
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report Hedera Wallet Snap & Sources 04.2024
Cure53, Dr.-Ing. M. Heiderich, B. Casaje

Index
Introduction

Scope

Testing Methodology

Identified Vulnerabilities

TUU-03-001 WP1: Markdown and control characters allowed in dialogs (Medium)

TUU-03-002 WP1: Mirror node switchable without user confirmation (High)

Miscellaneous Issues

TUU-03-003 WP1: Some methods return full stack traces upon error (Info)

TUU-03-004 WP1: Client-side path traversal in various methods (Info)

Conclusions

Cure53, Berlin · Apr 18, 24 1/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“Hedera Wallet Snap unlocks wallet functionality for Hedera via MetaMask that any other
apps can interact with, thereby turning MetaMask into a native Hedera wallet without relying
on Hedera JSON-RPC Relay.”

From https://docs.tuum.tech/hedera-wallet-snap

This report describes the result of a penetration test and source code audit against the
Hedera Wallet Snap, as well as its codebase, performed by Cure53 in Q2 2024.

To give some context regarding the assignment’s origination and composition, Tuum
Technologies Inc. contacted Cure53 in March 2024. The test execution was scheduled for
CW15 April 2024, whereby four work days were invested to reach the coverage expected for
this project. A team of two senior testers was assigned to this project’s preparation,
execution and finalization.

The work was structured using a single work package (WP), defined as:

• WP1: Pen.-tests & code audits against Hedera Wallet Snap & codebase

Note that this was not the first time the Hedera Wallet Snap and codebase were audited by
Cure53, as they were already the focus of an audit held in November 2023 (see TUU-02).

The methodology conformed to a white-box strategy, whereby assistive materials such as
sources, test-supporting documentation, as well as all further means of access required to
complete the tests were provided to facilitate the undertakings.

All preparations were completed in early April 2024, specifically during CW14, to ensure a
smooth start for Cure53. Communication throughout the test was conducted through a
dedicated and shared Slack channel, established to combine the teams of Tuum and
Cure53.

All personnel involved from both parties were invited to participate in this channel.
Communications were smooth, with few questions requiring clarification, and the scope was
well-defined and clear. No significant roadblocks were encountered during the test. Cure53
provided frequent status updates and shared their findings, and offered live reporting
through the aforementioned Slack channel.

Cure53, Berlin · Apr 18, 24 2/12

https://cure53.de/
https://docs.tuum.tech/hedera-wallet-snap
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The Cure53 team achieved good coverage over the scope items, and identified a total of
four findings. Of the four security-related discoveries, two were classified as security
vulnerabilities, and two were categorized as general weaknesses with lower exploitation
potential.

Cure53’s audit of the Hedera Wallet Snap revealed a well-secured environment. The
platform demonstrates strong defenses against common Snap vulnerabilities, and left a very
positive impression on the testing team regarding its security posture.

The team did not identify any issues of Critical severity during this audit - which speaks
positively of the platform’s security. However, one finding needs to be highlighted due to its
severity. This finding addresses a scenario in which it is possible to switch the mirror node
without requiring any confirmation from the user (see TUU-03-002), and was therefore
ranked with a High severity.

Although the Hedera Wallet Snap’s security posture can already be considered quite robust,
in order to further strengthen this, Cure53 advises that all of the findings and issues detailed
in this report should be swiftly actioned.

The report will now shed more light on the scope and testing setup, as well as provide a
comprehensive breakdown of the available materials. Next, the report will detail the
Methodology used in this exercise. This chapter will show which areas of the software in
scope have been covered and what tests have been executed, despite the limited number of
findings made during the course of the exercise. Following this, the report will list all findings
identified in chronological order, starting with the Identified Vulnerabilities and followed by
the Miscellaneous Issues unearthed. Each finding will be accompanied by a technical
description, Proof-of-Concepts (PoCs) where applicable, plus any fix or preventative advice
to action.

In summation, the report will finalize with a Conclusions chapter in which the Cure53 team
will elaborate on the impressions gained toward the general security posture of the Hedera
Wallet Snap, as well as its codebase.

Cure53, Berlin · Apr 18, 24 3/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Code audits & security reviews against Hedera Wallet Snap & related codebase

◦ WP1: Pen.-tests & code audits against Hedera Wallet Snap & codebase
▪ Sources:

• https://github.com/hashgraph/hedera-metamask-snaps/tree/main
▪ Commit:

• 2d164945740a2615ad9eeb6e5ea6c234ac18c873
▪ Primary focus:

• https://github.com/hashgraph/hedera-metamask-snaps/tree/
2d164945740a2615ad9eeb6e5ea6c234ac18c873/packages/hedera-wallet-
snap/packages/snap

▪ Documentation:
• https://docs.tuum.tech/hedera-wallet-snap

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Apr 18, 24 4/12

https://cure53.de/
https://docs.tuum.tech/hedera-wallet-snap
https://github.com/hashgraph/hedera-metamask-snaps/tree/2d164945740a2615ad9eeb6e5ea6c234ac18c873/packages/hedera-wallet-snap/packages/snap
https://github.com/hashgraph/hedera-metamask-snaps/tree/2d164945740a2615ad9eeb6e5ea6c234ac18c873/packages/hedera-wallet-snap/packages/snap
https://github.com/hashgraph/hedera-metamask-snaps/tree/2d164945740a2615ad9eeb6e5ea6c234ac18c873/packages/hedera-wallet-snap/packages/snap
https://github.com/hashgraph/hedera-metamask-snaps/tree/main
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Testing Methodology
This section outlines the testing methodology and coverage achieved during the
engagement, shedding light on various components of the Hedera Wallet MetaMask Snap
and codebase that Cure53 inspected. Further clarification is given for the areas of
investigation that were subject to deep-dive assessment, while the test team also specifies
the techniques applied to evaluate the respective security posture of each component.

This scope of the audit was solely the Hedera Wallet Snap, and not the site for testing the
Snap. This approach complied with a white-box pentesting strategy, as the full source code
for the Snap was open-source.

The test started off with a review of the scope, provided documentation, and the Manifest file
of the Snap. This was done to generally verify if the Snap requested any unused endowment
or permissions. No unused permissions were found. Then, the audit team reviewed the code
of the Snap to see if it adhered with web security best practices, and checked if any
hardening guidance related to MetaMask Snaps could be applied.

Next, a focus was placed on the usage of the endowment:network-access permission. This
endowment enables the Snap to make network requests, which could potentially leak
sensitive information to third-parties, for example, through logging. However, all places using
fetch in the Snap only request the mirror node URL. The testing team found no evidence
that sensitive information was being transferred to third-party services.

Each RPC method was then carefully reviewed for prevalent access control and injection
weaknesses. Cure53 noted that communication is performed by webpages and dApps via
MetaMask's wallet_invokeSnap request, which guarantees that the aforementioned
application possesses all necessary privileges before permitting interaction with the Snap.

The team found an injection issue where user input in multiple places was directly fed into
the text method, allowing for markdown and control characters to be rendered in various
dialogs. This would allow a malicious dApp to spoof some elements of the UI, potentially
phishing the user (TUU-03-001).

The team also investigated whether any of the RPC methods were vulnerable to type
confusion, missed bounds checks, or failed to sanitize data before use. All of the RPC
methods explicitly check whether request.params is valid before use. This includes checking
that all of the required parameters exist, and that they are of the correct type and format.
This implementation was found to be very secure, and helped to greatly reduce the attack
surface of the Snap.

Cure53, Berlin · Apr 18, 24 5/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

While looking for injection vulnerabilities, the team noticed that there were multiple places
vulnerable to client-side path traversal. There were multiple instances of user-input being
directly placed into the URL for a network request, without any escaping. As such, the user
input could contain characters to change the path or add query parameters (TUU-03-004).

Next, the team checked to see if all actions taken by the Snap were intuitive, clearly
telegraphed, and required clear user consent. Almost all of the RPC methods were found to
use the snap_dialog method provided by MetaMask to get confirmation from the user.
However, one issue was discovered where the network and mirrorNodeURL parameters
could change the network used by the Snap without any user consent (TUU-03-002).

The team checked all methods to ensure that all sensitive data was handled correctly. No
methods were found that disclosed or logged sensitive information like private keys or the
Snap state. However, some methods implemented error handling incorrectly, returning a
caught unsanitized error object which contained full stack traces (TUU-03-003).

Cure53, Berlin · Apr 18, 24 6/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., TUU-03-001) to
facilitate any future follow-up correspondence.

TUU-03-001 WP1: Markdown and control characters allowed in dialogs (Medium)
Fix Note: This issue was fixed and the fix was verified by Cure53 in early April 2024. The
documented problem no longer exists.

Cure53 observed that some of the dialogs shown in the Snap display user input, using the
text method provided by the MetaMask UI. However, this process is problematic since the
text method permits rendering control characters and Markdown. Notably, both newlines and
bold text can be injected into these fields.

A malicious dApp is granted a number of potential input control methods that would be
rendered via the text method, such as signMessage, hts/createToken, or hts/updateToken.
These could spoof different fields in the UI, potentially forcing a user into accidentally signing
a message or confirming a transaction.

In addition, the signMessage method takes an optional header parameter, which is not
included in the signature, and can be used to display any arbitrary text.

PoC:
await ethereum.request({
 method: 'wallet_invokeSnap',
 params: {snapId:`local:http://localhost:9001`,
 request:{
 method: 'signMessage',
 params:{
 header: "**NOTE**: Transaction has been verified to not be

malicious.",
 message: "**The following is the message to be signed:**\n

\nsign data\n\n**Spoofed field**: x"
 }
 }
 }
})

Cure53, Berlin · Apr 18, 24 7/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises enforcing that user input is never passed into the text
method. Alternatively, utilize the copyable method to display text as recommended by
MetaMask1, which ignores Markdown and other special characters. In addition, remove the
header parameter from the signMessage method if possible.

TUU-03-002 WP1: Mirror node switchable without user confirmation (High)
Fix Note: This issue was fixed and the fix was verified by Cure53 in early April 2024. The
documented problem no longer exists.

All Snap methods take the optional mirrorNodeUrl and network parameters which allows for
custom Hedera mirror nodes to be used. For example, these parameters can be set to use
Testnet, Mainnet, or any other custom network. However, this feature is implemented
insecurely, as none of the dialogs shown to the user display the network for the operation.

This could be used by a malicious dApp to phish a user. The UI could display that the user is
connected to Testnet or any non-Mainnet node, and methods like getAccountInfo could even
run, showing the user's Testnet balance to confuse them further. Then, the malicious dApp
could run a more sensitive method, like transferCrypto, but instead use the Mainnet mirror
node behind the scenes, which the user would not expect. This could lead to loss of user
funds.

In addition, a malicious dApp could also set a network which proxies traffic between the
Snap and the real mirror nodes, getting access to potentially sensitive data like signatures.
However, due to time constraints and the fact that the functionality of the mirror nodes is out
of scope for this audit, this attack avenue was not explored further.

To fix this issue, it is recommended to make switching the network a Snap method that
requires user confirmation to ensure that the user is always aware of which mirror node they
are connected to. Alternatively, it is recommended to make the selected network visible at
the top of all relevant confirmations.

1 https://docs.metamask.io/snaps/learn/best-practices/security-guidelines/

Cure53, Berlin · Apr 18, 24 8/12

https://cure53.de/
https://docs.metamask.io/snaps/learn/best-practices/security-guidelines/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

TUU-03-003 WP1: Some methods return full stack traces upon error (Info)
Fix Note: This issue was fixed and the fix was verified by Cure53 in early April 2024. The
documented problem no longer exists.

It was discovered that multiple Snap methods do not handle errors correctly, returning full
stack traces upon error. This is undesirable, because error stacks could potentially contain
sensitive information, such as the SnapState, and a malicious dApp can catch these
messages and read their contents.

The implementation of multiple methods use try and catch to catch errors, but then re-throw
these same errors in the catch block, leaking error stacks and messages. However, the
team was not able to find a Snap method that would leak an error stack containing sensitive
information due to the audit's time-constrained nature, so this finding was deemed to be a
miscellaneous issue.

PoC:
try {
 await ethereum.request({
 method: 'wallet_invokeSnap',
 params: {snapId:`local:http://localhost:9001`,
 request:{
 method: 'transferCrypto',
 params:{
 transfers: [{
 assetType: 'HBAR',
 to: '0.0.123',
 amount: 1
 }]
 }
 }
 }
 })
}
catch (err) {
 console.log("caught error:", err)
}

Cure53, Berlin · Apr 18, 24 9/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Steps to reproduce:
1. Install Metamask and the Hedera Wallet Snap.
2. Connect the Snap to a wallet that has an account on the Hedera network.
3. Open the console in DevTools, and run the PoC above.
4. A dialog confirmation box should appear. Click Reject.
5. The stack trace should be caught, and should appear in the console log.

To fix this issue, it is recommended to check all Snap methods and ensure they only throw
custom error messages that do not provide stack traces or debugging information.

TUU-03-004 WP1: Client-side path traversal in various methods (Info)
Fix Note: This issue was fixed and the fix was verified by Cure53 in early April 2024. The
documented problem no longer exists.

It was discovered that some Snap methods place user input directly into the path and query
parameters without any escaping. This allows for client-side path traversal, since if user
input contained ../, it would change the endpoint being requested by the Snap. In places
where user input is used as a query parameter unescaped, other parameters could be
injected with an ampersand.

However, it was noted that the URLs for the requests are intended to be public mirror nodes
that can be switched out for other URLs by the dApp directly. Given that the team was not
able to exploit this issue, this was not deemed a vulnerability.

PoC:
await ethereum.request({
 method: 'wallet_invokeSnap',
 params: {snapId:`local:http://localhost:9001`,
 request:{
 method: 'hts/deleteToken',
 params:{
 tokenId: '../../xxx',
 }
 }
 }
})

To fix this issue, it is recommended to encode all user input that is placed into the path or
query parameters with a function like encodeURIComponent.

Cure53, Berlin · Apr 18, 24 10/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, the Hedera Wallet Snap left a very robust impression on the
Cure53 team during this April 2024 penetration test in terms of its security posture. This is
supported by the limited number of issues outlined in this report, and the lack of any
vulnerabilities of Critical severity being found.

From a contextual perspective, four working days were allocated to reach the coverage
expected for this project. A white-box penetration testing methodology was used to assess
the specified scope of the application. This approach included direct examination of the
underlying source code for the Snap. The assessment confirmed that the Hedera team had
successfully avoided and mitigated a number of typical web application and Snap risks.

To facilitate productive communication and seamless information exchange between the
Hedera and Cure53 teams, a dedicated Slack channel was set up. In addition to this, the
clearly defined scope of the assessment and a shared understanding of target areas
minimized any potential roadblocks throughout the assessment process. The Cure53 team
was provided with documentation for the Snap as well as a video detailing new features to
help facilitate testing.

The testing team effectively covered a significant portion of the scoped area during their
audit. However, Cure53 must emphasize that the modest list of defects detailed in this report
is likely due to the limited functionality that existed within the scope, as well as the minimal
attack surface that exists for Snaps in general.

The code in the snap folder was reviewed extensively for any web vulnerabilities and
common Snap misconfigurations.

During testing, the first finding noted by the Cure53 team was that user input was being fed
directly into the text method provided by MetaMask for dialogs, which allows markdown and
control characters to be rendered (TUU-03-001). In addition, the signMessage RPC method
was found to take a header parameter which could inject additional fields, and additionally
would not be a part of the signature. This could lead to UI spoofing attacks, where an
attacker could inject fields and phish the user.

A High severity issue was found where dApps using the Snap could provide the network and
mirrorNodeURL parameters when calling RPC method, which would change the network
used by the Snap without any user consent (TUU-03-002). This could easily confuse the
user as to which mirror node and network they were interacting with, and in the worst case,
lead to direct loss of user funds.

Cure53, Berlin · Apr 18, 24 11/12

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The Cure53 team discovered that some of the RPC methods return full stack traces upon
error. Most of the RPC method implementations use try and catch to handle errors that
occur during execution. Some methods insecurely return the caught error directly, which
gives the dApp using the Snap access to this error directly. This error is not sanitized, which
means it contains the full stack trace and could potentially contain sensitive information, but
a way to exploit this was not found. For more information, see ticket TUU-03-003.

Some methods were also found to place user input directly into a URL that is then fetched
without any escaping or sanitization. This leads to client-side path traversal, as user input
could contain characters that change the path or query parameters (TUU-03-004). The team
was unable to find a potential attack scenario for this issue.

In conclusion, Cure53’s penetration test of the Hedera Wallet Snap paints a picture of a well-
secured environment, with strong defenses against a variety of common web vulnerabilities.
Cure53 garnered a unanimously strong impression regarding the security offering
established by the Hedera Wallet Snap during this engagement. Fixing the vulnerabilities
found should be relatively trivial and will further strengthen the environment’s security
posture.

Cure53 would like to thank Kiran Pachhai and Donald Bullers from the Tuum Technologies,
Inc. team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · Apr 18, 24 12/12

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Hedera Wallet Snap & Sources 04.2024
	Index
	Introduction
	Scope
	Testing Methodology
	Identified Vulnerabilities
	TUU-03-001 WP1: Markdown and control characters allowed in dialogs (Medium)
	TUU-03-002 WP1: Mirror node switchable without user confirmation (High)

	Miscellaneous Issues
	TUU-03-003 WP1: Some methods return full stack traces upon error (Info)
	TUU-03-004 WP1: Client-side path traversal in various methods (Info)

	Conclusions

