
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Review-Report noble-secp256k1 Library 04.2021
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index
Introduction

Scope

Identified Vulnerabilities

NBL-01-001 Crypto: Boolean value accepted as key pair basis (High)

NBL-01-003 Crypto: Mangled hex inputs accepted as payloads (Medium)

NBL-01-004 Crypto: Arbitrary reversal of key share input order (Medium)

Miscellaneous Issues

NBL-01-002 Crypto: Scalar multiplication control flow considerations (Info)

Conclusions

Introduction
“Fastest JS implementation of secp256k1, an elliptic curve that could be used for
asymmetric encryption, ECDH key agreement protocol and signature schemes.”

From https://github.com/paulmillr/noble-secp256k1

This report describes the results of a cryptography review and source code audit against
the noble-secp256k1 JavaScript crypto library. The work was requested by Paul Miller,
the maintainer of the library in early April 2021. It was quickly scheduled and carried out
by Cure53 in mid-April, namely in CW15 and CW16.

In terms of resources, a total of five days were invested to reach the coverage expected
for this project, whereas the testing team consisted of two senior testers assigned to this
project’s preparation, execution and finalization.

All preparatory tasks were done in early April 2021, namely in CW14, so as to ensure an
efficient cooperation during the core period of this assignment. Cure53 was given access
to all relevant sources which are available publicly as Open Source Software anyway.
What is more, all necessary material and review-supporting documentation were also
furnished to the Cure53 testing team. In summation, the methodology chosen here was

Cure53, Berlin · 04/22/21 1/8

https://cure53.de/
https://github.com/paulmillr/noble-secp256k1
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

white-box. The areas chosen and prioritized for the cryptography reviews and audit were
delineated and listed as follows:

• Timing attacks targeting noble’s algorithmic resistance against those
• Functional correctness of elliptic curve operations in use
• Safety against known side channels
• Checks against elliptic curve validation errors
• Checks against elliptic-curve-specific attacks
• General checks against constant-time operations
• Misuse prevention of high-level cryptographic API

The project moved forward as scheduled. Communications during the test were done
using a dedicated, shared Slack channel which was used to connect the workspaces of
the relevant entities partaking in the project. Once the audits and reviews got started,
communications were very smooth and fruitful. Not many questions had to be asked, the
scope was well-prepared and no noteworthy roadblocks were encountered during the
test. Cure53 offered frequent status updates about the test and the emerging findings,
so as to let the maintainer react accordingly.

More broadly, the Cure53 team managed to get very good coverage over the given
scope items and made four security-relevant discoveries. Three items were classified to
be security vulnerabilities and one should be seen as general weakness with lower
exploitation potential. Note that the one finding with High severity ratings was classified
as such given the large damage potential in case a developer uses the library wrongly.
Additionally, this risk could be combined with the weird type-comparison properties of
JavaScript and justifies the elevated marker. This was further discussed with the library
maintainer prior to the report’s finalization.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the areas selected for closer inspection. Next, all findings will be
discussed in grouped vulnerability and miscellaneous categories, then following a
chronological order in the latter. Alongside technical descriptions, PoC and mitigation
advice are supplied when applicable, together with notes on the status of fixes. Finally,
the report will close with broader conclusions about this April 2021 project. Cure53
elaborates on the general impressions and reiterates the verdict based on the testing
team’s observations and collected evidence. Tailored hardening recommendations for
the noble-secp256k1 JavaScript crypto library are also incorporated into the final
section.

Cure53, Berlin · 04/22/21 2/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Cryptography Reviews & Code Audits against noble-secp256k1 JavaScript Library

◦ WP1: Cryptography Reviews & Audits against noble-secp256k1 JS Library
▪ https://github.com/paulmillr/noble-secp256k1

◦ Focus areas for this audit
▪ Timing attacks targeting noble’s algorithmic resistance against those
▪ Functional correctness of elliptic curve operations in use
▪ Safety against known side-channels
▪ Checks against elliptic curve validation errors
▪ Checks against elliptic-curve-specific attacks
▪ General checks against constant-time operations
▪ Misuse prevention of high-level cryptographic API

◦ Test-supporting Material
▪ https://paulmillr.com/posts/noble-secp256k1-fast-ecc/

◦ Sources were available as OSS, see above

Cure53, Berlin · 04/22/21 3/8

https://cure53.de/
https://paulmillr.com/posts/noble-secp256k1-fast-ecc/
https://github.com/paulmillr/noble-secp256k1
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. NBL-01-001) for the purpose of facilitating any
future follow-up correspondence.

NBL-01-001 Crypto: Boolean value accepted as key pair basis (High)
Note: commit 9e7f4c610ad0d799a7cb7ba9cbfabc8d60b37a3f was confirmed to address
this issue.

It was observed that the noble top-level API accepted Boolean values as the basis (i.e.
private key values) for key pairs. Those signify output in response to
secp.getPublicKey(true), a value that is equivalent to secp.getPublicKey(1):

> secp.getPublicKey(1)
public key: Uint8Array(65) [
 4, 198, 4, 127, 148, 65, 237, 125, 109, 48, 69,
 64, 110, 149, 192, 124, 216, 92, 119, 142, 75, 140,
 239, 60, 167, 171, 172, 9, 185, 92, 112, 158, 229,
 26, 225, 104, 254, 166, 61, 195, 57, 163, 197, 132,
 25, 70, 108, 234, 238, 247, 246, 50, 101, 50, 102,
 208, 225, 35, 100, 49, 169, 80, 207, 229, 42
]

> secp.getPublicKey(true)
public key: Uint8Array(65) [
 4, 198, 4, 127, 148, 65, 237, 125, 109, 48, 69,
 64, 110, 149, 192, 124, 216, 92, 119, 142, 75, 140,
 239, 60, 167, 171, 172, 9, 185, 92, 112, 158, 229,
 26, 225, 104, 254, 166, 61, 195, 57, 163, 197, 132,
 25, 70, 108, 234, 238, 247, 246, 50, 101, 50, 102,
 208, 225, 35, 100, 49, 169, 80, 207, 229, 42
]

The issue likely arises from the fact that Point.fromPrivateKey does not sufficiently type-
check input values:

static fromPrivateKey(privateKey: PrivKey) {
 return Point.BASE.multiply(normalizePrivateKey(privateKey));}

Cure53, Berlin · 04/22/21 4/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TypeScript may also be to blame, as the PrivKey type does not seem to rule out a value
of true despite the syntax suggesting otherwise:

type PrivKey = Hex | bigint | number;

JavaScript is a notoriously type-unsafe language, making it likely for all of the noble
cryptographic deployments to target JavaScript code environments. This could lead to
situations where a private key input is mangled into a Boolean, with the resulting input
still treated as valid by the public key generation API.

It is recommended to impose more stringent checks on private key inputs, as well as
other potential inputs such as public keys, message payloads and signature payloads.

NBL-01-003 Crypto: Mangled hex inputs accepted as payloads (Medium)
Note: commit 8f7fa1ae8f8e4ec13a087b6c48fdb62425592d98 was confirmed to address
this issue.

It was found that the noble API accepted mangled hexadecimal string inputs. Those
could, for example, include half-byte values, thus possibly resulting in processing
ambiguity. To clarify, one could expect a hex input value of “aabbc” to either map to
“0aabbc” as a correct and the established norm for hexadecimal, or to a malformed one.
Specifically, it could potentially be the result of a malformed “aabbc0” value, which is
especially possible if the hex string was constructed based on a JavaScript parser
processing a binary format.

Currently, noble will correct odd hex strings by manually prepending a 0:

function hexToBytes(hex: string): Uint8Array {
 hex = hex.length & 1 ? `0${hex}` : hex;
 const array = new Uint8Array(hex.length / 2);
 for (let i = 0; i < array.length; i++) {
 let j = i * 2;
 array[i] = Number.parseInt(hex.slice(j, j + 2), 16);
 }
 return array;
}

However, the resulting ambiguity could lead to incorrect outputs being obtained on input
that is presumed correct. Therefore, it is recommended to enforce that all input hex
strings have an even number of characters.

Cure53, Berlin · 04/22/21 5/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NBL-01-004 Crypto: Arbitrary reversal of key share input order (Medium)
Note: commit 9e7f4c610ad0d799a7cb7ba9cbfabc8d60b37a3f was confirmed to address
this issue.

It was observed that the noble API will attempt to detect an inverse order of public and
private key inputs to the getSharedSecret() function. If an inverted order is found (i.e. the
private key is in fact a public key and vice versa), the API will reverse the inputs before
continuing with the function’s logic:

export function getSharedSecret(privateA: PrivKey, publicB: PubKey, isCompressed
= false): Hex {
 if (isPub(privateA) && !isPub(publicB)) {
 [privateA, publicB] = [publicB as PrivKey, privateA as PubKey];
 } else if (!isPub(publicB)) {
 throw new Error('Received invalid keys');
 }
 const b = publicB instanceof Point ? publicB : Point.fromHex(publicB);
 b.assertValidity();
 const shared = b.multiply(normalizePrivateKey(privateA));
 return typeof privateA === 'string'
 ? shared.toHex(isCompressed)
 : shared.toRawBytes(isCompressed);
}

It is more likely in the security-context of critical key share inputs that no such arbitrary
reversal should occur. In such marginal cases, the library should rather return an error in
case incorrect key share inputs are provided.

In order to avoid the currently incorrect adherence to key share input order due to
human error, it is recommended to simply accept an object that clearly labels the key
inputs, thereby turning the function’s signature to getSharedSecret(keyShares: {private:
[...], public: [...]}). This would ensure that the application layer will have to label key
shares according to their role before passing them down to the low-level cryptographic
API.

Cure53, Berlin · 04/22/21 6/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

NBL-01-002 Crypto: Scalar multiplication control flow considerations (Info)
Note: This issue was confirmed as out-of-scope with the noble crypto team prior to
publication. Furthermore, commit 25909c4c4a6f9fe47647ebf5bc56fedf493c6cc2 was
introduced with additional improvements to endomorphism calculations conducted as
part of the noble crypto’s scalar multiplication function.

It was observed that the Jacobian scalar multiplication step included a minor branching
condition in the event that endomorphisms are used:

multiply(scalar: number | bigint, affinePoint?: Point): JacobianPoint {
 if (typeof scalar !== 'number' && typeof scalar !== 'bigint') {
 throw new TypeError('Point#multiply: expected number or bigint');
 }
 let n = mod(BigInt(scalar), CURVE.n);
 if (n <= 0) {
 throw new Error('Point#multiply: invalid scalar, expected positive
integer');
 }
 // Real point.
 let point: JacobianPoint;
 // Fake point, we use it to achieve constant-time multiplication.
 let fake: JacobianPoint;
 if (USE_ENDOMORPHISM) {
 const [k1neg, k1, k2neg, k2] = splitScalarEndo(n);
 let k1p, k2p, f1p, f2p;
 [k1p, f1p] = this.wNAF(k1, affinePoint);
 [k2p, f2p] = this.wNAF(k2, affinePoint);
 if (k1neg) k1p = k1p.negate();
 if (k2neg) k2p = k2p.negate();
 k2p = new JacobianPoint(mod(k2p.x * CURVE.beta), k2p.y, k2p.z);
 [point, fake] = [k1p.add(k2p), f1p.add(f2p)];
 } else {
 [point, fake] = this.wNAF(n, affinePoint);
 }
 // Normalize `z` for both points, but return only real one
 return JacobianPoint.normalizeZ([point, fake])[0];
 }

Cure53, Berlin · 04/22/21 7/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As discussed in the noble crypto README file - namely its “Security” subsection, it is
unlikely that keeping or removing code similar to the branching conditions described
above would result in a tangible impact on the practical side-channel resistance of the
noble crypto library. However, given that scalar multiplication tends to be where elliptic
curve side-channel attacks are most commonly exploited, this branching condition is
noted here for completeness. It is unclear if a practical fix is possible.

Conclusions
This Cure53 examination of the noble crypto library has not led to overly numerous
security-relevant discoveries. After spending five days on this assignment in April 2021,
two members of the Cure53 team pointed out four items. With the exception of one
High-scored flaw, the testers only noted Medium and lower risks on the noble-
secp256k1’s scope.

It should be specified that the noble crypto’s low-level algorithms for elliptic curve
operations - such as scalar multiplication across Weierstrass curves - are implemented
correctly. Similarly, other low-level cryptographic and mathematical operations seem to
be deployed properly, with attention to code readability and the functional programming
of discrete mathematical functions. As such, the library survives scrutiny at the lowest
level.

However, as is common with JavaScript-based low-level libraries, the API itself still
introduces potential security issues that are due to human error. NBL-01-001, NBL-01-
003 and NBL-01-004 all document how an overly permissive noble crypto API could
allow for a variety of potentially greatly misleading cryptographic operations to take
place. This could include generating public keys based on the clearly inadequate private
key share values and the quiet substitution of public and private key values.

Finally, NBL-01-002 mentions the inclusion of some potentially non-constant time code
in a core functionality for scalar multiplication. As noted in the noble crypto project’s
README, any claims made towards side channel resistance cannot be truly generalized
into practical claims given the JavaScript stack’s inability to reliably produce constant-
time or side-channel-resistant code. Those caveats should be kept in mind when moving
forward with the noble-secp256k1 project.

Cure53 would like to thank the library maintainer Paul Miller for his excellent project
coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 04/22/21 8/8

https://cure53.de/
mailto:mario@cure53.de

	Review-Report noble-secp256k1 Library 04.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	NBL-01-001 Crypto: Boolean value accepted as key pair basis (High)
	NBL-01-003 Crypto: Mangled hex inputs accepted as payloads (Medium)
	NBL-01-004 Crypto: Arbitrary reversal of key share input order (Medium)

	Miscellaneous Issues
	NBL-01-002 Crypto: Scalar multiplication control flow considerations (Info)

	Conclusions

