
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report Project 11 Web App UI, API & Infra 06.2025
Cure53, Dr.-Ing. M. Heiderich, T. Orlita

Index
Introduction

Scope

Identified Vulnerabilities

P11-02-001 WP3: Command injection in GitHub Actions (Low)
P11-02-003 WP1: Lack of general HTTP security headers (Low)
P11-02-004 WP1 : Lack of cross-origin-related HTTP security headers (Low)
P11-02-005 WP2 : DoS via subpar IP rate limit configuration (Medium)

Miscellaneous Issues

P11-02-002 WP3: Lack of commit pinning in GitHub Actions (Info)
Conclusions

Cure53, Berlin · Jun 18, 25 1/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
This report, identifiable as P11-02, presents the outcomes of a penetration test and source
code audit against the Project 11 web application, UI, and REST API, as performed by
Cure53 in early June 2025.

For background information, representatives from Project 11 Limited contacted Cure53 in
May 2025 to request the assessment and specify the overall aims. The initiatives were
completed over a one-week period (CW23) by a two person review team. Five days were
allocated for the analysis, which was deemed an ample time frame to achieve the expected
coverage and yield of results.

Three individual Work Packages (WPs) were created for the examinations, denoting the key
areas of interest. These read as follows:

• WP1: White-box pen.-tests & code audits against Project 11 web UI
• WP2: White-box pen.-tests & code audits against Project 11 REST API
• WP3: White-box pen.-tests & reviews against website infrastructure & config

To facilitate the white-box initiatives, the Project 11 maintainers provided a suite of
materials, including URLs, sources, documentation, and other assorted assets. All
preparations were completed in late May 2025 (CW22) to ensure a seamless start.

Communication throughout the assignment occurred via a dedicated Slack channel, which
included all relevant personnel from both Project 11 and Cure53. The cross-team discourse
was generally seamless, with minimal need for clarification as the scope was clearly defined
and well-prepared. No significant obstacles arose during the testing period.

Cure53 provided regular status updates on the progress and identified findings. Live
reporting was also offered and deemed beneficial for this exercise, conducted via the
designated Slack channel.

Following satisfactory depth and breadth of coverage over the scope elements, Cure53
detected and documented a total of five findings in ticket format. Four were categorized as
security vulnerabilities, while the remaining ticket was filed as a miscellaneous weakness.

In sum, the Project 11 application exhibits a robust security foundation under the current
construct. The deployed components indicate the dev team’s thoughtful security design,
presenting minimal frontend attack surface and clean, readable code that inherently reduces
risk.

Cure53, Berlin · Jun 18, 25 2/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

In addition, the infrastructure is commendably architected and affected by only minor
workflow shortcomings. Despite diligent efforts, Cure53 could not locate any significant
findings related to its core setup or deployment.

Nevertheless, Cure53 noted some areas that would benefit from improvement. All of the
corresponding tickets were assigned a severity rating of Medium or lower. Moreover, the
Project 11 developers acted immediately and swiftly resolved the detected rate limiting
vulnerability upon identification, highlighting their commitment to security proficiency.

The report will now provide insights into the Scope and testing setup, as well as display a
comprehensive breakdown of all available materials in bullet point form. Subsequently, the
report will list all findings identified in chronological order, starting with the Identified
Vulnerabilities and followed by the Miscellaneous Issues. Each finding will be accompanied
by a technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
appraise the general security posture of the elements in focus, offering high-level hardening
advice and next steps for the internal team.

Cure53, Berlin · Jun 18, 25 3/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Pen.-tests & code audits against Project 11 web application UI, API & infra

◦ WP1: White-box pen.-tests & code audits against Project 11 web UI
▪ Source code:

• URL:
◦ https://github.com/p-11/yellowpages-client

• Branch:
◦ development

• Commit:
◦ d0191650d61778119cc018c6b554e9dffd3adce9

▪ Production environment:
• https://www.yellowpages.xyz/

◦ WP2: White-box pen.-tests & code audits against Project 11 REST API
▪ Data API:

• Source code:
◦ URL:

▪ https://github.com/p-11/yellowpages-data-layer-service
◦ Branch:

▪ development
◦ Commit:

▪ b1e0742f56c238e71fc24552423f8207f3236de5
▪ Proof API:

• Source code:
◦ URL:

▪ https://github.com/p-11/yellowpages-proof-service
◦ Branch:

▪ development
◦ Commit:

▪ 81fdb0ac6ceac0b213856516ea1a8bcba6cb866f
• Production environment:

◦ https://yellowpages-proof-service.app-1312b66384d.enclave.evervault.com
▪ Verification API:

• Source code:
◦ URL:

▪ https://github.com/p-11/yellowpages-verification-service
◦ Branch:

▪ development
◦ Commit:

▪ 79302565a9f95f5b28a08f68047a6ca5d4645e37
• Production environment:

◦ https://verification-api.yellowpages.xyz/

Cure53, Berlin · Jun 18, 25 4/14

https://github.com/p-11/yellowpages-client
https://verification-api.yellowpages.xyz/
https://github.com/p-11/yellowpages-verification-service
https://github.com/p-11/yellowpages-proof-service
https://github.com/p-11/yellowpages-data-layer-service
https://www.yellowpages.xyz/
https://cure53.de/
https://yellowpages-proof-service.app-1312b66384d.enclave.evervault.com/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

◦ WP3: White-box pen.-tests & reviews against website infrastructure & config
▪ Primary focus areas:

• Frontend:
◦ Deployed using Vercel

• Proof service:
◦ Evervault Enclaves (uses AWS Nitro Enclave)

• Data & verification services:
◦ Deployed to AWS using Typescript AWS CDK infra scripts
◦ Elastic Container Repository
◦ Elastic Container Service cluster
◦ Application Load Balancer
◦ CI/CD using GitHub Actions

• Mongo DB:
◦ Mongo Atlas
◦ IP whitelisting, accessible only by the data service

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Jun 18, 25 5/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., P11-02-001) to
facilitate any future follow-up correspondence.

P11-02-001 WP3: Command injection in GitHub Actions (Low)
Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

While reviewing the GitHub Actions workflows, Cure53 discovered that the
restrict_pr_branches workflow, present in the service and client repositories, is vulnerable to
script injection attacks. Specifically, the workflow directly interpolates the github.head_ref
context variable into shell commands without sufficient escaping. This variable is utilized for
the branch name of the originating pull request, which can contain special characters. As
such, substituting it directly into the script permits injecting arbitrary shell commands that will
be executed by the GitHub Actions runner.

Affected file:
.github/workflows/restrict_pr_branches.yml

Affected code:
steps:
 - name: Check source branch
 run: |
 echo "Base branch: ${{ github.base_ref }}"
 echo "Head branch: ${{ github.head_ref }}"
 if ["${{ github.head_ref }}" != "development"]; then
 echo " Pull requests into 'main' must come from 'development'."❌
 exit 1
 fi

This activity could be exploited by a user that is permitted to submit pull requests to the
GitHub repository. For example, naming the source branch ;{cat,/etc/passwd}; will cause the
string to break out of the echo statement and be interpreted as code.

The impact of command injection in this scenario is limited, as the attacker would need
access to the private repository. However, it should still be resolved to prevent privilege
escalation and shield against future alterations to repository permissions or unforeseen
attack vectors.

Cure53, Berlin · Jun 18, 25 6/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this vulnerability, Cure53 advises leveraging intermediate environment variables1

to pass values into inline shell scripts for all variables with potentially untrusted input.

P11-02-003 WP1: Lack of general HTTP security headers (Low)
Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

Testing confirmed that the yellowpages-client website lacks certain HTTP security headers
in HTTP responses. This does not directly evoke security risk, but could aid attackers in their
efforts to exploit other areas of weakness. The following list enumerates the headers that
require reviewing and implementing in order to prevent associated flaws.

• X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent clickjacking attacks, a plethora of
alternative breach strategies are achievable when a web page is framable2. Cure53
recommends configuring the value to either SAMEORIGIN or DENY.

• Content-Security-Policy: This header is used to control which resources the web
page is allowed to load. By restricting the execution of code and the resources that
can be loaded on the page, CSP provides an additional layer of security against
attacks such as Cross-Site Scripting and CSS injection.

• Notably, the CSP framework offers similar protection to X-Frame-Options via
methods that overcome some shortcomings of the aforementioned header. To
optimally protect users of older browsers and modern browsers simultaneously,
Cure53 recommends deploying the Content-Security-Policy: frame-ancestors 'none';
header in addition.

All in all, the neglect to incorporate beneficial security headers is suboptimal and should be
avoided.

To mitigate this issue, Cure53 advises inserting the aforementioned headers into all server
responses, including error messages such as 4xx items.

1 https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-[...]-variable
2 https://cure53.de/xfo-clickjacking.pdf

Cure53, Berlin · Jun 18, 25 7/14

https://cure53.de/
https://cure53.de/xfo-clickjacking.pdf
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-an-intermediate-environment-variable
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

P11-02-004 WP1: Lack of cross-origin-related HTTP security headers (Low)
Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

Cure53 discovered that the yellowpages-client website lacks cross-origin-infoleak-related
HTTP security headers3 in its responses. Similarly to the previous ticket, this circumstance
does not evoke direct security implications. However, attackers may be encouraged to
exploit other areas of weakness due to the suboptimal protection, such as issues relating to
Spectre attacks4. The following headers were verified to be absent from the construct and
should be implemented to prevent associated vulnerabilities.

• Cross-Origin Resource Policy (CORP) and Fetch Metadata Request headers
allow developers to control which sites can embed their resources, such as images
or scripts. They prevent data from being delivered to an attacker-controlled browser-
renderer process, as seen in resourcepolicy.fyi and web.dev/fetch-metadata.

• Cross-Origin Opener Policy (COOP) grants developers the ability to ensure that
their application window will not receive unexpected interactions from other
websites, allowing the browser to isolate it in its own process. This incorporates
important process-level protection, particularly in browsers that do not enable full
Site Isolation; see web.dev/coop-coep.

• Cross-Origin Embedder Policy (COEP) ensures that any authenticated resources
requested by the application have explicitly opted-in to passing into a load state. In
the current climate, to guarantee process-level isolation for highly sensitive
applications in Chrome or Firefox, applications must enable both COEP and COOP;
see web.dev/coop-coep.

Generally speaking, the absence of cross-origin security headers should be considered a
negative practice that could be avoided in times when attacks such as Spectre are known to
be easily practicable and exploit code is publicly available.

To mitigate this issue, Cure53 recommends inserting the aforementioned headers into every
relevant server response. Resources with detailed information regarding headers of this
nature are available online, explaining both header setup best practices5 and the potential
consequences of neglecting to install them entirely.6

3 https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
4 https://meltdownattack.com/
5 https://scotthelme.co.uk/coop-and-coep/
6 https://web.dev/coop-coep/

Cure53, Berlin · Jun 18, 25 8/14

https://resourcepolicy.fyi/
http://web.dev/coop-coep
http://web.dev/coop-coep
http://web.dev/fetch-metadata
https://cure53.de/
https://web.dev/coop-coep/
https://scotthelme.co.uk/coop-and-coep/
https://meltdownattack.com/
https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

P11-02-005 WP2: DoS via subpar IP rate limit configuration (Medium)
Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

While evaluating the yellowpages-proof-service rate limiting configuration, Cure53
determined that the imposed IP-based rate limit protection fails to correctly retrieve the
client’s IP address. Specifically, as this service is deployed behind a reverse proxy using
Evervault, the IP address employed for rate limiting corresponds to the proxy’s IP address,
rather than the client’s actual IP address. Therefore, the IP-based rate limit safeguarding will
effectively function as a global rate limiter and could unintentionally block legitimate
requests.

The current setup leverages a global and IP-based rate limiter. The global rate limiter
(general_rate_limiter) is configured to allow 1000 requests per minute in total. The IP-based
rate limiter (ip_rate_limiter) allows 10 requests every two seconds per IP address. The IP-
based rate limiter is implemented as a middleware using the tower_governor Rust crate. The
default Governor config7 is utilized, which applies the PeerIpKeyExtractor8 by default in order
to determine the IP address to rate limit.

Affected file:
yellowpages-proof-service/src/main.rs

Affected code:
let governor_conf = Arc::new(
 GovernorConfigBuilder::default()
 .per_second(2)
 .burst_size(10)
 .finish()
 .unwrap(),
);

As noted above, the peer IP will be the same for all requests, meaning that legitimate
requests could be unintentionally rate limited during high traffic periods. Alternatively, this
could potentially allow a single attacker to DoS the service for other users. This was verified
by repeatedly sending GET /prove requests from a device to trigger the IP-based rate
limiter, then attempting to send the same request from a second device with a different IP
address, issuing a 429 Too Many Requests response.

While the IP-based rate limiter is approximately three times stricter than the global rate
limiter on average, increasing the global rate limiter to allow increased traffic offers negligible
benefits and will likely lead to security implications in the future if unaddressed.

7 https://docs.rs/tower_governor/latest/tower_governor/governor/struct.GovernorConfigBuilder.html#[...]
8 https://docs.rs/tower_governor/latest/tower_governor/key_extractor/struct.PeerIpKeyExtractor.html

Cure53, Berlin · Jun 18, 25 9/14

https://cure53.de/
https://docs.rs/tower_governor/latest/tower_governor/key_extractor/struct.PeerIpKeyExtractor.html
https://docs.rs/tower_governor/latest/tower_governor/governor/struct.GovernorConfigBuilder.html#impl-Default-for-GovernorConfigBuilder%3CPeerIpKeyExtractor,+NoOpMiddleware%3E
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this vulnerability, Cure53 recommends adopting the actual IP address of the
client from the appropriate server headers. This can be accomplished by implementing a
custom KeyExtractor to retrieve the appropriate header, such as X-Forwarded-For,
containing the client's IP address. Notably, sending a request with this header will not
overwrite the header configured by the proxy.

Cure53, Berlin · Jun 18, 25 10/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

P11-02-002 WP3: Lack of commit pinning in GitHub Actions (Info)
Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

While exploring the GitHub Actions workflows across all repositories, Cure53 acknowledged
that third-party actions are pinned to a version tag, rather than a specific commit. While
version tag pinning is a common practice, the full commit SHA should be utilized for
supplemental protection against supply chain attacks, as it directly references a unique point
in the Git history.9

Affected file:
yellowpages-data-layer-service/.github/workflows/deploy_prod.yml

Affected code:
- name: Set up Docker Buildx
 uses: docker/setup-buildx-action@v3

- name: Configure AWS credentials
 uses: aws-actions/configure-aws-credentials@v4

To mitigate this vulnerability, Cure53 recommends introducing commit pinning as an
additional defense-in-depth measure against potential supply chain attacks, even though the
third-party actions present in the analyzed workflows are maintained by established actors.

9https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-[...]-actions

Cure53, Berlin · Jun 18, 25 11/14

https://cure53.de/
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
The Conclusions chapter compiles all observations yielded during the pentesting period,
summarizing the overall verdict and offering actionable next steps. In summary, Cure53 is
pleased to report that the scrutinized Project 11 web app and associated features exhibit
performant safeguarding at present, although certain aspects can be augmented for
encompassing defense.

Regarding the coverage for WP1, the Cure53 consultants conducted a thorough analysis of
the web application frontend, which is constructed using React and Next.js. These are
established frameworks that provide secure default paradigms and effective foundations for
client-side development.

The web application is deployed with Vercel, which automatically configures HTTP Strict
Transport Security (HSTS), ensuring protection against protocol downgrade attacks.
However, other HTTP security response headers have not been configured, such as CSP
and XFO (P11-02-003). Additionally, newer security headers related to browser-level
isolation should be incorporated, such as CORP and COOP (P11-02-004). Incorporating
these headers is strongly recommended to provide auxiliary shielding against client-side
attacks.

Elsewhere, Cure53 noted limited rendering of user-provided data and avoidance of
potentially dangerous JavaScript sinks, which provides steadfast protection against client-
side injection pathways. Web Workers are utilized for cryptographic operations, providing
performance advantages and additional separation from the main thread. Moreover, the
NPM dependencies are up-to-date, eliminating any threats that could arise due to outdated
libraries. To finalize, the clean and minimal code, combined with comprehensive end-to-end
tests, provides a solid foundation. Implementing the aforementioned security headers will
help to strengthen the overall security posture.

Regarding the coverage for WP2, Cure53 systematically explored the three backend
services in scope, all of which offer a healthy security posture. The utilization of Rust
provides type safety and prevents memory flaws, significantly negating the vast array of
plausible attacks in this area. Access to the data layer service is restricted to specific internal
services and enforced via API keys. Each endpoint called by a different service requires an
alternate key, maintaining the principle of least privilege.

Nonetheless, supplementary security hardening can be achieved by implementing dynamic
authentication methods, such as short-lived tokens or public-key cryptography, rather than
static key-based authentication. Additionally, the server provides verbose error messages
while parsing the request body prior to checking the API key. To prevent disclosing the
expected structure of the request body, verbose error messages should be disabled or the
key initially validated.

Cure53, Berlin · Jun 18, 25 12/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The proof service leveraged for websocket frontend connection enforces Cloudflare
Turnstile verification, which mitigates automated bot abuse. A Medium severity vulnerability
was discovered pertaining to the rate limit configuration, which could lead to a DoS condition
if unresolved (P11-02-005). On a positive note, this pitfall was promptly nullified by the in-
house team during the testing period and fix verified by Cure53.

Cross-Origin Resource Sharing (CORS) and verification of the websocket request origin
header are enforced, ensuring that only permitted websites can connect to this service.
Comprehensive end-to-end tests were implemented, guaranteeing that the service’s
functionality operates as intended and invalid input is appropriately handled.

Similar to the other variants, the verification service presents a robust security posture, as
CORS restricts the allowed origins and extensive unit/integration tests verify the expected
code behavior. Rate limiting is enforced for all services, guarding against brute-force attacks
and other automated abuse vectors.

The current logging implementation is useful for debugging but could introduce a potential
security risk by recording request parameter values. This setup should be revised to ensure
that sensitive values are not logged. Across all services, request parameters are stringently
validated before they are processed, limiting the attack surface for vulnerabilities caused by
malformed data.

In summary, despite the sole finding and recommendations for security modifications, the
backend services offer a solid foundation for the application's ongoing development, with
key security principles established.

Regarding the coverage for WP3, the infrastructure of the website and backend services
was vetted to pinpoint any prevalent security defects or misconfigurations. The data and
verification services leverage infrastructure-as-code scripts, which are stored within their
respective repositories. This approach is highly advantageous, as it provides a clear and
auditable definition of the infrastructure, as well as monitors all amendments via version
control. Furthermore, the project adopts a robust CI/CD pipeline using GitHub Actions to
automate deployments to AWS and Enclave. This automation is fundamental for security
purposes, as it asserts that deployments are consistent and repeatable.

A minor limitation was detected in a workflow present across repositories, caused by direct
interpolation of context variables (P11-02-001). While the impact is constrained, it is
important to reinforce the use of intermediate environment variables, as is correctly
performed in other workflows. Additionally, third-party actions should be pinned to a specific
commit rather than a version tag for defense-in-depth protection against supply chain
attacks (P11-02-002).

Cure53, Berlin · Jun 18, 25 13/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

AWS Secrets Manager and GitHub secrets are employed to create a resilient and
maintainable system, allowing for secure deployments across various environments. All
repositories and deployed services are strictly divided into distinct development and
production environments. This is a critical control that isolates development and testing
activities from the live system, preventing untested code from impacting users and
protecting the integrity of production data.

In summary, Cure53’s examination of the application components in scope for this review
confirms the Project 11 team’s proactive approach to security. The frontend codebase
exposes minimal attack surface, although the installation of beneficial security headers will
offer supporting defense. The codebase, written in TypeScript and Rust, is readable,
organized, and written to a first-rate standard. The infrastructure is effectively architectured,
with only two minor shortcomings identified related to workflows. The infrastructure setup
and deployment process are not affected by any major security drawbacks.

The swift remediation of the rate limiting vulnerability in the proof service is commendable.
Additional security hardening improvements were also introduced by the development team
during the engagement. While several security weaknesses were located, none exceeded
an impact score of Medium, reflecting a steadfast security foundation. Considering the
established security controls and security-conscious approach to development, the
inspected scope garnered a favorable verdict on the whole.

Cure53 would like to thank Conor Deegan and David Nugent from the Project 11 Limited
team for their excellent project coordination, support, and assistance, both before and during
this assignment.

Cure53, Berlin · Jun 18, 25 14/14

https://cure53.de/
mailto:mario@cure53.de

	Index
	Introduction
	Scope
	Identified Vulnerabilities
	P11-02-001 WP3: Command injection in GitHub Actions (Low)
	P11-02-003 WP1: Lack of general HTTP security headers (Low)
	P11-02-004 WP1: Lack of cross-origin-related HTTP security headers (Low)
	P11-02-005 WP2: DoS via subpar IP rate limit configuration (Medium)

	Miscellaneous Issues
	P11-02-002 WP3: Lack of commit pinning in GitHub Actions (Info)

	Conclusions

