
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Antradar Gyroscope 07.2018
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, BSc. D. Weißer

Index
Introduction
Scope
Identified Vulnerabilities

ANT-01-004 Web: Reflected XSS via codegen feature (High)
ANT-01-005 Web: Stored XSS via report function leads to ACL Bypass (Critical)
ANT-01-006 Web: SQL Injection/XSS via dynamic template functions (Critical)
ANT-01-007 Web: Reflected XSS in showhelp Function (High)
ANT-01-009 Web: Missing certificate verification could lead to SQLi/RCE (High)
ANT-01-012 Web: Missing CSRF check on speaker pictures update (Low)

Miscellaneous Issues
ANT-01-001 Web: SQL Queries are incorrectly escaped (Medium)
ANT-01-002 Web: Passwords insecurely checked and stored (Low)
ANT-01-003 Web: hash_equals implemented incorrectly (Low)
ANT-01-008 Backend: MySQL root user employed exclusively (Medium)
ANT-01-010 Web: Recurrent use of weakly-typed comparisons (Medium)
ANT-01-011 Web: Potential SQL Injection via userid cookie (Medium)
ANT-01-013 Web: Hardcoded secrets and passwords (Low)
ANT-01-014 Web: IP spoofing via arbitrary proxy headers (Low)
ANT-01-015 Web: Current CSP settings does not prevent XSS (Medium)

Conclusions

Cure53, Berlin · 08/08/18 1/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“The Gyroscope Framework is Antradar's flagship platform on which our web-based
management systems are built. It uses a specific and yet flexible user interaction model
to reveal and explore the inner-relations of a database.”

From http://www.antradar.com/docs-gyroscope-doc

This report documents the results of a penetration test and source code audit (later
referred to as the “assessment”) against the Antradar Gyroscope PHP web application
framework. The assessment was carried out by Cure53 in July 2018 and yielded fifteen
security-relevant discoveries, including two ranked with the highest, “Critical”-level of
severity.

In terms of resources and methodology, three Cure53 testers were tasked with executing
this assessment and provided with a budget of five days. The testers received access to
reference implementations, source code and technical documentation to be able to
maximize coverage. This effectively means that the project relied on a so-called white-
box methodology. Thanks to the open premise of a white-box approach, the Cure53
team and the framework developer remained in frequent contact throughout the
assessment. Email exchanges were used as the primary means of communication and
Cure53 sent regular updates about the test status and progress to the in-house team.
Foreshadowing some of the conclusions, it should be clearly stated that the assessment
revealed a plethora of security issues. Coming to a total of fifteen issues, the discoveries
were categorized as six vulnerabilities and nine general security weaknesses. As
important as the high overall number of findings is the fact that the issues received
rather high severities due to their potential security implications. Namely, as already
mentioned above, two of the vulnerabilities were rated as “Critical”. Three more
problems were deemed to carry “High”-level risks. All issues were live-reported during
the assessment so that the framework maintainer could begin to implement first fixes
while the Cure53’s tests were still ongoing.

In the following sections, the report will first describe the scope and the test setup that
Cure53 was provided with for the test. On this note, it must be added that the
preparation phase was done impressively well by the in-house team and the setup was
excellent overall. The subsequent sections of the report are dedicated to documenting all
issues in detail, with mitigation offered as applicable. Finally, the report concludes with
broader notes on the results of this assessment of the Antradar Gyroscope project. In
other words, the last section is dedicated to discussing a set of observations and
impressions that Cure53 testers have gained with reference to the general security
posture of the Antradar Gyroscope PHP web application framework and its various
components featured in this July 2018 assessment’s scope.

Cure53, Berlin · 08/08/18 2/22

https://cure53.de/
http://www.antradar.com/docs-gyroscope-doc
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Key scope:

◦ Antradar Gyroscope web application framework written in PHP.

◦ Antradar Gyroscope reference implementations for Cure53 to work with.

• Server credentials & Sources

◦ Credentials were shared with Cure53

◦ Sources were shared with Cure53

• Plain reference application:

◦ https://vuln.antradar.com/plain/

◦ https://vuln.antradar.com/plain/iphone.php

• Realistic reference application:

◦ https://vuln.antradar.com/gsadmin/

◦ https://vuln.antradar.com/gsadmin/iphone.php

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. ANT-01-001) for the purpose of facilitating any
future follow-up correspondence.

ANT-01-004 Web: Reflected XSS via codegen feature (High)

Gyroscope offers a feature called codegen which is not being linked in the backend
directly. In this context, it is possible to use a form to dynamically generate code by
changing certain settings through a form interface. It does not look like the generated
code is actually stored back into the file system but it is rather echoed back to the user.
The interesting aspect is that codegen can be used by low-privileged users as well if
they directly call it via the service router.

Affected URL:
https://vuln.antradar.com/gsadmin/myservices.php?
cmd=codegen_makeform&seed=album

Although the form is not directly functional because the required JavaScript files are
missing, it can still be used to manually craft the request to codegen_makecode. The
problem now lies within the fact that all of the submitted values of the form are directly
reflected once codegen generates the code, thus causing a simple reflected Cross-Site

Cure53, Berlin · 08/08/18 3/22

https://cure53.de/
https://vuln.antradar.com/gsadmin/myservices.php?cmd=codegen_makeform&seed=album
https://vuln.antradar.com/gsadmin/myservices.php?cmd=codegen_makeform&seed=album
https://vuln.antradar.com/gsadmin/iphone.php
https://vuln.antradar.com/gsadmin/
https://vuln.antradar.com/plain/iphone.php
https://vuln.antradar.com/plain/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scripting (XSS) vulnerability. To illustrate this, a Proof-of-Concept (PoC) consisting of an
HTML file was created.

PoC.html:
<html>
 <body>
 <form action="https://vuln.antradar.com/gsadmin/myservices.php?
cmd=codegen_makecode&seed=album" method="POST">
 <input type="hidden" name="mastertable" value="albums" />
 <input type="hidden" name="primarykey" value="albumid" />
 <input type="hidden" name="primaryfield" value="album" />
 <input type="hidden" name="primaryrecords" value="albums" />
 <input type="hidden" name="c_primaryrecords" value="Album" />
 <input type="hidden" name="primarydispfield" value="albumname" />
 <input type="hidden" name="record" value="pic" />
 <input type="hidden" name="records" value="pics" />
 <input type="hidden" name="lookuptable" value="pics" />
 <input type="hidden" name="lookupkey" value="picid" />
 <input type="hidden" name="c_record" value="Picture" />
 <input type="hidden" name="c_records" value="Pictures" />
 <input type="hidden" name="uploaddir"
value="../images/picss/" />
 <input type="hidden" name="sizes"
value="thumb|300|300
banner|800|600" />
 <input type="hidden" name="fileext"
value=".pngxyz'</textarea><script>alert(document.do
main)</script>" />
 <input type="hidden" name="tinypngapi" value="" />
 <input type="submit" value="Submit request" />
 </form>
 <script>
 document.forms[0].submit();
 </script>
 </body>
</html>

As soon as a logged-in victim browses to the attacker’s website that hosts this file,
codegen is automatically triggered and XSS occurs. From this point, all sorts of further
XSS-based attacks against the victim can be performed. For example, it would be
possible to craft a new login page where the victim would enter their credentials and
unwittingly send them to the attacker’s webserver.

It is recommended to use output validation mechanisms to reflect the supplied values in
the codegen feature. Depending on the context, one should either use htmlspecialchars
or htmlspecialchars with ENT_QUOTES as additional parameters. For normal output
escaping outside of HTML tags, htmlspecialchars is sufficient to encode all malicious

Cure53, Berlin · 08/08/18 4/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

tags. For situations where values are reflected inside the HTML tags, it is important to
use ENT_QUOTES to guarantee that injecting event handlers into the context cannot be
accomplished.

Exploitability note: This issue is exploitable on multi-tenant setups and is vulnerable on
each installation where browsers like Firefox or IE are used. Chrome partially mitigates
this issue with its XSS filter.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-005 Web: Stored XSS via report function leads to ACL Bypass (Critical)

For unspecified reasons it was decided that all teams that make use of the Gyroscope
platform (in this case Cure53 and the Smurfs) share the same report settings that can be
configured inside the web-interface. Since all reports are allowed to have a “custom
function” that can contain malicious JavaScript code, it is possible that this feature can
be abused to run arbitrary JavaScript code in the context of an entirely different team /
security firm. To demonstrate, the Smurfs can issue chosen instructions to exploit
Cure53 and this is discussed next.

Steps to reproduce:
• A Smurf logs in and browses to the report setting.

• The Smurf enters and saves the following JavaScript code into the Activity Log of
the custom function setting: javascript:alert(1);

• As soon as Cure53 logs into Gyroscope and examines the logs for their team by
clicking on Activity Log, the XSS flaw is triggered.

Instead of the displayed alert(1), the Smurfs actually gain the option to automatically
instruct Cure53 to perform all kinds of malicious actions in the context of their currently
logged-in user. The vulnerable elements were spotted in the section of the source code
provided next.

Affected File:
gyroscope/site/plain/icl/listreports.inc.php

Affected Code:
<div class="listitem">

<a onclick="<?echo $reportfunc;?>reloadtab('rpt<?echo $reportkey;?>','<?
echo $dbreportname;?>','rpt<?echo $reportkey;?>',(self.rptreload_<?echo
$reportkey;?>?rptreload_<?echo $reportkey;?>:null));addtab('rpt<?echo
$reportkey;?>','<?echo $dbreportname;?>','rpt<?echo $reportkey;?>',

Cure53, Berlin · 08/08/18 5/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

(self.rptinit_<?echo $reportkey;?>?rptinit_<?echo $reportkey;?>:null));"><?echo
htmlspecialchars($reportname);?>
</div>

Instead of letting the user choose an arbitrary report function, it should only be possible
to select from a whitelisted set of supported custom functions. However, if this
functionality is a business requirement, it should at least be made sure that different
teams have their own report settings clearly separated. This could be implemented like
other protections of editable resource, e.g. by either performing a gsguard() check or by
manually verifying the gsid of the currently authenticated user.

Exploitability note: This issue is exploitable on multi-tenant setups and is vulnerable on
each installation of Gyroscope where users are able to edit report types.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-006 Web: SQL Injection/XSS via dynamic template functions (Critical)

The templates for events and the like make it possible to dynamically render variables
inside the generated PDF brochures. According to the readme, events can also be
rendered as HTML files. Nevertheless, this feature does not appear to be present in the
current state of the application. For example, the author can include statements like
{{speaker speakerid=13 Doug Goofy}} to dynamically include speaker details inside the
generated PDF. Conversely, inside the source code it was spotted that the parsing of
some variable parameters fails to make sure that they are escaped for SQL queries. This
can be seen in the code furnished next.

Affected File:
gyroscope/site/gsadmin/tmpl.php

Affected Code:
function tmpl_bloglist($params){

$deptid=$params['id'];
global $db;
global $curlang;
global $dict;

include_once 'makeslug.php';

$query="select * from blog where groupdeptid=$deptid and
published_$curlang=1 order by blogdate desc";
[...]

Cure53, Berlin · 08/08/18 6/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

function tmpl_blog($params){
$deptid=$params['id'];
global $db;
global $curlang;
global $dict;

include_once 'makeslug.php';

$perpage=5;
if (is_numeric($params['perpage'])) $perpage=$params['perpage'];

$query="select blog.*,unix_timestamp(blogdate) as bdate from blog where
groupdeptid=$deptid and published_$curlang=1 ";
[...]

The user has the option to include a statement like {{blog id=foo}} to dynamically render
blog details into the PDF. However, as depicted above, the deptid is concatenated into
an SQL query without making sure it is actually numeric. This leads to an exploitable
SQL Injection, depending on whether blog details are enabled inside Gyroscope. Thus,
by submitting the value of {{blog id=foo SQL INJECTION POC}}, the following PDF is
generated and signifies a proof of the SQL Injection.

Fig.: SQL Injection via a rendered PDF

In an exploitable scenario, this can be abused to read all sorts of data from the
database, for example encrypted passwords. Moreover, combined with the issue
described in ANT-01-008, it allows a user to write and read local files by means of using
load_file and INTO OUTFILE statements.

It is recommended to make sure that the supplied params inside the tmpl_ functions are
numeric and escaped. An even better solution would be to exclusively rely on prepared
statements as described in ANT-01-001.

Cure53, Berlin · 08/08/18 7/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

If one is to trust the provided readme, it should also be possible to render the event in a
HTML file. Since on multiple occasions tmpl.php fails to perform output-validation of
certain params values, this would then result in exploitable XSS conditions as well.
Another example would concern a vulnerable sink furnished next.

Affected Code:
function tmpl_youtube($params){

$key=$params['key'];
if ($key=='') return;

?>
<div class="videoanchor">

<iframe class="videoframe" src="http://www.youtube.com/embed/<?echo
$key;?>" frameborder="0" allowfullscreen></iframe>
</div>
<?
}

To mitigate the problem, it is important to make use of htmlspecialchars with
ENT_QUOTES as parameters. This goes for all other echo-sinks where output-
validation mechanisms are missing.

Exploitability note: This issue is exploitable on special setups and is vulnerable on
installations where the templating system and blog databases are used and users have
the ability to write custom items - such as reports - into datasets.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-007 Web: Reflected XSS in showhelp Function (High)

The Gyroscope application provides a function that shows help pages based on the
provided "topic" parameter. To achieve this, a PHP file is included and an error is
displayed in case the file does not exist. The error message reflects the contents of the
parameter in an unsanitized form back to the user, thus leading to XSS. A PoC is given
in the following URL.

PoC:
https://vuln.antradar.com/plain/myservices.tmpl.php?cmd=showhelp&topic=
%3Csvg/onload=alert(1)%3E

Cure53, Berlin · 08/08/18 8/22

https://cure53.de/
https://vuln.antradar.com/plain/myservices.tmpl.php?cmd=showhelp&topic=%3Csvg/onload=alert(1)%3E
https://vuln.antradar.com/plain/myservices.tmpl.php?cmd=showhelp&topic=%3Csvg/onload=alert(1)%3E
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In order to trigger the vulnerability, the targeted user needs to be authenticated. An
attacker could use this issue in order to issue requests on the victim's behalf and to steal
sensitive data.

It is recommended to encode the parameter before printing it back to the web page.

Exploitability note: This issue is exploitable on setups where the showhelp service is
enabled. Browsers such as Chrome partially mitigate this issue when XSS filters are
enabled.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-009 Web: Missing certificate verification could lead to SQLi/RCE (High)

The Gyroscope application has a feature allowing to install additional modules from an
external source. Such an extension consists of a JSON file and several additional PHP
scripts. This feature requires a URL to be specified from where the extensions are
loaded. Because the connection is handled in an insecure way, it is possible for a Man-
in-the-Middle (MitM) attacker to inject arbitrary SQL commands into the server’s
response. Similarly, uploading arbitrary PHP code could also be achieved. The problem
occurs in the code snippet supplied next.

Affected File:
site/plain/icl/installmods.inc.php

Affected Code:
$url=MOD_SERVER.'?lang='.$lang.'&cmd=installmods&modids='.$modids.'&version='.
$version.'&devmode='.
$devmode.'&project='.urlencode(GYROSCOPE_PROJECT).'&vendor='.urlencode(VENDOR_NA
ME).'&vendorversion='.VENDOR_VERSION;

$curl=curl_init($url);
curl_setopt($curl,CURLOPT_RETURNTRANSFER,1);
curl_setopt($curl,CURLOPT_SSL_VERIFYPEER,0);
curl_setopt($curl,CURLOPT_SSL_VERIFYHOST,0);

When a module is installed, the required data is fetched from the configured
MOD_SERVER using cURL. Crucially, remotely fetched executable code should always
be relayed in a secure way (e.g. via SSL) in order to prevent MitM attackers from
replacing the downloaded files with malware. Here the verification of SSL certificates is
explicitly disabled, making it easy for a MitM to manipulate network traffic on the fly.

Cure53, Berlin · 08/08/18 9/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The same issue was found in several other, less critical contexts within the Gyroscope
project (e.g. site/plain/sendsms.php). Sensitive data and executables should always be
transmitted via a secure connection. Therefore, it is recommended to re-enable the
certificate check.

Exploitability note: According to the developers, this issue should not be exploitable in
the current setups since the update mechanism in question has been deprecated.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-012 Web: Missing CSRF check on speaker pictures update (Low)

It was discovered that the handler responsible for updating speakers’ pictures fails to
employ a CSRF check. A malicious website could use this issue to force an
authenticated user into sending update requests. Fortunately, the impact of this issue is
only of a cosmetic nature, thus it is unlikely to be exploited.

Still, it is recommended to add the already implemented CSRF check to the upload
handler for the speaker pictures item. A quick analysis of other uploaders leads Cure53
to believe that this is a more general issue that concerns multiple endpoints. For
example, the embedmediauploader() function suffers from the same missing check.

Exploitability note: This issue is exploitable on multi-tenant setups where image
uploaders are used. Tenants can thus instruct other tenants to upload pictures to their
resources.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

Cure53, Berlin · 08/08/18 10/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

ANT-01-001 Web: SQL Queries are incorrectly escaped (Medium)

Throughout the entire Gyroscope application, SQL query parameters are always
manually escaped. On most occasions this is done incorrectly and could actually lead to
exploitable conditions. The code below serves as just one example.

Affected File:
gyroscope/site/gsadmin/ajx_2facheck.php

Affected Source:
$raw_login=$_POST['login'];
$login=str_replace("'",'',$raw_login);

$query="select * from ".TABLENAME_USERS." left join gss on
".TABLENAME_USERS.".gsid=gss.gsid where login='$login' and active=1 and
virtualuser=0";

The only mechanism to “prevent” SQL Injection in this context would be achieved by
removing all single quotes (') from the login name. However, other values that can
introduce an injection (such as backslashes, \) are deliberately left out. Therefore, if a
user tries to login with “username\”, an SQL error is triggered. This is because the
closing single quote gets escaped and the first single quote never gets closed. In this
specific scenario, the flaw is not directly exploitable. Still, because Gyroscope requires a
lot of manual code editing when deployed in a new scenario, it is not impossible for
queries such as the one below to exist.

Example vulnerable query:
$query = "SELECT * FROM table WHERE a = '$userinput1' and b = '$userinput2'";

If the query’s parameters are escaped in the same manner as depicted above, an
attacker can use the values included next to conduct an SQLi just by removing single
quotes.

Used Parameters
$userinput1 = 'test\\';
$userinput2 = ' OR 1=1 SQLInjection here-- f'

Cure53, Berlin · 08/08/18 11/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Resulting Query:
SELECT * FROM table WHERE a = 'test\' and b = ' OR 1=1 SQLInjection here-- f'

Therefore, the second user-input actually gets treated as SQL commands since the
second single quote is escaped.

For the most part, user-input is globally escaped via the GETVAL and GETSTR
functions. GETVAL correctly checks whether the input is numeric while GETSTR
incorrectly uses addslashes to escape user-input. While in the current setup addslashes
cannot be exploited, it is possible to bypass escaping with multibyte sequences when
certain DB character sets are used. Even if the probability of an Asian character set is
rather low, it should be made sure that a designated SQL escaping function, such as
mysqli_real_escape_string, is used.

Even so, it is discouraged to manually escape every statement this way. Especially since
it is easy to make mistakes when, for example, GETSTR is confused with a unquoted
context where GETVAL should have been used. Therefore, it is highly recommended to
exclusively use prepared statements to automatically and correctly bind and escape all
parameter values. This is sufficiently documented inside the PHP manual, which should
be reviewed for the context of relying on the MySQLi interface1.

Exploitability note: This is a general issue which becomes exploitable when Asian
character sets are used for the databases or when simple input sanitizing is forgotten.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-002 Web: Passwords insecurely checked and stored (Low)

Opposing what is recommended as the industry standard, Gyroscope implements
additional encryption via OpenSSL AES-CBC for user-passwords. This is visible in the
following excerpts.

Affected File:
gyroscope/site/gsadmin/login.php

Affected Source:
$cfk=$_POST['cfk'];
if ($cfk!=$csrfkey&&$cfk!=$csrfkey2){

$error_message=_tr('csrf_expire');
} else {

1 http://php.net/manual/de/mysqli.quickstart.prepared-statements.php

Cure53, Berlin · 08/08/18 12/22

https://cure53.de/
http://php.net/manual/de/mysqli.quickstart.prepared-statements.php
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

$password=md5($dbsalt.$_POST['password']);
$raw_login=$_POST['gyroscope_login_'.$dkey];
$login=str_replace("'",'',$raw_login);

$query="select * from ".TABLENAME_USERS." left join gss on
".TABLENAME_USERS.".gsid=gss.gsid where login='$login' and active=1 and
virtualuser=0";

$rs=sql_query($query,$db);

$passok=0;

if ($myrow=sql_fetch_array($rs)){
$enc=$myrow['password'];
$dec=decstr($enc,$_POST['password'].$dbsalt);
if ($password==$dec) $passok=1;

}

Affected File:
gyroscope/site/gsadmin/encdec.php

Affected Source:
function decstr($str,$key){

$raw=base64_decode($str);

$method='AES-256-CBC';
$key=enckey($key);

$ivlen=openssl_cipher_iv_length($method);
$iv=substr($raw,0,$ivlen);
$enc=substr($raw,$ivlen);

$dec=openssl_decrypt($enc,$method,$key,0,$iv);

return $dec;
}

Contrary to popular belief, this does not actually increase the security of the password
storage, especially because a weak hash function is used prior to encrypting. With the
help of the SQL Injections, it is possible to fetch the key from the source code anyway,
especially considering that md5 has long been proven insecure for creating password
hashes. The fact that a weak comparison is used to verify password also allows type-
juggling attacks and signifies a potential to bypass the authentication entirely (for

Cure53, Berlin · 08/08/18 13/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

example by bruteforcing all values to contain only 0e hashes2). Instead of increasing the
complexity via unnecessary encryption, which opens doors for padding attacks via AES-
CBC as well, it is simply recommended to use to a secure hashing function such as
bcrypt. To securely create hashes, one should switch to PHP’s password_hash function
and use password_verify to securely compare them.

Exploitability note: This is a general issue that is only exploitable once attackers obtain
a copy of the Gyroscope database and decide to locally bruteforce user-passwords.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-003 Web: hash_equals implemented incorrectly (Low)

In order to backport Gyroscope for PHP versions below 5.6.0, where hash_equals has
not been defined yet, this function is re-implemented in an insecure manner. The
problem can be seen in the following code.

Affected File:
gyroscope/site/gsadmin/auth.php

Affected Source:
if (!is_callable('hash_equals')){

function hash_equals($a,$b){return $a==$b;}
}

Since the function only uses a timing-unsafe weakly-typed comparison, it is neither
considered secure, nor does it promise the same features that hash_equals offers.
Especially since == is used instead of ===, this can actually lead to type-jugging
scenarios where the comparison gets bypassed completely. It is recommended to
backport hash_equals securely, for example by using the function proposed next.

Recommended backport:
if (!function_exists('hash_equals')) {

function hash_equals($str1, $str2)
{

if (strlen($str1) !== strlen($str2)) {
return false;

} else {
$res = $str1 ^ $str2;
$ret = 0;
for ($i = strlen($res) - 1; $i >= 0; $i--)

2 https://www.whitehatsec.com/blog/magic-hashes/

Cure53, Berlin · 08/08/18 14/22

https://cure53.de/
https://www.whitehatsec.com/blog/magic-hashes/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

$ret |= ord($res[$i]);
return !$ret;

}
}

}

Exploitability note: This is a general issue that only concerns installations with PHP
versions lower than 5.6.0. Moreover, an exploit is rather hard to achieve in this scenario.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-008 Backend: MySQL root user employed exclusively (Medium)

In the shared test setup, the Gyroscope’s MySQL interface uses the root user to connect
to the MySQL service. Although this might not actually reflect the state of the existing
production setups, it is still important to highlight the problems with this approach.

Affected File:
gyroscope/site/gsadmin/connect.php

Affected Code:
include_once "sql.php";

if (defined('GSSERVICE')) {
$db=sql_get_db('p:127.0.0.1','vuln','root','mnstudio','db');

} else {
$db=sql_get_db('127.0.0.1','vuln','root','mnstudio','db');

}

The most obvious issue is that compromised source code can lead to the complete
database takeover, spanning also other databases that might be hosted on the same
service. Combined with the fact that the application contains SQL Injection
vulnerabilities, attackers can abuse all privileged root connections to read files (via
SELECT load_file()). This would mean that a malicious adversary can steal all
configuration options and secret keys from the filesystem. What is more, it is also
possible, depending on the access rights to the web-root, to write into the files and this
would enable uploads of PHP shells into the writable upload directories with the help of
SELECT ... INTO OUTFILE.

It is recommended to use a least-privilege model for the database users. Gyroscope
should get its own user to connect to the database and only be allowed to use SELECT,
UPDATE, INSERT and DELETE privileges. Depending on the configuration, more
privileges should be granted after carefully studying whether they are actually necessary.

Cure53, Berlin · 08/08/18 15/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Exploitability note: This is a general issue that is not directly exploitable but rather
depends on the attackers who have already found a second vulnerability like file
disclosure.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-010 Web: Recurrent use of weakly-typed comparisons (Medium)

This ticket describes a general coding weakness that was noticed during the audit of the
Gyroscope’s source code. To be more precise, Gyroscope exclusively makes use of
weakly-typed comparisons, namely via ==, to compare values to one another. The
problem here lies within the fact that PHP is a loosely-typed language which interprets
the values by casting them to different data-types in reference to the context. The PHP
String Comparison Vulnerabilities3 resource shows that quite clearly.

This issue is especially problematic since it is used throughout the application and in
security-sensitive contexts, e.g. for password or hash verifications (see ANT-01-002 or
ANT-01-003). Generally speaking, there is no single use of === which could be seen as
a secure variant of PHP comparisons because they firstly decide whether the passed
values are of the same data-type.

Simply to protect Gyroscope from issues like type-juggling and similar, Cure53
recommends to replace all occurrences of == with === across the entire Gyroscope’s
custom code. In practice, this should not cause any trouble with the flow of the
application and it happens quite rarely that this causes bugs. If Gyroscope actually runs
into trouble with this solution, then the altered parts need to be slowly rolled back while
making sure that any leftover == do not remain in security-relevant contexts.

Exploitability note: This is a general issue that is not directly exploitable but rather
exhibits a weak coding practice potentially leading to exploitable issues in the future.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

3 https://hydrasky.com/network-security/php-string-comparison-vulnerabilities/

Cure53, Berlin · 08/08/18 16/22

https://cure53.de/
https://hydrasky.com/network-security/php-string-comparison-vulnerabilities/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ANT-01-011 Web: Potential SQL Injection via userid cookie (Medium)

It was noticed that the showaccount function used to display account details fetches all
user-information via userinfo(). By doing so, it also includes information from the passed
cookies. Since the later returned userid is not actually escaped, it needs to be manually
verified as numeric depending on the use-case. This signifies a pitfall because it is easy
to forget to cast the userid to a number. One such occasion was found in
showaccount.inc.php and can be found below.

Affected File:
gyroscope/site/gsadmin/icl/showaccount.inc.php

Affected Code:
function showaccount(){

global $smskey;

$user=userinfo();

global $db;

$userid=$user['userid']+0;
$query="select * from users where userid=$userid";
$rs=sql_query($query,$db);
$myrow=sql_fetch_assoc($rs);
$needkeyfile=$myrow['needkeyfile'];
$usesms=$myrow['usesms'];
$smscell=$myrow['smscell'];

if ($smskey=='') $usesms=0;
[...]

<?showkeyfilepad('mykeyfile',$user['userid']);?>

Affected File:
gyroscope/site/gsadmin/icl/showkeyfilepad.inc.php

Affected Code:
function showkeyfilepad($container,$userid){

global $db;
global $codepage;

$query="select * from users where userid=$userid";
$rs=sql_query($query,$db);
$myrow=sql_fetch_assoc($rs);
$haskeyfile=0;
if ($myrow['keyfilehash']!='') $haskeyfile=1;

Cure53, Berlin · 08/08/18 17/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As depicted above, the $userid variable is manually cast to an integer via
$userid=$user['userid']+0 but the later used showkeyfilepad() function still relies on the
uncasted $user['userid'] variable fetched from the cookies. Therefore, it is permitted for
the SQL sequences to be included, thus causing an SQL Injection.

This issue is partially mitigated by the fact that a correctly hashed auth cookie is required
in order to craft a malicious userid cookie. Since it is based on a hardcoded salt value,
an attacker requires a file disclosure vulnerability to actually exploit this issue.
Nevertheless, this scenario can be treated as an input-validation problem and should be
fixed accordingly. For example, one approach would be to pass $userid to
showkeyfilepad().

Exploitability note: This is a general issue that is not directly exploitable but rather
depends on attackers having already found a second vulnerability such as file
disclosure.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-013 Web: Hardcoded secrets and passwords (Low)

Following up on ANT-01-008, it needs to be reiterated that Gyroscope hardcodes a lot of
secrets inside the framework’s source code. This applies to dbsalts, the gsreqkey and
also the MySQL credentials, among others. Quite evidently, this not a best practice
approach since an attacker with file disclosure capabilities would effectively be able to
leak all secrets from the filesystem.

The recommended approach in this realm is to store all secrets inside environment
variables and use PHP’s getenv() to fetch them. One possible deployment is to use
Nginx’ env directive to export the variables inside the website’s .conf-file. The same can
be accomplished via Apache’s envvars. However, it is important that those config files
are not readable by the current web user such as www-data or nobody.

Exploitability note: This is a general issue that is not directly exploitable but rather
depends on attackers having already found a second vulnerability such as file
disclosure.

Fix note: This problem has not yet been addressed but might be in a future release. It
was agreed that this issue is of acceptable risk.

Cure53, Berlin · 08/08/18 18/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ANT-01-014 Web: IP spoofing via arbitrary proxy headers (Low)

The globally included lb.php defines a few routines to extract proxy headers such as
HTTP_X_FORWARDED_FOR or HTTP_X_REAL_IP. These can be used to reset the
value of $_SERVER['REMOTE_ADDR'] without paying attention to the actual
deployment. The sequence creates an IP spoofing issue where attackers can simply set
an arbitrary value via HTTP_X_FORWARDED_FOR, thus fooling the application into
believing the attacker connects via an entirely different IP than the one s/he actually
makes use of.

Since REMOTE_ADDR is also used inside of the sensitive calculations to generate
CSRF keys and auth cookies, Cure53 feels that the application should make sure that
REMOTE_ADDR always contains the actual IP address of the user. Headers such as
HTTP_X_FORWARDED_FOR should only be used if Gyroscope is installed behind a
reverse-proxy.

Exploitability note: This is a general issue that slightly weakens the generation of
secrets where the user’s IP address is used for the calculation and is therefore not
directly exploitable.

Fix note: This issue has been addressed by the framework maintainers and the fix was
successfully verified by Cure53 in August 2018.

ANT-01-015 Web: Current CSP settings does not prevent XSS (Medium)

An analysis of the currently deployed security headers made Cure53 aware of a useless
CSP setting. The CSP header return by the current state of the application can be found
next.

Returned Headers:
[...]
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
Content-Security-Policy: child-src 'self'

Since the child-src directive only determines the resource from which nested browsing
contexts are loaded, it does not tell the browser how to handle script directives. Thus, it
also does not prevent XSS. After studying the source code that handles this header, it
became apparent that the original intention was to set a default-src directive as well.

Affected File:
gyroscope/site/plain/xss.php

Cure53, Berlin · 08/08/18 19/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
function xsscheck(){

global $_SERVER;
header('X-Frame-Options: SAMEORIGIN');
header('X-XSS-Protection: 1; mode=block');
header('X-Content-Type-Options: nosniff');
header("Content-Security-Policy: default-src 'self'");
header("Content-Security-Policy: child-src 'self'");

However, since two separate header() statements are used, the second one overwrites
the first one. As a result, the first one is never sent back to the browser. The correct
approach would be to nest both statements into one, as demonstrated next.

Proposed Patch:
header("Content-Security-Policy: default-src 'self'; child-src 'self'");

By employing the proposal above, the browser correctly receives both statements and
prevents loading of scripts that reside outside of the self-context. In effect, it should also
prevent issues such as ANT-01-007.

Exploitability note: This issue describes a general weakness which renders the current
CSP setting ineffective. On multi-tenant setups where XSS vulnerabilities are already
present, this issue facilitates exploitation.

Fix note: This problem has not yet been addressed but might be in a future release. It
was agreed that this issue is of acceptable risk.

Conclusions
After assessing the Antradar Gyroscope PHP web application framework over the
course of five days in July 2018, Cure53 can conclude that the project requires a lot of
work from a security standpoint. At this moment in time, major engineering work is
needed to bring the project forward and allow Cure53 to consider it an actually secure
framework. This can be inferred from several indicators, specifically the high number of
findings, their rather concerning severities, and a significant number of general flaws in
the coding practices.

To reiterate, the key challenges that the Gyroscope is facing are not insurmountable but
should be seen as multifaceted. First of all, the out-of-date coding practices must be
eradicated and replaced by modern approaches. Secondly and similarly, solutions must
be developed to address the lacking or missing current industry standards on the

Cure53, Berlin · 08/08/18 20/22

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Gyroscope’s scope. Thirdly, the general attitude of having to rely on individual fixes to
mitigate single issues must be exchanged for emphasizing best-practices that offer
holistic and comprehensive mechanisms capable of preventing entire classes of attacks
and problems.

There should be no doubt that fifteen security-relevant discoveries, with as many as five
items being ascribed with “Critical” and “High” severities, cannot signify a passable
outcome for this assessment. In providing some details, the out-of-date coding practices
can be derived from relying on the now long-avoided hashing mechanisms (see ANT-01-
002) or the fact that each application’s secret is simply hardcoded inside the source
code, as described in ANT-01-013. In the same vein, long-known issues with PHP
language’s constructs - such as its affinity to creating type-juggling problems - are not
currently considered by Gyroscope. As a result, coding practices that may signal major
problems in the future are propagated rather than dealt with.

In addition, Gyroscope relies on the again rather “deprecated” SQL constructions where
user-input is directly mixed with hardcoded queries. Despite Cure53’s recommendation
to exclusively make use of prepared statements instead of manually escaping each
variable, the developers claim that the current approach saves both development and
debugging time. However, Cure53 cannot agree with this logic since shortages in
development time cannot be seen as an argument for accepting an insecure foundation.
This especially holds since one can easily create a class that handles multiple SQL
derivatives and falls back to the correct prepared statement method. A subsequent,
related point is that Gyroscope is functional but fails to recognize and include modern
standards. This is exemplified by the absence of object-oriented code that would prevent
issues with multiple, different database classes. What is more, it could effectively make
Gyroscope more “extendable”, thus potentially saving development time in the future.

Beyond the above, Gyroscope is riddled with multiple bugs and each requires manual
fixing instead of having a general wrapper that takes care of most issues. For example,
each XSS issue can be automatically solved by including sanitizers such as DOMPurify4.
The fact that each and every vulnerability sink needs to be manually inspected on an
individual basis creates multiple pitfalls and requires a nearly infeasible level of
dedication and constant focus from the developers who would need avoid every mistake.
In the current state, nearly every state changing function requires an easy-to-forget
CSRF check. Similarly, every reflection requires separate output-validation. Finally, each
SQL query input needs to be manually sanitized. Since approaches such as automatic
unit, error or regression testing are missing, Gyroscope will have to rely on manual
auditing and fixing. These aspects cannot stand, especially if a long-term development
and expansion are envisioned.

4 https://github.com/cure53/DOMPurify

Cure53, Berlin · 08/08/18 21/22

https://cure53.de/
https://github.com/cure53/DOMPurify
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In terms of important positive feedback, Cure53 has to mention that the developers
quickly reacted to each issue and proposed a patch in parallel to the testing process. It is
very noticeable that the in-house team lead is open to a major change in perspective
and initialized the practice of adopting new core practices. Additionally, all
communication between Cure53 and the developers was fluent and efficient, with
obscure aspects addressed quickly and clearly. It is noticeable that Gyroscope aims at
being a secure framework and has started to put a lot of effort into achieving this goal. In
that sense, this Cure53 assessment was a step in the right direction.

In summary, in the current state Gyroscope will have a hard time in protecting its users
when single bugs have to be eradicated one by one and the project is plagued by an
array of insecure realms. In that sense, the results of this Cure53 July 2018 assessment
are negative. It must be first and foremost understood that it is close to impossible but
mandatory to keep developing an application and increase its complexity while reaching
security standards of the same level. Only time will tell whether the Gyroscope team
actually invests into meeting all required standards and follows through on the
recommendations made by the Cure53 team. Despite the currently lacking level of
maturity and substandard state of the project’s security posture, Cure53 believes that
optimization and acceptable standards of protections and safety can in time be achieved
by the Antradar Gyroscope PHP web application framework with due attention and
considerable efforts.

Cure53 would like to thank Schien Dong of Antradar for his excellent project
coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 08/08/18 22/22

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Antradar Gyroscope 07.2018

