
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Review-Report Request Network Codebase 05.2020
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index

Introduction

Scope

Identified Vulnerabilities

RN-01-001 WP1: Insecure PRNG for cryptographic material (Low)

RN-01-006 WP1: Encryption scheme reveals plain-text oracle (Medium)

RN-01-007 WP1: No integrity from symmetric encryption (Medium)

Miscellaneous Issues

RN-01-002 WP2: Using keys for signing and encryption (Info)

RN-01-003 WP2: Encrypting short messages (Info)

RN-01-004 WP2: Encrypting same message with different keys (Info)

RN-01-005 WP2: General post-quantum cryptography Issues (Info)

Conclusions

Introduction
“Request enables your users with a common way to request payments while providing
full control over their financial data. From simple peer-to-peer payment requests to full
business invoices.”

From https://request.network/en/

This report describes the results of a security audit and cryptography review carried out
against the Request network complex, specifically targeting its TypeScript codebase and
cryptographic architecture. The project was completed by Cure53 in May 2020.

To give some context, it can be clarified that two members of the Cure53 executed this
assessment, following a specific timeline for the work being delivered in Calendar Weeks
20 and 21 of 2020. The tasks have been completed over the course of six person-days
budget allocated to Cure53 by the Request team.

Cure53, Berlin · 06/19/20 1/9

https://cure53.de/
https://request.network/en/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In order to make sure that all areas are covered and various goals are fulfilled, Cure53
split the work into two Work Packages. In WP1, the testing team performed a
cryptographic review and audited the TypeScript codebase of the Request network.
Then, in WP2, an explicit focus was placed on the questions that the Request team
formulated and needed to get answers to from a security perspective. In this realm,
Cure53 zoomed in on the cryptography-specific matters.

The project was well-prepared, started on time and progressed efficiently. The Cure53
team could leverage the advantages of a white-box methodology. Under this premise,
Cure53 was granted access to all relevant material from the Request network team.
Among other data, Cure53 received a detailed scope document (see below), several
crypto-specific questions, as well as the codebase, which is generally available as open
source software.

The communication during the assessment and review was done via Slack, the Request
network team created a test-related channel on their Slack workspace and invited
relevant members of the Cure53 team to join it. All exchanges were productive and the
project was finalized with a debrief call. During this meeting, the results were presented
and remaining questions have been discussed in detail.

Seven findings have been spotted during the project. Three items were classified to be
security vulnerabilities, two scored Medium in terms of risks and one had only Low
impact. Four Info-only findings were documented as miscellaneous, with possible
recommendations to consider. The Request network team was informed about all issues
in the aforementioned briefing. In addition to individual items, Cure53 answered four
questions posed by the Request network team prior to the audits and reviews
happening. All of them can be seen as general recommendations with corresponding
headlines.

In the following sections, the report will first shed light on the scope and key test
parameters, including also a list of questions asked by the Request network team. Next,
all findings will be discussed in a chronological order alongside technical descriptions, as
well as PoC and mitigation advice when applicable. Finally, the report will close with
broader conclusions about this May 2020 project. Cure53 elaborates on the general
impressions and reiterates the verdict based on the testing team’s observations and
collected evidence. Tailored hardening recommendations for the Request complex are
also incorporated into the final section.

Cure53, Berlin · 06/19/20 2/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Cryptographic Review & Security Audit against Request Network Codebase

◦ WP1: Crypto Review and Audit against the Request network’s TypeScript codebase
▪ A scope document was shared with Cure53

• https://docs.google.com/document/d/
1R9b_dZRif9Z4CG6brDRDmvAgDd1Gvct8Ds6lgcYNhJ4/edit?usp=sharing

◦ WP2: Q&A-based section, written in response to crypto-specific questions from the
Request team
▪ See Miscellaneous Issues section in this document

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. RN-01-001) for the purpose of facilitating any
future follow-up correspondence.

RN-01-001 WP1: Insecure PRNG for cryptographic material (Low)

It was found that the crypto.ts provider uses Math.random() in order to provide the
generates4randomBytes() and generate8randomBytes() functions. Math.random() does
not expose a cryptographically secure pseudorandom number generator in most runtime
environments, and as such bytes obtained through these functions should not be
considered suited for a variety of cryptographic operations, such as private key
generation.

However, it was also observed that generate4randomBytes() and generate-
8randomBytes() were only being used to generate salts, which is an operation that does
not require a cryptographically secure pseudorandom number generator. As such, the
impact of this issue is set to Low. While it does not pose any harm at present, the
presence of these functions within Request network’s cryptographic provider could lead
to them being used for generating sensitive cryptographic material in the future.

Affected File:
packages/utils/src/crypto.ts

Affected Code:
function generate8randomBytes(): string {
 const base16 = 16;

Cure53, Berlin · 06/19/20 3/9

https://cure53.de/
https://docs.google.com/document/d/1R9b_dZRif9Z4CG6brDRDmvAgDd1Gvct8Ds6lgcYNhJ4/edit?usp=sharing
https://docs.google.com/document/d/1R9b_dZRif9Z4CG6brDRDmvAgDd1Gvct8Ds6lgcYNhJ4/edit?usp=sharing
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 const generate4randomBytes = (): string => {
 // A 4 byte random integer
 const randomInteger = Math.floor(Math.random() * Math.pow(2, 4 * 8));

 // Convert to hexadecimal and padded with 0
 return randomInteger.toString(base16).padStart(8, '0');
 };

 // Do it in 2 passes because an integer doesn't have enough bits
 const high = generate4randomBytes();
 const low = generate4randomBytes();
 return high + low;
}

It is recommended to replace the usage of Math.random() with either WebCrypto’s
Crypto.GetRandomValues()1 or with Node’s crypto.randomBytes()2 function.

RN-01-006 WP1: Encryption scheme reveals plain-text oracle (Medium)

It was found that Request network’s request encryption protocol communicated a simple
cryptographic hash of the plain-text, along with each message. Given that the plain-text
follows a highly predictable, standardized and normalized JSON structure, this could
allow the attacker to use the hash as a high-speed oracle for guessing the plain-text
contents of the Request network messages.

For example, consider the following sample Request network plain-text, which has been
provided by Request network.

{"meta":{"format":"rnf_invoice","version":"0.0.2"},"creationDate":"2020-02-
11T05:00:00.000Z","invoiceNumber":"1","purchaseOrderId":"1","note":"\
n","sellerInfo":{"businessName":"Decipher Data Consultancy","address":
{}},"buyerInfo":{"businessName":"MakerDAO","address":{}},"invoiceItems":
[{"name":"Grant (Presentation, Consulting, Modeling) - June
2019","quantity":1,"unitPrice":"5500000000000000000000","currency":"DAI","delive
ryDate":"2020-02-11T05:00:00.000Z"},{"name":"Grant (Presentation, Consulting,
Modeling) - July
2019","quantity":1,"unitPrice":"5500000000000000000000","currency":"DAI","delive
ryDate":"2020-02-11T05:00:00.000Z"}],"paymentTerms":{},"miscellaneous":
{"builderId":"app.request.network"}}

A reasonably well-informed attacker could obtain, on top of the easily guessable JSON
structure and field-names, information regarding the transaction dates and parties.
Thereby, they would be shortening the number of unknown bits to a restricted subset for
which the hash can then be used as an oracle at up to 23,000 SHA-2

1 https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
2 https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback

Cure53, Berlin · 06/19/20 4/9

https://cure53.de/
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

MegaHash/second-guessing rates with standard consumer equipment. Given a
sufficiently restricted number of unknown bits, which are almost certain to be within the
alpha-numeric ASCII range, this could allow the attacker to reliably confirm a suspected
plain-text or even obtain an unknown plain-text. This is connected to well-informed
guesses on predictable structural elements of the payload.

As documented in RN-01-007, it is recommended that authenticated symmetric
encryption primitives (such as AES-GCM) get included in the design. This would
eliminate the requirement for this hash, allowing for it to be removed altogether from the
protocol.

RN-01-007 WP1: No integrity from symmetric encryption (Medium)

The request encryption protocol for the Request network employs two primitives:

• AES-CBC is used for symmetric payload encryption, with a randomly generated
key that is unique per payload.

• ECIES is used with secp256k1 as the underlying curve in order to provide
authenticated public-key encryption of the unique AES-CBC key that was used to
encrypt the payload.

Fig.: RequestNetwork protocol, modeled in Verifpal.3

3 https://verifpal.com

Cure53, Berlin · 06/19/20 5/9

https://cure53.de/
https://verifpal.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Since AES-CBC does not provide integrity guarantees or authenticated encryption on
the cipher-text, it was found that, in fact, Request network only provided cryptographic
integrity on the encryption key. The cipher-text, however, can be tampered with by the
attacker undetectably.

Since Request network uses AES-CBC, the precision with which the attacker can
produce malicious tampering is greatly reduced. Were Request network to be using a
stream cipher such as AES-CTR, the impact of this attack would have been
catastrophic. In this alternative scenario, it would have allowed the attacker to modify
arbitrary cipher-texts with bit-level precision on the changes taking effect on the
underlying plain-text. This weakness was modeled for and discovered using the Verifpal
protocol analysis software.

It is recommended for AES-CBC to be replaced with an authenticated encryption
primitive such as AES-GCM. In addition to resolving this issue, an authenticated
symmetric primitive would also render the hashing which causes RN-01-006
unnecessarily, thereby helping to resolve that issue as well.

Cure53, Berlin · 06/19/20 6/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers low-priority issues as well as requests for information and discussion
points that arose from the audit.

RN-01-002 WP2: Using keys for signing and encryption (Info)

The Request network team asked for recommendations on whether using the same key
pair for signing and encryption can cause problems.

Strictly speaking, using the same private key for both signing and encryption key pairs
does not pose issues, especially if “encryption” is meant to signify Diffie-Hellman key
agreement. Popular encryption protocols, such as the Signal protocol, convert a X25519
Diffie-Hellman key pair to an Ed25519 signing key pair.4 The age encryption utility does
the reverse, converting an Ed25519 signing key pair into an X25519 Diffie-Hellman key
pair.5 A similar approach may be adopted by Request network if necessary.

RN-01-003 WP2: Encrypting short messages (Info)

Request network asked for recommendations on whether it is a problem to encrypt short
messages. So long as messages are padded up to the correct block’s cipher length,
encrypting many short messages should not pose any issues, except if encryption keys
last for an extremely long time (upwards of 232 encryptions). Given that the Request
network protocol generates a fresh encryption key for each message, this should not be
an issue.

RN-01-004 WP2: Encrypting same message with different keys (Info)

The Request network team asked for recommendations on whether it is a problem to
encrypt copies of the same message separately with different keys. There is no issue
with this approach, given the Request network’s security goals and protocol design.

RN-01-005 WP2: General post-quantum cryptography Issues (Info)

The Request network team asked for recommendations regarding the necessity and
workability of switching over to post-quantum cryptography in the future. Efforts have
recently been made in order to organize and improve the available knowledge on the
four main branches of cryptographic primitives that are thought to be resistant to
quantum algorithms.6 Among these, one of the more workable candidates for post-
quantum Diffie-Hellman appears to be CSIDH.7 However, even in the case of relatively

4 https://signal.org/docs/specifications/xeddsa/
5 https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
6 https://pqcrypto.org/
7 https://csidh.isogeny.org/index.html

Cure53, Berlin · 06/19/20 7/9

https://cure53.de/
https://csidh.isogeny.org/index.html
https://pqcrypto.org/
https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
https://signal.org/docs/specifications/xeddsa/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

efficient and implementation-friendly post-quantum primitives, widespread compatibility
and performance remain completely incomparable to “standard” elliptic-curve Diffie-
Hellman primitives, such as those used by Request network (e.g. Secp256k1 and
similar).

Request network uses ECIES as a public-key encryption construction. A recent
alternative to ECIES, namely HPKE8, provides very much the same functionality as
ECIES while allowing for an easier definition of underlying cryptographic primitives. As
such, a migration away from ECIES and into HPKE could be considered. With a revised
approach, the HPKE implementation could be reconfigured to use post-quantum
primitives once those are ready for prime-time and, moreover, doing so would not render
previous cipher-texts “undecryptable”.

It should also be noted that there is currently no evidence to suggest that quantum
attacks on cryptographic primitives are likely to occur in the near future. Similarly, it
cannot be said that they would be catastrophic in terms of impact on the Request
network. In fact, their implications might be negligible when compared to the
consequences they would have for the world’s entire technical infrastructure.

Conclusions
Cure53 generally gained a rather positive impression of the audited code and
architecture provided by the Request network team. After spending six days on the
scope in May 2020, two members of the Cure53 have identified both strengths and
weaknesses in the Request network complex. On the one hand, the team can conclude
that efforts have clearly been made towards good security and reliability of the code. On
the other hand, the protocol was found to suffer from serious issues that must be fixed
as soon as possible.

It should be noted that the Request network’s protocol design was fully reviewed,
starting from the provided specifications and API documentations, then moving onto the
code itself. The code should be considered well-readable and no major findings were
detected. One minor recommendation has been made in RN-01-001 and pertains to the
exposure of an insecure pseudorandom number generator via the cryptographic API of
the Request network. However, since that functionality is not used in a security-critical
context, it does not weaken the effective Request network’s security client.

More urgency should be given as regards two medium-severity findings detected in the
protocol design, potentially exposing protocol messages in the Request network to
significant cryptographic weaknesses. These weaknesses were confirmed with the

8 https://tools.ietf.org/html/draft-barnes-cfrg-hpke-00

Cure53, Berlin · 06/19/20 8/9

https://cure53.de/
https://tools.ietf.org/html/draft-barnes-cfrg-hpke-00
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Request network team and are documented in RN-01-006 and RN-01-007, respectively.
The tickets include advice on the proposed fixes, which are easy to implement.

Further, the involved Request network team offered a set of general questions and
requests for recommendations as regards topics in applied cryptography. Some of these
questions were fielded during a conference call while others were answered in this
report, specifically under RN-01-002, RN-01-003, RN-01-004 and RN-01-005.

Cure53 would like to thank Yoann Marion from the Dragon Research B.V. team for his
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 06/19/20 9/9

https://cure53.de/
mailto:mario@cure53.de

	Review-Report Request Network Codebase 05.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	RN-01-001 WP1: Insecure PRNG for cryptographic material (Low)
	RN-01-006 WP1: Encryption scheme reveals plain-text oracle (Medium)
	RN-01-007 WP1: No integrity from symmetric encryption (Medium)

	Miscellaneous Issues
	RN-01-002 WP2: Using keys for signing and encryption (Info)
	RN-01-003 WP2: Encrypting short messages (Info)
	RN-01-004 WP2: Encrypting same message with different keys (Info)
	RN-01-005 WP2: General post-quantum cryptography Issues (Info)

	Conclusions

