (see below), several
crypto-specific questions, as well as the codebase, which is generally available as open
source software.

The communication during the assessment and review was done via Slack, the Request
network  team  created  a  test-related  channel  on  their  Slack  workspace  and  invited
relevant members of the Cure53 team to join it. All exchanges were productive and the
project was finalized with a debrief call. During this meeting, the results were presented
and remaining questions have been discussed in detail.

Seven findings have been spotted during the project. Three items were classified to be
security  vulnerabilities,  two scored  Medium in  terms of  risks and one had only  Low
impact.  Four  Info-only  findings  were  documented  as  miscellaneous,  with  possible
recommendations to consider. The Request network team was informed about all issues
in the aforementioned briefing.  In addition to individual  items, Cure53 answered four
questions  posed  by  the  Request  network  team  prior  to  the  audits  and  reviews
happening. All of them can be seen as general recommendations with corresponding
headlines.

In  the  following  sections,  the  report  will  first  shed  light  on  the  scope  and  key  test
parameters, including also a list of questions asked by the Request network team. Next,
all findings will be discussed in a chronological order alongside technical descriptions, as
well  as PoC and mitigation advice when applicable. Finally,  the report  will  close with
broader  conclusions  about  this  May 2020 project.  Cure53 elaborates on the general
impressions and reiterates the verdict  based on the testing team’s observations and
collected evidence. Tailored hardening recommendations for the Request complex are
also incorporated into the final section.
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Scope
• Cryptographic Review & Security Audit against Request Network Codebase

◦ WP1: Crypto Review and Audit against the Request network’s TypeScript codebase
▪ A scope document was shared with Cure53

• https://docs.google.com/document/d/  
1R9b_dZRif9Z4CG6brDRDmvAgDd1Gvct8Ds6lgcYNhJ4/edit?usp=sharing

◦ WP2: Q&A-based section, written in response to crypto-specific questions from the 
Request team
▪ See Miscellaneous Issues section in this document

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree  of  severity  and  impact.  The aforementioned  severity  rank  is  simply  given  in
brackets  following  the  title  heading  for  each  vulnerability.  Each  vulnerability  is
additionally given a unique identifier (e.g. RN-01-001) for the purpose of facilitating any
future follow-up correspondence.

RN-01-001 WP1: Insecure PRNG for cryptographic material (Low)

It  was  found that  the  crypto.ts provider  uses  Math.random() in  order  to  provide  the
generates4randomBytes() and generate8randomBytes() functions.  Math.random() does
not expose a cryptographically secure pseudorandom number generator in most runtime
environments,  and  as  such  bytes  obtained  through  these  functions  should  not  be
considered  suited  for  a  variety  of  cryptographic  operations,  such  as  private  key
generation.

However,  it  was  also  observed  that  generate4randomBytes() and  generate-
8randomBytes() were only being used to generate salts, which is an operation that does
not require a cryptographically secure pseudorandom number generator. As such, the
impact  of  this issue is  set  to  Low. While  it  does not  pose any harm at  present,  the
presence of these functions within Request network’s cryptographic provider could lead
to them being used for generating sensitive cryptographic material in the future.

Affected File:
packages/utils/src/crypto.ts

Affected Code:
function generate8randomBytes(): string {
  const base16 = 16;
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  const generate4randomBytes = (): string => {
    // A 4 byte random integer
    const randomInteger = Math.floor(Math.random() * Math.pow(2, 4 * 8));

    // Convert to hexadecimal and padded with 0
    return randomInteger.toString(base16).padStart(8, '0');
  };

  // Do it in 2 passes because an integer doesn't have enough bits
  const high = generate4randomBytes();
  const low = generate4randomBytes();
  return high + low;
}

It  is  recommended  to  replace  the  usage  of  Math.random() with  either  WebCrypto’s
Crypto.GetRandomValues()1 or with Node’s crypto.randomBytes()2 function.

RN-01-006 WP1: Encryption scheme reveals plain-text oracle (Medium)

It was found that Request network’s request encryption protocol communicated a simple
cryptographic hash of the plain-text, along with each message. Given that the plain-text
follows a highly  predictable,  standardized and normalized JSON structure,  this could
allow the attacker to use the hash as a high-speed oracle for guessing the plain-text
contents of the Request network messages.

For example, consider the following sample Request network plain-text, which has been
provided by Request network.

{"meta":{"format":"rnf_invoice","version":"0.0.2"},"creationDate":"2020-02-
11T05:00:00.000Z","invoiceNumber":"1","purchaseOrderId":"1","note":"\
n","sellerInfo":{"businessName":"Decipher Data Consultancy","address":
{}},"buyerInfo":{"businessName":"MakerDAO","address":{}},"invoiceItems":
[{"name":"Grant (Presentation, Consulting, Modeling) - June 
2019","quantity":1,"unitPrice":"5500000000000000000000","currency":"DAI","delive
ryDate":"2020-02-11T05:00:00.000Z"},{"name":"Grant (Presentation, Consulting, 
Modeling) - July 
2019","quantity":1,"unitPrice":"5500000000000000000000","currency":"DAI","delive
ryDate":"2020-02-11T05:00:00.000Z"}],"paymentTerms":{},"miscellaneous":
{"builderId":"app.request.network"}}

A reasonably well-informed attacker could obtain, on top of the easily guessable JSON
structure  and  field-names,  information  regarding  the  transaction  dates  and  parties.
Thereby, they would be shortening the number of unknown bits to a restricted subset for
which  the  hash  can  then  be  used  as  an  oracle  at  up  to  23,000  SHA-2

1 https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
2 https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
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MegaHash/second-guessing  rates  with  standard  consumer  equipment.  Given  a
sufficiently restricted number of unknown bits, which are almost certain to be within the
alpha-numeric ASCII range, this could allow the attacker to reliably confirm a suspected
plain-text  or  even  obtain  an  unknown  plain-text.  This  is  connected  to  well-informed
guesses on predictable structural elements of the payload.

As  documented  in  RN-01-007,  it  is  recommended  that  authenticated  symmetric
encryption  primitives  (such  as  AES-GCM)  get  included  in  the  design.  This  would
eliminate the requirement for this hash, allowing for it to be removed altogether from the
protocol.

RN-01-007 WP1: No integrity from symmetric encryption (Medium)

The request encryption protocol for the Request network employs two primitives:

• AES-CBC is used for symmetric payload encryption, with a randomly generated
key that is unique per payload.

• ECIES  is  used  with  secp256k1 as  the  underlying  curve  in  order  to  provide
authenticated public-key encryption of the unique AES-CBC key that was used to
encrypt the payload.

Fig.: RequestNetwork protocol, modeled in Verifpal.3

3 https://verifpal.com
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Since AES-CBC does not provide integrity guarantees or authenticated encryption on
the cipher-text, it was found that, in fact, Request network only provided cryptographic
integrity on the encryption key. The cipher-text, however, can be tampered with by the
attacker undetectably.

Since  Request  network  uses  AES-CBC,  the  precision  with  which  the  attacker  can
produce malicious tampering is greatly reduced. Were Request network to be using a
stream  cipher  such  as  AES-CTR,  the  impact  of  this  attack  would  have  been
catastrophic. In this alternative scenario, it would have allowed the attacker to modify
arbitrary  cipher-texts  with  bit-level  precision  on  the  changes  taking  effect  on  the
underlying plain-text. This weakness was modeled for and discovered using the Verifpal
protocol analysis software.

It  is  recommended  for  AES-CBC  to  be  replaced  with  an  authenticated  encryption
primitive  such  as  AES-GCM.  In  addition  to  resolving  this  issue,  an  authenticated
symmetric  primitive  would  also  render  the  hashing  which  causes  RN-01-006
unnecessarily, thereby helping to resolve that issue as well.
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Miscellaneous Issues
This section covers low-priority issues as well as requests for information and discussion
points that arose from the audit.

RN-01-002 WP2: Using keys for signing and encryption (Info)

The Request network team asked for recommendations on whether using the same key
pair for signing and encryption can cause problems.

Strictly speaking, using the same private key for both signing and encryption key pairs
does not pose issues, especially if “encryption” is meant to signify Diffie-Hellman key
agreement. Popular encryption protocols, such as the Signal protocol, convert a X25519
Diffie-Hellman key pair to an Ed25519 signing key pair.4 The age encryption utility does
the reverse, converting an Ed25519 signing key pair into an X25519 Diffie-Hellman key
pair.5 A similar approach may be adopted by Request network if necessary.

RN-01-003 WP2: Encrypting short messages (Info)

Request network asked for recommendations on whether it is a problem to encrypt short
messages. So long as messages are padded up to the correct block’s cipher length,
encrypting many short messages should not pose any issues, except if encryption keys
last for an extremely long time (upwards of 232 encryptions).  Given that the Request
network protocol generates a fresh encryption key for each message, this should not be
an issue.

RN-01-004 WP2: Encrypting same message with different keys (Info)

The Request network team asked for recommendations on whether it is a problem to
encrypt copies of the same message separately with different keys. There is no issue
with this approach, given the Request network’s security goals and protocol design.

RN-01-005 WP2: General post-quantum cryptography Issues (Info)

The Request  network team asked for  recommendations regarding the necessity  and
workability of switching over to post-quantum cryptography in the future. Efforts have
recently been made in order to organize and improve the available knowledge on the
four  main  branches  of  cryptographic  primitives  that  are  thought  to  be  resistant  to
quantum algorithms.6 Among these,  one  of  the  more  workable  candidates  for  post-
quantum Diffie-Hellman appears to be CSIDH.7 However, even in the case of relatively

4 https://signal.org/docs/specifications/xeddsa/
5 https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
6 https://pqcrypto.org/
7 https://csidh.isogeny.org/index.html
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efficient and implementation-friendly post-quantum primitives, widespread compatibility
and  performance  remain  completely  incomparable  to  “standard”  elliptic-curve  Diffie-
Hellman  primitives,  such  as  those  used  by  Request  network  (e.g.  Secp256k1 and
similar).

Request  network  uses  ECIES  as  a  public-key  encryption  construction.  A  recent
alternative  to  ECIES,  namely  HPKE8,  provides  very  much the same functionality  as
ECIES while allowing for an easier definition of underlying cryptographic primitives. As
such, a migration away from ECIES and into HPKE could be considered. With a revised
approach,  the  HPKE  implementation  could  be  reconfigured  to  use  post-quantum
primitives once those are ready for prime-time and, moreover, doing so would not render
previous cipher-texts “undecryptable”.

It  should also be noted that  there is currently no evidence to suggest  that  quantum
attacks on cryptographic  primitives are likely  to occur in the near  future.  Similarly,  it
cannot  be  said  that  they  would  be  catastrophic  in  terms of  impact  on  the  Request
network.  In  fact,  their  implications  might  be  negligible  when  compared  to  the
consequences they would have for the world’s entire technical infrastructure.

Conclusions
Cure53  generally  gained  a  rather  positive  impression  of  the  audited  code  and
architecture provided by the Request  network team.  After  spending six  days on the
scope in May 2020,  two members of  the Cure53 have identified both strengths and
weaknesses in the Request network complex. On the one hand, the team can conclude
that efforts have clearly been made towards good security and reliability of the code. On
the other hand, the protocol was found to suffer from serious issues that must be fixed
as soon as possible.

It  should  be  noted  that  the  Request  network’s  protocol  design  was  fully  reviewed,
starting from the provided specifications and API documentations, then moving onto the
code itself. The code should be considered well-readable and no major findings were
detected. One minor recommendation has been made in RN-01-001 and pertains to the
exposure of an insecure pseudorandom number generator via the cryptographic API of
the Request network. However, since that functionality is not used in a security-critical
context, it does not weaken the effective Request network’s security client.

More urgency should be given as regards two medium-severity findings detected in the
protocol  design,  potentially  exposing  protocol  messages  in  the  Request  network  to
significant  cryptographic  weaknesses.  These  weaknesses  were  confirmed  with  the

8 https://tools.ietf.org/html/draft-barnes-cfrg-hpke-00
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Request network team and are documented in RN-01-006 and RN-01-007, respectively.
The tickets include advice on the proposed fixes, which are easy to implement.

Further,  the  involved  Request  network  team offered a  set  of  general  questions  and
requests for recommendations as regards topics in applied cryptography. Some of these
questions  were fielded  during  a  conference  call  while  others  were  answered  in  this
report, specifically under RN-01-002, RN-01-003, RN-01-004 and RN-01-005.

Cure53 would like to thank Yoann Marion from the Dragon Research B.V. team for his
excellent  project  coordination,  support  and  assistance,  both  before  and  during  this
assignment.
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