
Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Pentest-Report Obsidian Clients & UI 11.2023
Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati, Dr. D. Bleichenbacher, H. Li, R. Maini,
H. Jaiswal, C. Luders

Index
Introduction

Scope

Identified Vulnerabilities

DYL-01-001 WP1: CORS bypass via flawed URL validation (High)

DYL-01-006 WP1: Arbitrary file read via local file embedding (Critical)

DYL-01-007 WP1: Arbitrary file write via path traversal in Sync plugin (Critical)

DYL-01-009 WP1: App protocol origin leak via CSS snippets (High)

Conclusions

Cure53, Berlin · 01/10/24 1/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Introduction
“Obsidian is the private and flexible writing app that adapts to the way you think. Obsidian
stores notes on your device, so you can access them quickly, even offline. No one else can
read them, not even us. Obsidian uses open, non-proprietary files, so you're never locked
in, and can preserve your data for the long term.”

From https://obsidian.md/

This document pertains to the first iteration of a multifaceted penetration test and source
code audit against various Obsidian software client aspects performed by Cure53 in Q4
2023.

To give some context regarding the assignment’s origination and composition, the client
contacted Cure53 in September 2023 with the proposal to perform a full-scale security
assessment of the focus traits. The test execution was scheduled for CW46 November
2023, whereby eighteen work days were invested to materialize a precise appraisal of the
framework’s susceptibility to attack and compromises. Six senior consultants were selected
to fulfill the analysis and requirements based on their abundant experience and technical
know-how handling features of this nature.

Only a single Work Package (WP) was required for this document, which reads as follows:

• WP1: Crystal-box pentests & code audits against Obsidian clients & UI

The methodology conformed to a crystal-box strategy, whereby assistive materials such as
sources, documentation, and other assorted entities were provided to facilitate the
undertakings. This phase was preceded by the preliminary stage, within which a selection of
essential preparation actions were completed in CW45 in order to fully equip the testers for
the endeavors ahead.

A private and shared Discord channel was established for communications between the two
organizations. Generally, the discourse was seamless and highly conducive to a productive
pentest. The exhaustive scope setup meant that cross-team queries regarding the goals or
underlying infrastructure were altogether minimal, while the procedures were not delayed or
blocked outright at any point. The testers also relayed a multitude of progress and status
updates during the live reporting process, which served to raise awareness of certain high-
profile findings at the point of detection.

Following a reasonable depth of coverage across the targets, the assessors witnessed and
documented four security-relevant discoveries for the Obsidian clients and UI. This yield is
undeniably small; however, the worrisome impact levels of the findings contribute to the
negative overall impression.

Cure53, Berlin · 01/10/24 2/14

https://cure53.de/
https://obsidian.md/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The two Critical severity vulnerabilities garnered elevated concern, entailing the exposure of
arbitrary file read scenarios as outlined in tickets DYL-01-006 and DYL-01-007. The
Obsidian project management team should strive to remediate these severe faults as soon
as possible.

To summarize, the Obsidian clients and UI are unfortunately blighted by substantially
damaging circumstances if successfully exploited by an attacking party. However, despite
the unfavorable final verdict, Cure53 is certain that a satisfactory security standard is
attainable through the immediate mitigation of all shortcomings described herein.
Furthermore, the insights garnered for this exercise’s second part should be perceived
simultaneously in order to extract a holistic overview of the wider Obsidian client security
posture.

Moving on, the report will now provide bullet-pointed information related to the scope, test
setup, and leveraged materials. Following that, all findings are presented in chronological
order of identification with two subsections: Identified Vulnerabilities and Miscellaneous
Issues. Each finding will include a technical outline, a Proof-of-Concept (PoC), and ideal
methods to resolve the limitation in question. Finally, the report will conclude by elaborating
on the general impressions gained during this test and discussing the perceived security
posture of the Obsidian clients and UIs.

Cure53, Berlin · 01/10/24 3/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Scope
• Penetration tests & source code audits against Obsidian software & UI

◦ WP1: Crystal-box pentests & code audits against Obsidian clients & UI
▪ Documentation:

• Detailed documentation was shared with Cure53
• Local_dev_environment_guide.md

▪ Obsidian:
• Repo:

◦ /obsidian
▪ Branch:

• obsidian-master/
▪ Commit ID:

• da7a11f80520c0535afff08f09ee9e062230cb02
▪ Obsidian Static:

• Repo:
◦ /obsidian-static

• Branch:
◦ obsidian-static-master/

• Commit ID:
◦ d3cd2d346872e96c60fce60e73d1524af2e20c69

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 01/10/24 4/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., DYL-01-001) to
facilitate any future follow-up correspondence.

DYL-01-001 WP1: CORS bypass via flawed URL validation (High)
Note: This issue was fixed by the Obsidian development team and the fix was verified by
Cure53. The issue as described no longer exists.

Testing confirmed the presence of a vulnerability affecting the Obsidian Electron app
regarding the ability to bypass the Cross-Origin Resource Sharing (CORS) checks for any
URL, which permits any embedded page to access data from arbitrary web pages.

Browsers implement a critical security check known as the Same-Origin Policy (SOP), which
prevents web pages from accessing data via alternative origins. The CORS protocol
circumvents the SOP by leveraging specific response headers, enabling specific origin web
pages to access their responses.

Cure53 noted that modifications to the response header for the Obsidian Electron app have
been specifically implemented for third-party plugins. Access-Control-Allow-Origin was
altered to an asterisk (*) to enable web pages to access the response if the URL matched a
certain pattern. The URL checks seemed secure at first glance, owing to the fact that the
path in the URL always ends with a forward slash (/) and hence prevents the use of query
strings or hash fragments to bypass the checks. However, this can be circumvented by
utilizing a username in the URL, such as https://github@google.com.

As a result, requests from the embedded page could bypass CORS checks and access
responses from any website, including localhost and alternative sites that are only
accessible within the intranet, thus incurring substantial risk.

Affected file:
obsidian-master/src/main.ts

Affected code:
if (!hasOrigin && (/^https?:\/\/[^\/]*(github)/.test(url))) {
 responseHeaders['Access-Control-Allow-Origin'] = ['*'];
}

Cure53, Berlin · 01/10/24 5/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Steps to reproduce:
1. Copy the following code snippet and paste it to an Obsidian note:

Example code snippet:
<iframe width="100%" height="700px"
src="https://randomstuffhuli.s3.amazonaws.com/c53/obs-f832e40a/cors-
bypass-exp/index.html"></iframe>

2. Switch to preview mode.
3. Observe that the https://google.com content is displayed.

To mitigate this issue, Cure53 advises utilizing an URL parser API rather than regular
expressions when conducting URL checks, due to the latter’s propensity for security flaws
and lack of edge-case coverage. Consequently, the safest approach would typically involve
parsing the URL, extracting the hostname, and determining whether it corresponds to a
legitimate domain.

In terms of the intended functionality, the developer team could validate whether the parsed
hostname from the URL represents github.com, which would prevent circumvention using
usernames or other methods. In addition, one could prepare an allow list to compare against
legitimate hostnames rather than solely checking that the hostname culminates in
.github.com, which is another sound and common measure to combat this weakness.
However, this strategy effectively permits all subdomains and hence poses additional
security implications.

To summarize, employing an allow list for stringent comparison would be the safest
resolutionary implementation, effectively preventing URL bypass methods that leverage
usernames, query strings, hash fragments, and similar.

DYL-01-006 WP1: Arbitrary file read via local file embedding (Critical)
Note: This issue was fixed by the Obsidian development team and the fix was verified by
Cure53. The issue as described no longer exists.

Cure53 acknowledged that the vulnerability identified as CVE-2023-2110 has not been
comprehensively mitigated. Accordingly, an attacker is granted the opportunity to read
arbitrary local files and bypass the implemented remediation measures under certain
circumstances.

CVE-2023-2110 exploits the app://local protocol registered by Obsidian to access local files,
circumventing checks related to referrer. It has been noted within the source code that
app://local has been deprecated and replaced by generating a random ID upon startup, such
as app://dd0d859619595c5cd0ad427acbb436600f97. In the event that the web page
remains unaware of the random ID, local file access will be blocked.

Cure53, Berlin · 01/10/24 6/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

However, another pertinent function entitled fixFileLinks has been designed to replace
elements in Markdown files, whereby src contains file:/// with the aforementioned random ID
representation.

In essence, if an iframe's source represents file:///tmp/test.html, it will be replaced with
<iframe src="app://{Platform.resourcePathPrefix}/tmp/test.html"> during preview.
Consequently, test.html can utilize window.origin to obtain the random ID and subsequently
access other local files.

If a malicious actor is able to write HTML on the computer and possesses knowledge of the
file's location, they would be able to bypass the fix applied for CVE-2023-2110 and access
arbitrary local files.

In practice, this exploit may entail social engineering or another similar tactic that prompts a
victim to download and save a file to a specified location. Additionally, browsers often
leverage default download locations such as /Users/username/Downloads, which may be
brute-forced or targeted. Certain operating systems may even facilitate username leakage1,
which increases the likelihood of a successful compromise.

Affected file:
obsidian-master/src/main.ts

Affected code:
protocol.registerFileProtocol('app', (req, callback) => {
 let url = req.url;
 let noframe = false;
 // ...
 else if (url.indexOf(FILE_ROOT) === 0) {
 url = decodeURIComponent(url.substr(FILE_ROOT.length));
 if (!isWin) {
 url = '/' + url;
 }
 url = path.resolve(url);
 // Disallow framing if the path is a UNC path
 if (isUncPath(url)) {
 noframe = true;
 }
 }
 else {
 url = '';
 }

 let headers: Record<string, string> = {};
 if (noframe) {
 headers['X-Frame-Options'] = 'DENY';

1 https://fingerprint.com/blog/apple-macos-mdns-brute-force/

Cure53, Berlin · 01/10/24 7/14

https://cure53.de/
https://fingerprint.com/blog/apple-macos-mdns-brute-force/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

 }
 callback({ path: url, headers });
 });

Steps to reproduce:
1. Run the following command to write an HTML file locally:

Command:
echo
"<script>fetch(origin+'/etc/hosts').then(res=>res.text()).then(alert)
</script>" > /tmp/test.html

2. Copy the following Markdown content and paste it to Obsidian:

Markdown content:
iframe: <iframe src="file:///tmp/test.html"></iframe>

3. Switch to reading view.
4. Observe that an alert is displayed with the /etc/hosts content.

To mitigate this issue, Cure53 advises preventing the embedded web page from initiating
any requests to the app protocol. Considering the plausible attack method, the insertion of a
random ID into the app protocol would not suffice, and other vulnerabilities may lead to the
leakage of the random ID, which would enable adversaries to retrieve local files via the
leaked ID.

Therefore, the root cause can be attributed to the fact that unauthorized pages (such as the
embedded page) are able to send requests to the app protocol and read the response. The
Obsidian team should henceforth prioritize fixing this particular aspect, which is achievable
by blocking all requests when an embedded web page attempts to access resources from
the app protocol. This action will ultimately prevent the embedded web page from accessing
local files.

Cure53, Berlin · 01/10/24 8/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

DYL-01-007 WP1: Arbitrary file write via path traversal in Sync plugin (Critical)
Note: This issue was fixed by the Obsidian development team and the fix was verified by
Cure53. The issue as described no longer exists.

While reviewing the Sync plugin's source code, Cure53 witnessed that the path is not
sanitized, which may enable path traversal exploitation opportunities for the purpose of
writing files to arbitrary locations.

When a new file is received from the Sync server, an allowSyncFile check is enforced on the
client side to examine the file's extension and type. However, this process fails to inspect
whether the filename contains special characters. Moreover, the file synchronization process
also neglects to verify whether the final write location is within the vault. This ultimately
evokes a path traversal vulnerability that enables file placement in arbitrary locations using a
filename, such as any_folder_name/../../../../tmp/test.md.

Since remote vaults are shareable with other users, adversaries can construct a remote
vault with a malicious payload and invite a victim to collaborate. If the victim connects to the
vault and initiates synchronization, the malicious file will be downloaded to the victim's
computer at the specified file location.

The Sync feature permits a number of default syncable file types, including md, canvas, and
images, for which SVG is recognized as a legitimate image. However, since SVG also
functions as XML when constituting an image, it can be embedded as a web page. By
leveraging the flaw outlined in ticket DYL-01-006, adversaries can write SVG to a specified
location and use iframes to access arbitrary files on the computer.

A user may plausibly modify their settings to permit syncing of additional file types, i.e., via
the selection of Sync all other types. This will enable adversaries to write executable files or
bash scripts to the computer, elevating the likelihood of Remote Code Execution (RCE) and
other associated risks.

Affected file:
obsidian-master/src/app/plugins/sync/sync.ts

Affected code:
async syncFileDown(server: ServerConnection, syncFile: SyncFile) {

let path = syncFile.path;
// ...
let folder = getDirName(path);
if (folder !== '/' && folder !== '' && !await adapter.exists(folder))

{
await adapter.mkdir(folder);

}

Cure53, Berlin · 01/10/24 9/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

await adapter.writeBinary(path, data, {
ctime: syncFile.ctime,
mtime: syncFile.mtime,

});
}

Steps to reproduce:
1. Create a new local vault.
2. Enable the Sync plugin.
3. Open DevTools and switch to the network tab.
4. Create a new and passwordless remote vault.
5. Inspect the /vault/create request to retrieve the token, id, password, and salt.
6. Download the PoC file from

https://cure53.de/exchange/457632098572348975/socket.js
7. Edit the PoC file and update the token, vaultId, vaultPassword, and vaultSaltI.
8. Run the following command:

Command:
npm init -y
npm install websocket
node socket.js

9. Connect to the remote vault created at Step 3.
10. Click Start syncing on the UI.
11. Close the settings tab.
12. Click on the arb_write file in the vault.
13. Verify that the /etc/hosts content is displayed on the UI and that /tmp/arb_write.svg

has been created.

To mitigate this issue, Cure53 advises checking the legitimacy of paths when synchronizing
files from the remote server to the local system. This requires normalizing the path and
verifying whether it exists within the vault folder; if this is not the case, the synchronization
request should be rejected.

By ensuring path legality in this context, all synchronized files will be written exclusively
within the vault folder, henceforth neutralizing the capability to write to other file directories
and thus blocking path traversal attempts.

Cure53, Berlin · 01/10/24 10/14

https://cure53.de/
https://cure53.de/exchange/457632098572348975/socket.js
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

DYL-01-009 WP1: App protocol origin leak via CSS snippets (High)
Note: This issue was fixed by the Obsidian development team and the fix was verified by
Cure53. The issue as described no longer exists.

Cure53 noted that many features within Obsidian load third-party CSS files through the use
of two functions: theme and CSS snippets. Both functionalities allow users to define
additional CSS and alter the UI style. However, aside from style modifications, CSS can also
be employed to extract data from the page, such as text or attribute values.

For instance, using the CSS selector img[src^="a"] enables one to choose elements
whereby the src attribute initiates with an a. This can load another background image with a
URL such as http://example.com?q=a. When a page contains an image with the src attribute
beginning with a, the browser sends a request to http://example.com?q=a. By repeating this
action, adversaries can progressively leak characters, ultimately revealing the entire content
of the img src on the server side.

As mentioned in ticket DYL-01-006, the fixFileLinks function corrects all file:/// prefixed
sources to the app protocol. However, adversaries can exploit similar methods, leveraging
CSS to disclose complete URLs. Once the full URL is exposed, adversaries can determine
the correct app protocol ID.

If a user enables the Sync function and allows Sync appearance settings alongside CSS
snippets or themes, malicious actors will be granted the ability to load prepared CSS files
using CSS to leak the app protocol. Subsequently, they can leverage the Sync feature to
automatically load files containing iframes, thus enabling the embedded page to access
local files via the leaked URL.

Steps to reproduce:
1. Download the CSS leak server file:

https://cure53.de/exchange/457632098572348975/server.js
2. Run node server.js.
3. Open the settings modal in Obsidian.
4. Click Appearance.
5. Scroll to the CSS snippets section and open the snippets folder.
6. Download the following file to the folder:

https://cure53.de/exchange/457632098572348975/exp.css
7. Click Reload snippets.
8. Enable exp.css.
9. Close the settings modal.
10. Create a new note.
11. Input .
12. Switch to the reading view.

Cure53, Berlin · 01/10/24 11/14

https://cure53.de/
https://cure53.de/exchange/457632098572348975/exp.css
https://cure53.de/exchange/457632098572348975/server.js
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

13. Observe that the leaked origin is printed on the server console. If this is not the
case, attempt the steps again after restarting the server and Electron app.

To mitigate this issue, Cure53 suggests imposing strict CSP limitations on the sources from
which styles and other resources are loadable, which would prevent adversaries from
exploiting CSS files to leak information. Despite the fact that CSS snippets and themes load
CSS files locally, common CSS exploits often require the use of @import2 to reload CSS
from a remote server. As such, one can mitigate the impact of this particular shortcoming by
restricting the style-src in CSP.

Given that users can load style files of their own accord, comprehensive remediation of the
CSS data exfiltration fault would prove highly challenging. However, the Obsidian team can
limit its impact where feasible. For instance, resolving the limitation outlined in ticket DYL-
01-006 would mean that adversaries will be blocked from accessing files even if they are
able to obtain the app protocol origin, hence lowering the efficacy of this attack strategy.
One must also note that all elements presented on a web page (such as text) will remain
susceptible to CSS data exfiltration, which renders complete mitigation significantly difficult.

Alternatively, the developer team could prevent shared vaults from syncing themes and CSS
snippets, therefore enforcing that only remote vaults created under one's own account would
be permitted to synchronize the two setting types in question. This approach would restrict
adversaries from sharing shared vaults that contain malicious styles and consequently
constrain the attack surface.

2 https://research.securitum.com/css-data-exfiltration-in-firefox-via-single-injection-point/

Cure53, Berlin · 01/10/24 12/14

https://cure53.de/
https://research.securitum.com/css-data-exfiltration-in-firefox-via-single-injection-point/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Conclusions
In this section, Cure53 aims to provide in-depth commentary regarding all viewpoints and
bug classes observed during the winter 2023 crystal-box examination of the Obsidian
clients and UI. With this, one can hope that the Obsidian maintainers can glean the security
efficacy of the scope based on the evidence collected.

The testers primarily concentrated on reviewing the Obsidian Sync feature and compiling an
accurate risk assessment with concern for the plausibility of a system compromise via
offensive or breach schemes.

The communication between the client and server relies on HTTPS and WebSockets.
HTTPS is utilized to create remote vaults, while communication with the sync server occurs
via WebSockets for data transfer.

During vault synchronization, checks are performed on file names to ensure that only
permitted file extensions are syncable. Other files require syncing additional settings, which
is indicative of the dev team’s security considerations at the design level.

However, the download function during the file synchronization process was verified to be
afflicted by a path traversal vulnerability. Specifically, the client fails to normalize the path,
which enables adversaries to write files to arbitrary locations on the computer. Supporting
guidance on this erroneous situation is provided in ticket DYL-01-007.

In addition to syncing regular noteSlacks, Obsidian also furnished the option to sync other
configuration files. While this behavior is convenient when combined with shared vault
functionality, the enhanced practicality ultimately expands the attack surface. For instance,
shared vaults can enable malicious actors to load crafted CSS files for data theft purposes,
as extrapolated in ticket DYL-01-009. The Obsidian developers can minimize the attack
surface and increase the framework’s resilience to associated threats by restricting shared
vault permissions, e.g., limiting syncing to note-related files.

Elsewhere, embedded iframe-related functionality has been pinpointed as an area of
weakness that continues to affect the Obsidian compound. In light of this, Cure53’s source
code evaluation determined the presence of a CORS bypass vulnerability, as highlighted in
ticket DYL-01-001.

The app protocol was also considered another pertinent and prevalent attack vector. Despite
the patches applied for previous vulnerabilities, an adversary can still bypass checks and
access local files under certain circumstances, as evidenced in ticket DYL-01-006.

Cure53, Berlin · 01/10/24 13/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

To finalize this report, Cure53’s inspections of the respective source code substantiate the
argument that astute security paradigms and vulnerability remediation protocols have been
considered by the Obsidian team. However, some noteworthy and fundamental flaws remain
unresolved, accentuating the potential for patch bypasses in order to reproduce certain
detrimental behaviors.

Furthermore, the Cure53 technicians were only able to achieve moderate coverage over the
Obsidian Electron source code specifically, which necessitates the requirement for
supplemental auditing assignments in order to fully comprehend all security faults that are
persisted.

Cure53 would like to thank Erica Xu, Steph Ango, Shida Li, and Tony Grosinger from the
Obsidian team for their excellent project coordination, support, and assistance, both before
and during this assignment.

Cure53, Berlin · 01/10/24 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Obsidian Clients & UI 11.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	DYL-01-001 WP1: CORS bypass via flawed URL validation (High)
	DYL-01-006 WP1: Arbitrary file read via local file embedding (Critical)
	DYL-01-007 WP1: Arbitrary file write via path traversal in Sync plugin (Critical)
	DYL-01-009 WP1: App protocol origin leak via CSS snippets (High)

	Conclusions

