
Pentest-Report OpenKeychain 08.2015
Cure53, Dr.-Ing. M. Heiderich, J. Horn, Dipl-Ing. A. Aranguren, Dr. J. Magazinius, D. Weißer

Index
Introduction
Scope
Identified Vulnerabilities

OKC -01-001 Private Keys can be imported from Keyserver (Medium)
OKC -01-004 Arbitrary file write when decrypting and saving messages (High)
OKC -01-006 Keyserver can send arbitrary Public Keys without Verification (Low)
OKC -01-009 Bypassable Fingerprint - Check for Key Exchange via QR Code (High)
OKC -01-010 Database can be exported using Encrypt Operation (Low)
OKC -01-011 Unconfirmed Main Identities are shown as confirmed (Low)
OKC -01-012 Database Extraction possible via Version Downgrade (Medium)
OKC -01-013 Key Usage unchecked upon Decryption / Signature Verification (Low)
OKC -01-014 Multiple File overwrite Vulnerabilities via Path Traversal (High)
OKC -01-015 Export of PGP Information in clear - text on insecure Storage (Medium)
OKC -01-017 Predictable File Creation on insecure Location (Medium)
OKC -01-018 Key Server Verification Bypass via HTTP Redirect (Medium)

Miscellaneous Issues
OKC -01-002 Malicious public Key can lead to persistent Denial of Service (Medium)
OKC -01-003 Malicious Key Server response can lead to Denial of Service (Low)
OKC -01-005 Insufficient and insecure RSA / DSA Key Sizes permitted (Medium)
OKC -01-007 Signing Operations with weak Key lead to Denial of Service (Info)
OKC -01-008 OpenKeychain accepts weak Passwords without any Warning (Info)
OKC -01-016 No Warnings when adding a clear - text HTTP Key Server (Low)

Conclusion

 1/18

Introduction
“OpenKeychain helps you communicate more privately and securely. It uses high-quality
modern encryption to ensure that your messages can be read only by the people you
send them to, others can send you messages that only you can read, and these
messages can be digitally signed so the people getting them are sure who sent them.
OpenKeychain is based on the well established OpenPGP standard making encryption
compatible across your devices and operating systems.”

From https :// github . com / open - keychain / open - keychain

This penetration test and source code audit against the OpenKeychain mobile
application took an entirety of twelve days and was performed by five testers of the
Cure53 team. The test yielded an overall of eighteen issues, of which twelve were
classified as vulnerabilities and six as general weaknesses.

The test was performed over a dedicated release tag created by the project maintainers
in the public Github repository1. The Cure53 team audited the available sources and
performed tests against the running application on both emulators and actual Android
devices for maximum coverage. In addition to the core library, certain parts of the
involved third party libraries were also audited. However, please note that only the
relevant parts of libraries were analyzed. For instance, this applies to Spongy Castle2, for
which exclusively the parts that actually interact with OpenKeychain were examined.

The first and foremost conclusion of the test is that, on the one hand, none of the
identified issues were classified as being of “critical” severity. On the other hand, three
vulnerabilities were rated to be of a “high” severity. Quite telling is the fact, however, that
these issues do not pertain to cryptographic flaws but rather to implementation-related
issues. They occurred in connection to the handling of information during the process of
key import and similar interaction with the app. This namely applied to the context of the
external data being parsed and handled incorrectly, and thus could lead to an attack
harming the device and users’ security and privacy. Overall, the application presented
itself as fairly robust in the core, yet requiring quite an array of smaller fixes, alterations
and changes. The main focus at present should be to acquire a consistent level of
security with regard to the import features, UI security and general file handling.

Scope
• Sources made available via Github

◦ https :// github . com / open - keychain / open - keychain

• APK from F-Droid

◦ https :// f - droid . org / repository / browse /? fdid = org . sufficientlysecure . keychain

1 http :// www . openkeychain . org / openkeychain -3-5/
2 https :// rtyley . github . io / spongycastle /

 2/18

https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://f-droid.org/repository/browse/?fdid=org.sufficientlysecure.keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
http://www.openkeychain.org/openkeychain-3-5/
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain
https://github.com/open-keychain/open-keychain

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. OKC-01-001) for the purpose of facilitating any
future follow-up correspondence.

OKC-01-001 Private Keys can be imported from Keyserver (Medium)

When a user attempts to download a public key from a keyserver, a rogue keyserver can
instead send a private key inside a public key’s armor. The app imports the private key
without a warning and adds it to the private keyring. The method ImportOperation.
serialKeyRingImport() invokes the method HkpKeyserver.get(), which then
extracts the base64-encoded key from the keyserver’s response.. This is done through
testing for the presence of the Armor Header and Armor Tail lines and stripping them:

Affected Code:
Matcher matcher = PgpHelper.PGP_PUBLIC_KEY.matcher(data);
if (matcher.find()) {
 return matcher.group(1);
}

The base64-encoded key without Armor Header and Tail is then related to
UncachedKeyRing.decodeFromData(), which is also used to parse private keys. This
effectively causes the problem assessed and pointed out here. Consequently, it is
recommended to verify that keys that are imported from a keyserver contain solely public
keys.

OKC-01-004 Arbitrary file write when decrypting and saving messages (High)

PGP files can contain the name of the original unencrypted file. This feature is used by
OpenKeychain in order to select a proper location when decrypting and finally saving a
PGP file. Although value is not intended to contain path elements, OpenKeychain fails to
perform any checks ensuring the prevention of possible file-overwrite-type attacks.

A malicious user - let us call him Bob - could craft an encrypted file with the original
filename set to an arbitrary path of his choice on the file system. He could then send it to
a second (regular, non-malicious) user we will call Alice. When Alice decrypts the file and
clicks “OK” on the “Decrypt To File” dialog without choosing a location for storing the file,
the decrypted file will be written to the PATH defined by Bob. The “Decrypt To File” dialog
only shows the target file name but not the full path on Android < KitKat (namely its 4.4
version).3

The consequences of this issue are two-fold: a certain Denial of Service (e.g. by
overwriting the key database), and a possibility for command execution. Devices running

3 https :// www . android . com / versions / kit - kat -4-4/

 3/18

https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/

Android versions equals or newer KitKat are seemingly not affected due to the fact that
they employ a different file manager.

Example Data:
• Password used here: a

• Original filename:
//////////////////////////////////////../../../../../../data/data/
org.sufficientlysecure.keychain/databases/badfile

Encrypted File:
-----BEGIN PGP MESSAGE-----
Version: GnuPG v2

jA0EBwMCtdLrYNpnR9rZ0nMBAPoOTWO+Q0RaYo22ZttlVdDL6gbu1xEVYoYOtsRj
lVWNuwc2FxSfHUFsY26DRx0Ho8JlONAyj6LxWbJ3XWn/7hR17t47d5AvqbgWNHbL
Aoq+OlPdsTFy8qeMi19HtyBVol5kGbPMBUnoS7Cv7FQyYlG+
=qA7c
-----END PGP MESSAGE-----

This occurrence can be explained with several following conditions. Firstly, when a user
decrypts the file shown above, only a sequence of “/” is displayed as the filename.
Secondly, when a user running Android versions older than KitKat selects “Save file”, he
only sees “badfile” in the dialog. In case the user does not select a new download folder
and simply presses “OK”, then the decrypted file contents will be written to the location
chosen by the attacker. The existing files will be overwritten as a result.

Affected file: /keychain/ui/DecryptListFragment.java
Code:
private void askForOutputFilename(Uri inputUri, String originalFilename, String
mimeType) {
 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT) {
 File file = new File(inputUri.getPath());
 File parentDir = file.exists() ? file.getParentFile() :

Constants.Path.APP_DIR;
 File targetFile = new File(parentDir, originalFilename);
 FileHelper.saveFile(this, getString(R.string.title_decrypt_to_file),
 getString(R.string.specify_file_to_decrypt_to), targetFile,

 REQUEST_CODE_OUTPUT);
 } else {
 FileHelper.saveDocument(this, mimeType, originalFilename,

 REQUEST_CODE_OUTPUT);
 }
 }

The code above shows exactly the point where the issue produces the described
vulnerability. Alongside, the following code demonstrates where the actual root of the
problem is located:

 4/18

Affected file: /keychain/pgp/PgpDecryptVerify.java
Code:
String originalFilename = literalData.getFileName();

It is recommended to either extract the basename from the original name, or,
alternatively to entirely reject encrypted files containing path elements.

OKC-01-006 Keyserver can send arbitrary Public Keys without Verification (Low)

Another one of the identified minor problems has to do with the process of importing
keys from the keyserver. More specifically, in the first step, the keyserver is queried for a
list of keys with the use of a search string. The server returns a list that describes the
matching keys and those are then presented to the user. Once the user has made a
selection of the keys he or she wants to import, these particular keys are promptly added
to their OpenKeychain.

However, it is not validated that the data shown to the user about the key is consistent
with the key that is actually imported. If the keyserver sent a fingerprint in its first
response, the imported key is checked against that fingerprint, but that does not happen
if the keyserver only sends a 64-bit Key-ID instead of a fingerprint.

It is recommended to check that the Key-ID and the identities of the imported keys are
consistent with the result of the query.

OKC-01-009 Bypassable Fingerprint-Check for Key Exchange via QR Code (High)

When the keys are exchanged via QR code,4 the expected fingerprint is contained in the
QR code. The receiving user’s device downloads the full key from the keyserver,
performs a fingerprint comparison against the expected fingerprint, and, finally, asks the
user to sign the identities associated with the key.

The fingerprint comparison is performed in ImportOperation.serialKeyRingImport()
via a following check:

Affected Code:
// If we have an expected fingerprint, make sure it matches
if (entry.mExpectedFingerprint != null) {
 if (!key.containsSubkey(entry.mExpectedFingerprint)) {
 log.add(LogType.MSG_IMPORT_FINGERPRINT_ERROR, 2);
 badKeys += 1;
 continue;
 } else {
 log.add(LogType.MSG_IMPORT_FINGERPRINT_OK, 2);
 }
}

4 https :// en . wikipedia . org / wiki / QR _ code

 5/18

https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code

This is bypassable for two reasons outlined below:

1. This check is performed prior to the key being canonicalized by
mProviderHelper.savePublicKeyRing(). Therefore, it is possible to bypass
the check by adding the primary key of the expected key to the malicious key as
a subkey. This can be done by extracting the first packet from the first key in a
binary form and then changing the first byte (type field) from 0x99 to 0xB9. Next,
it needs to be turned it into a subkey, appending the result to the malicious key in
a binary form and adding ASCII armor. OpenKeychain will accept the key
because of the fingerprint match and will only be able to remove the fake subkey
during the canonicalization process.

2. The method UncachedKeyRing.containsSubkey() matches the supplied
fingerprint against all subkeys of the key. However, only when signing subkeys
one requires a primary key binding certificate to confirm that the subkey was in
fact created by the primary key’s owner. Consequently, even if the key was
canonicalized before the fingerprint check, the attacker could still bypass the
fingerprint check by adding the expected primary key as a fake encrypt-only
subkey, as long as it is signed with the subkey’s binding signature.

For the mitigation purposes, it is recommended to require that the primary key matches
the expected fingerprint. If that is not possible to implement for some reason, fingerprint
matching should be restricted to subkeys with a valid primary key binding certificate. As
a precaution, it should also be considered to initiate the canonicalization of the received
key prior to performing the fingerprint comparison.

OKC-01-010 Database can be exported using Encrypt Operation (Low)

The threat scenario assumed for this issue is that an attacker gains access to the
victim’s unlocked android device and wants to efficiently bruteforce the password to their
private key. Per the FAQ entry presented below, OpenKeychain attempts to block the
extraction of the private key using software attacks in this scenario:

“Why is my password requested when I backup my keys?
 It is not required cryptographically, but prevents simple stealing of your keys.”

An attacker with ADB access or an ability to install the application on the device can
open the EncryptFilesActivity (“Encrypt with OpenKeychain”) with an arbitrary file://
URI. By starting EncryptFilesActivity with the URI file:///data/data/org.
sufficientlysecure.keychain/databases/openkeychain.db, it is possible to
encrypt OpenKeychain’s internal database (including the encrypted keys stored within
it). This can be done with the use of an attacker-chosen symmetric passphrase. Later,
the result can be, for example, stored on external storage or exfiltrated with Android
Beam.

 6/18

To reproduce the issue, run the following command line on the device via adb.5

am start -a android.intent.action.SEND -t text/plain -n
"org.sufficientlysecure.keychain/.ui.EncryptFilesActivity" --eu
android.intent.extra.STREAM
file:///data/data/org.sufficientlysecure.keychain/databases/openkeychain.db

This should be followed by encrypting the file symmetrically and saving the result. The
full attack could likely be carried out relatively fast. Firstly, open the settings, “security”,
and tick “unknown sources”. Secondly, open Chrome, use the incognito mode, navigate
to the attack helper APK, open the downloaded file, confirm permissions, and, last but
not leas, press “open”. In the third step the attack helper APK opens and the dialog can
be encrypted. Next set of actions requires the ticking of “encrypt with password”, typing a
single character into both boxes, pressing the “share” button, and selecting the attack
helper app. From then on the attack helper can successfully upload the database to
some server, delete its own APK from the file system and request its own deinstallation
afterwards. At this point one needs to confirm deinstallation. It is vital to note that the
entire attack can be carried out in about one minute. This time already includes
“cleanup” (closing Chrome’s incognito mode, removing the APK from “Downloads”,
possibly some other actions), which would mean that the attack remains hidden from a
cursory inspection.

Fixing this issue is somewhat difficult because the symlinks are allowed on the /data file
system. This means that an app cannot on the one hand follow symlinks created through
adb - SELinux blocks that -, but, on the other hand, following symlinks that were created
by other apps works.

For file:// URIs, if the ability to specify paths outside external storage is required, it is
recommended to open the file at the given path and obtain a file descriptor to it (e.g.
using the method android.system.Os.open()). One can then verify that the file
referenced by the open FileDescriptor is world-readable. The method
android.system.Os.fstat() can be used for that purpose, and then the file contents
can be read through that file descriptor. As long as no secret world-readable files exist
inside a non-world-executable folders owned by OpenKeychain, the attack will be
prevented.

OKC-01-011 Unconfirmed Main Identities are shown as confirmed (Low)

Before moving on, please note that the term “main identity” used in the description of this
issue description refers to the identity that is shown in the application’s main menu.
Although this will usually signify the identity marked as primary, be aware that a key can
equally have zero or multiple identities that are marked as primary. In consequence, this
setting can cause a situation in which a non-primary identity is the main identity or one
where a primary identity is not the main identity.

5 http :// developer . android . com / tools / help / adb . html

 7/18

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

When a non-main identity in a key has been confirmed by the user, the key is shown as
confirmed in the main menu under the main identity. This occurs even if the main identity
has not been confirmed by the user. This can easily become confusing, especially in
light of the fact that after the user has signed at least one identity of a key, a key sync
adds a new identity as a main identity (e.g. by adding a primary identity to a key which
does not have a primary identity or by marking the old primary identity as revoked). The
user would see a new identity on the list of known keys. Interestingly that key would be
marked as verified in spite of the fact that the user has never actually verified it.

It is recommended to either only mark the keys as verified if the main identity has been
confirmed or, alternatively, to show the first verified identity (even if it is non-primary) for
keys marked as verified.

OKC-01-012 Database Extraction possible via Version Downgrade (Medium)

Because of the issue described in OKC -01-011, signed release APKs of OpenKeychain
exist. They essentially allowed the primary device user to dump the database without a
password. What is important to report is that the fixing process of the above issue was
not successful and persists in the newest version. In sum, when one was once given
access to the device as the main user, it will remain possible to downgrade
OpenKeychain to an older version via the command adb install -r -d <apk>. This
will work as long as the old version was signed with the same key.

To guard against such attacks, it is recommended to add a version marker to the
database (against downgrades between future versions) and modify the database
layout. Another option would be to modify the file system structure so that it reliably
crashes existing versions, for example by renaming the fields inside the
keyrings_secret table.

OKC-01-013 Key Usage unchecked upon Decryption / Signature Verification (Low)

When a key is used for cryptographic operations, the declared key usage in the key flags
of the used key is not checked. This allows an attacker, who has control over a
decryption subkey, to create fake signatures. It further allows adding a foreign signing
key to the attacker’s own key as an encryption-only key, meaning that this key will be
used for signature verification, thus bypassing the Primary Key Binding Signature
requirement.

It is unclear whether this is a security issue in Spongy Castle or whether, perhaps,
Spongy Castle intends for the caller to be responsible for checking the key flags, instead
of doing it on its own.

 8/18

OKC-01-014 Multiple File overwrite Vulnerabilities via Path Traversal (High)

The OpenKeychain app fails to sanitize the export.log filename when exporting a PGP
import log. This takes place after a search for PGP keys on the cloud has been
conducted. This could be abused by an attacker to fool users into pasting a text that
overwrites the OpenKeychain database with the export log, effectively crashing the app
and making the user lose all PGP information. As a result, all files and messages would
be made undecryptable for the user. It is important to note that, as illustrated later in this
ticket, the attack can also be triggered with the use of other field names, for example the
backup field names.

This attack scenario seems plausible given that HTML web pages makes it possible for
the users to see a given text while they are actually copying something else. For
example, the following demonstration page superposes a given text which is not
selectable, while the attack text is selectable and invisible. The attack will work even if
the user selects and copies the whole page, simply using Cascading Stylesheets (CSS):

<html><body>
<div style="-webkit-user-select: none;"><h1>Just select aaaall this text and
copy paste it!</h1></div>
<div style="-webkit-user-select: text; z-index:10; opacity: 0; position:
absolute; top: 20px;"><font
size=4>../../../data/data/org.sufficientlysecure.keychain/databases/openkeychain
.db</div></body>
</html>

When the users visit the prepared page, they only see seemingly harmless text. When it
is pasted, however, it actually pastes the attack, which is further obfuscated through the
user-friendly text truncation on the mobile app:

Fig.: The page displayed the user vs. the pasted text (truncated)

 9/18

When the user taps on the OK button, the OpenKeychain app goes ahead and
overwrites its entire database, eventually showing a message announcing success. As
soon as the user taps away from that page, the OpenKeychain app crashes and, when
opened again, it reports to have no keys. The three messages are demonstrated below:

Fig.: OpenKeychain crash sequence after the user taps on the OK button

The same attack vector also works on the backup screen, but, in this case, it is not even
necessary to tap away since the crash is instantaneous:

Fig.: Path traversal attack via backup functionality filename

Using the export.log functionality to overwrite the database results in an
openkeychain.db file which has a file size identical to the intended export.log file:

$ ls -l
-rw------- u0_a54 u0_a54 2315 2015-08-28 16:24 export.log
-rw-rw---- u0_a54 u0_a54 2315 2015-08-28 17:35 openkeychain.db

 10/18

Due to the above, it would seem that overwriting the database using a backup would, at
the very least, make the information recoverable. However, this is not the case because
the backup is generated on the fly as the app reads from the database. Hence, crashing
at the start occurs and results in a zero-size file openkeychain.db database. From now
on all information becomes irrecoverable:

$ ls -l
-rw-rw---- u0_a54 u0_a54 0 2015-08-28 19:38 openkeychain.db

In order to avoid this problem, it is recommended to validate all user-supplied filenames
by implementing as many of the following countermeasures as possible:

• Only the most restrictive list of characters should be allowed, for example: accept
|a-zA-Z\.| and reject everything else.

• ../ sequences and, in particular, ‘/’ characters should not be allowed.

• The filename length should be restricted. Consider rejecting file names longer
than 30-40 characters, as this would prevent writing into the internal app storage
area (i.e. this attack required 76 characters).

• Concatenate the file extension to the filename provided by the user. For example,
append “.log” to the value entered by the user (i.e. this attack required a “.db”
extension).

OKC-01-015 Export of PGP Information in clear-text on insecure Storage (Medium)

When PGP keys are imported, the OpenKeychain app offers the possibility to save the
import log. Provided that the user selects this option, the file will be saved in clear-text
on the SD Card. The PGP fingerprints in the log expose the identities of the PGP
contacts. Further, the SD Card can be extracted and read from a mobile phone without
even needing the phone to be unlocked. The severity of this problem becomes much
greater if the user takes advantages of the backup option, especially its particular variant
which exports the private keys. In this latter scenario, all keys are saved to the SD Card
in clear-text, without any encryption whatsoever.

This problem can clearly be a cause for concern across multiple scenarios. One
example pertains to situations when a journalist or an activist has a device confiscated
by the police in an oppressive regime. Here it is very probable that the exposed proof of
a relationship between the device owner and certain individuals might result in criminal
charges or even bodily harm in some edge cases. Moreover, a malicious app or corrupt
police force members could fabricate false evidence (i.e. fingerprints are public) to get
somebody in trouble, simply writing the right data onto the SD Card. Finally, a malicious
application with permissions to navigate the SD card could leverage this weakness to
determine who the PGP contacts of the device’s owner are. Accordingly, this would grant
a capacity of relaying this crucial information to a third party.

 11/18

In order to solve this problem it is recommended to display a clear warning to
OpenKeychain users at the time when they select the option to save the PGP import log.
Presently, the user interface fails to clearly inform the user about the fact that the import
log is saved to the SD card. Similarly, no mention can be found of the fact that this action
is highly insecure, leaking PGP contacts and possibly having even further privacy
problems that need to be considered. Quite evidently, if the mechanism is to be kept,
then the data that must be exported to the SD Card should at least be encrypted with a
strong password and not passed over in clear-text, especially when it might contain
private keys.

OKC-01-017 Predictable File Creation on insecure Location (Medium)

The OpenKeychain mobile app allows users to export a number of files to the SD Card.
On all screen dialogs these filenames are defaulted to well-known values, such as
export.asc, import.log or priv_export.asc.

Alongside other problems described in this report, formatting the SD Card with the use of
an ext2-4 file system6 lets malicious apps create symbolic links pointing to the
OpenKeychain internal storage. While most SD Cards are formatted with a FAT file
system7 in use, there is evidence of some users actually utilizing ext file system for the
formatting task of either the full SD Card or just its partitions.8 9 .

When the SD Card is formatted using an ext file system, a malicious app could, for
example, create the symlinks presented below. In the next step, it would need to wait for
the OpenKeychain’s user to do an export, private-, or public-key backup. As long as one
of these occurs, the OpenKeychain database will be overwritten and all information that
it contains will be lost:

cd /mnt/sdcard/OpenKeychain

ln -s /data/data/org.sufficientlysecure.keychain/databases/openkeychain.db

export.asc

ln -s /data/data/org.sufficientlysecure.keychain/databases/openkeychain.db

import.log

ln -s /data/data/org.sufficientlysecure.keychain/databases/openkeychain.db

priv_export.asc

In order to solve this problem it is recommended to avoid writing to a file when the file
exists.

6 https :// en . wikipedia . org / wiki / Extended _ file _ system
7 https :// en . wikipedia . org / wiki / File _ Allocation _ Table
8 http :// forum . xda - developers . com / showthread . php ? t =2123862
9 http :// forum . xda - developers . com / showthread . php ? t =1442729

 12/18

http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=1442729
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
http://forum.xda-developers.com/showthread.php?t=2123862
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/Extended_file_system

OKC-01-018 Key Server Verification Bypass via HTTP Redirect (Medium)

The OpenKeychain app implements a poor validation mechanism when a new keyserver
is added to the database. As it stands it simply checks if the connection could be created
and attempts to pin the certificate if the URL starts with “https”. For example, the app
comes pre-packaged to use hkps://pgp.mit.edu with a pinned certificate.

However, it is possible to add a new key server using clear-text http:// (or https with a
valid certificate) that redirects to hkps://pgp.mit.edu. The mobile app can therefore be
fooled to connect to any server, believing that the key server is the very first URL visited.
A malicious attacker can leverage this and trick the users into adding a fake server to the
OpenKeychain database. He or she can then monitor all PGP searches - a task that will
not pose any problems. Due to the way that the cloud searches are invoked, the only
necessary precondition for having a working attack is to have a URL ending in “?”. This
facilitates a trivial fake cloud server to appear later:

Fig.: Adding and importing keys with a fake key server

The fake server only needs to send a single HTTP header to the app. From then on the
app will retrieve the information from there without a problem:

Example File: index.php
Code:
<?php
if (substr($_GET['search'], 0, 2) == '0x') {//Download public key

header("Location: http://pgp.mit.edu/pks/lookup?
op=get&options=mr&search=" . urlencode((string) @$_GET['search']));
}
else {//Search

 13/18

header("Location: http://pgp.mit.edu/pks/lookup?
op=index&options=mr&search=" . urlencode((string) @$_GET['search']));
}

What is happening here pertains to the fact that the OpenKeychain mobile app is
transparently following HTTP redirects for at least all of the following operations:

1. Key Server verification;
2. Key Server Public Key Search;
3. Key Server Public Key Download.

By default, the curl command-line utility has a set limit which permits following of up to 3
redirects. In comparison, the OpenKeychain mobile app will transparently follow up to 20
redirects without even issuing a warning. A consistency verification was successfully
conducted with the use of the following fake server code for testing purposes:

Example File: index.php
Code:
<?php
$num = rand(1, 99999999);
header("Location: index.php?$num");

When searching for a PGP user, the access log trace from the OpenKeychain mobile
app when visiting the above code looks as follows (i.e. 20 redirects followed):

xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:27 -0400] "GET
/index.php?:11371/pks/lookup?op=index&options=mr&search=aranguren HTTP/1.1" 302
273 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:27 -0400] "GET /index.php?30914370
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:27 -0400] "GET /index.php?47259339
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:27 -0400] "GET /index.php?23638123
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:27 -0400] "GET /index.php?90428291
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:27 -0400] "GET /index.php?35458561
...
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:28 -0400] "GET /index.php?24057047
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:28 -0400] "GET /index.php?74711169
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:28 -0400] "GET /index.php?48491502
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"
xxx.xxx.xxx.xxx - - [28/Aug/2015:22:58:28 -0400] "GET /index.php?46621610
HTTP/1.1" 302 272 "-" "okhttp/2.4.0"

In order to solve this problem, it is recommended to implement and provide additional
verification checks. Some effort could be also invested in hopes of coming up with
greater trust verification mechanisms. For example, the OpenKeychain mobile app could

 14/18

download a list of trusted PGP servers over TLS and use Pinning from a trusted PGP
server repository. After that, if the user attempts to add a key server that is not on the list,
the user should be warned about the problem. This approach somewhat resembles the
approach that is used by Psiphon.10 In addition, if it is deemed feasible, it is
recommended to at least disable the following of HTTP redirects which occur
transparently. The recommendation applies to server verification, PGP search and PGP
key download purposes.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

OKC-01-002 Malicious pubkey can lead to persistent Denial of Service (Medium)

OpenKeychain does not limit the length and amount of user-IDs in the keys. This allows
attackers to create absurdly large public keys. If a large key is imported by the unaware
user, the app crashes (OOM11) when the main screen (list of all keys) is displayed.
Essentially, the victim-user ends up with a persistent Denial of Service. Attempting
recovery without losing data can prove very difficult for inexperienced users, especially
since resetting of the database will be required.

It is recommended to reject keys that exceed a realistic length or amount of user ids.

OKC-01-003 Malicious Key Server response can lead to Denial of Service (Low)

A malicious response from a key server can cause the application to crash. The result of
a search contains various integers defining algorithm, keysize and timestamps. If the
provided values are too large, then the app crashes due to missing exception handlers
upon a conversion of the numbers to Integer/Long. A search response ships the user id
of a key. A malformed UTF-8 string or faulty URL-encoding of this string also leads to a
crash.

Example search result (convert-to-long crash):
pub:AAAA175EB0A516AC84DBBBBBB:117:2048:26598524234534534534535::
uid:asd <asd@asd.asd>:1265985242::

Example search result (bad url encoding):
pub:AAAA175EB0A516AC84DBBBBBB:117:2048:1265985242::
uid:bad%user <asd@asd.asd>:1265985242::

Affected file: /keychain/keyimport/HkpKeyserver.java
Code:

10 https :// psiphon . ca /
11 https :// en . wikipedia . org / wiki / Out _ of _ memory

 15/18

https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://psiphon.ca/
https://psiphon.ca/
https://psiphon.ca/
https://psiphon.ca/
https://psiphon.ca/
https://psiphon.ca/

while (matcher.find()) {
...
int bitSize = Integer.parseInt(matcher.group(3));
int algorithmId = Integer.decode(matcher.group(2));
...
final long creationDate = Long.parseLong(matcher.group(4));
...
String tmp = uidMatcher.group(1).trim();
...

tmp = URLDecoder.decode(tmp, "UTF8");
}

If the key server delivers random data instead of a key, OpenKeychain cannot parse the
result and returns null instead of a String at HkpKeyserver::get. This leads to a crash
caused by a null pointer exception. It is recommended to check the value for null prior to
calling any methods.

OKC-01-005 Insufficient and insecure RSA/DSA Key Sizes permitted (Medium)

OpenKeychain requires new RSA keys to be at least 1032 bits in size. The keys smaller
than 2048 bits are considered insecure and should no longer be created. Despite a
default value of 4096 it is nevertheless recommended to increase the minimum size to
2048. OpenKeychain also imports weak 512-bit keys without issuing a warning.

It is recommended to deny all operations involving RSA keys smaller than 1024 bits. If
very insecure keys need to be supported for some reason, a confirmation dialog should
be displayed. This warning mechanism should comprehensively inform the user about
the problem. Furthermore it was discovered that OpenKeychain allows generation of
DSA keys with less than 1024 bits. Newly generated DSA keys should be between 1024
and 3072 bits in size. It is recommended to evaluate whether compatibility with DSA
keys smaller than 1024 bit is required. If it is deemed not to be the case, importing and
using such keys should be denied, or, once again, a warning should be displayed as a
bare minimum:

"We estimate that even in the 1024-bit case, the computations are plausible
given nation-state resource"12

OKC-01-007 Signing Operations with weak Key lead to Denial of Service (Info)

The OpenKeychain application crashes when a signing operation with a weak RSA key
(<1024 bit) is performed. This is due to an uncaught exception which cannot process the
key properly. This causes a crash and the OpenKeychain app is terminated.

12 https :// weakdh . org / imperfect - forward - secrecy - ccs 15. pdf

 16/18

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

Crash Log:
Process: org.sufficientlysecure.keychain.debug, PID: 30884
 java.lang.IllegalStateException: unable to create signature
 at
org.spongycastle.openpgp.operator.jcajce.JcaPGPContentSignerBuilder$1.
getSignature(JcaPGPContentSignerBuilder.java:146)
 at org.spongycastle.openpgp.PGPSignatureGenerator.
generate(PGPSignatureGenerator.java:263)
 at org.sufficientlysecure.keychain.pgp.PgpSignEncryptOperation.
execute(PgpSignEncryptOperation.java:505)

The exception is thrown by Spongy Castle in the file JcaPGPContentSignerBuilder
.java:146. The explanation for this is that the library rejects signing with weak keys.
The calling code is located in the file /keychain/pgp/PgpSignEncrypt-
Operation.java:505

Calling File: /keychain/pgp/PgpSignEncryptOperation.java
Code:
if (detachedBcpgOut != null) {
 signatureGenerator.generate().encode(detachedBcpgOut);
} else {
 signatureGenerator.generate().encode(pOut);
}

It is recommended to not only implement an exception handler but also to display a
proper error message instead of having the application run into a crash. Since keys that
small are not very common, please keep in mind that operations on them should be
generally avoided (as mentioned in OKC -01-005). Therefore, this issue is only presented
with an “Info” tag - something to keep in mind.

OKC-01-008 OpenKeychain accepts weak Passwords without any Warning (Info)

The security of the private keys depends just as much on the physical security of the
device as it does rely on the passwords chosen to protect the keys. In its current state,
the OpenKeychain application accepts very weak passwords to be selected by its users.

A weak password for private keys does not really provide any reasonable security and is
especially problematic on mobile devices with considerably weaker physical security. It is
recommended to show a confirmation dialog in case the user is about to set a weak
password. A user needs to be informed and educated about the risks connected with this
action instead of being met with a salient approval of weak passwords.

OKC-01-016 No Warnings when adding a clear-text HTTP Key Server (Low)

The OpenKeychain app offers the possibility to add new key servers on the key server
management screen. If the key server has a self-signed certificate, or a MiTM attempts
to intercept communications with a fake certificate, the OpenKeychain app correctly
rejects the connection and the Key server cannot be added to the database. However,
when the key server has a clear-text HTTP URL, then no warnings are found to be
displayed.

 17/18

This is worrisome because using plain-text HTTP key servers would leak information
about the PGP searches that the user makes over the Internet and public Wi-Fi. In order
to mitigate the possible consequences stemming from this issue it is recommended to
discourage users from adding plain-text HTTP key servers. Additionally, a warning
should be included on the mobile app. Finally, a simple rejection of http URLs in new
mobile app versions should be taken into consideration in the future.

Conclusion
A considerable amount of time was dedicated to this thorough and far-reaching test
against the OpenKeychain app and some parts of the instrumented libraries. The
findings can be briefly summed up to an overall eighteen vulnerabilities and weaknesses
that have been uncovered. This rather high number is not caused by several
cryptographic flaws but rather several smaller issues that can be abused by an attacker
to harm users’ security and privacy. Note that the attacker model assumed for this test
also included a rogue keyserver and an attacker who has limited control over the
network traffic that the victim would be sending and receiving.

While some of the issues are clearly actionable and need prompt response, other might
be negotiated with the maintainer. Especially in the second section of the report one
finds some problems that can be treated as lower priority, mainly because a successful
working and realistic attack for these scenarios would have to involve moderate social
engineering or preying on overly trustful users.

Still, the Cure53 team believes that the OpenKeychain should strive towards providing
not only safe cryptographic implementation, but also a working, well-tested and secure-
by-default user interface. This would surely benefit the less technology-savvy users, who
seek to have safe experience that supports the detection of erroneous information and
attacks involving social engineering. OpenKeychain has the potential to be a generally
usable and user-friendly one-stop-shop for cryptographic communication purposes on
Android devices. In order to do so, however, it needs to tackle the requirements for
acting responsibly and leaving no gaps in the user-security in case some parts of the
cryptographic process have been tampered with.

Aside from the issues mentioned in this report, the software makes a robust impression.
More importantly, it appears to be well-maintained, which is definitely something that the
OpenKeychain team should be praised for. As it has already been underlined, it needs to
be reiterated that none of the spotted issues were considered to be of a critical severity
in terms of security implications. The latter is a significant and impressive result for an
app of this complexity and relevance.

Cure53 would like to thank Dominik Schürmann and the entire OpenKeychain Team for
their excellent project coordination, as well as support and assistance, which greatly
benefited our work before and during this assignment.

 18/18

	Pentest-Report OpenKeychain 08.2015
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	OKC-01-001 Private Keys can be imported from Keyserver (Medium)
	OKC-01-004 Arbitrary file write when decrypting and saving messages (High)
	OKC-01-006 Keyserver can send arbitrary Public Keys without Verification (Low)
	OKC-01-009 Bypassable Fingerprint-Check for Key Exchange via QR Code (High)
	OKC-01-010 Database can be exported using Encrypt Operation (Low)
	OKC-01-011 Unconfirmed Main Identities are shown as confirmed (Low)
	OKC-01-012 Database Extraction possible via Version Downgrade (Medium)
	OKC-01-013 Key Usage unchecked upon Decryption / Signature Verification (Low)
	OKC-01-014 Multiple File overwrite Vulnerabilities via Path Traversal (High)
	OKC-01-015 Export of PGP Information in clear-text on insecure Storage (Medium)
	OKC-01-017 Predictable File Creation on insecure Location (Medium)
	OKC-01-018 Key Server Verification Bypass via HTTP Redirect (Medium)
	Miscellaneous Issues
	OKC-01-002 Malicious pubkey can lead to persistent Denial of Service (Medium)
	OKC-01-003 Malicious Key Server response can lead to Denial of Service (Low)
	OKC-01-005 Insufficient and insecure RSA/DSA Key Sizes permitted (Medium)
	OKC-01-007 Signing Operations with weak Key lead to Denial of Service (Info)
	OKC-01-008 OpenKeychain accepts weak Passwords without any Warning (Info)
	OKC-01-016 No Warnings when adding a clear-text HTTP Key Server (Low)
	Conclusion

