
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report GovTech FormSG Web & API 07.2020
Cure53, Dr.-Ing. M. Heiderich, BSc. C. Kean, B. Walny, Dr. N. Kobeissi

Index
Introduction

Scope

Test Methodology

WP1: White-Box Security Tests against FormSG, SDK and Webhooks

WP2: Crypto Review against FormSG E2E Encryption Components

Identified Vulnerabilities

GTA-01-001 WP2: Key derivation function vulnerable to certain vectors (Low)

Miscellaneous Issues

GTA-01-002 WP1: Blind SSRF via SNS signature verification (Low)

GTA-01-003 WP1: Webhooks potentially vulnerable to DNS rebinding (Low)

GTA-01-004 WP1: Inconsistent use of HTTP security headers (Info)

Conclusions

Introduction
This report documents the findings of a security assessment of the FormSG web
application, including the related SDK and its implemented E2E cryptography. The work
was requested by the Government Technology Agency Singapore, also referred to as
GovTech, and was executed by Cure53 in July of 2020, precisely in calendar week 30.
Cure53 specifically carried out a penetration test and source code audit paired with a
cryptography review.

The tests and audit involved a team of five Cure53 team members, each of them a
specialist in their respective field of expertise. The testing team examined the entire
range of components in scope within an allocated time and budget of twelve days. The
test methodology for this project was chosen to be white-box; the auditors were given
unencumbered access to the application source code and were able to test against a
deployment on a UAT server made available by GovTech. The static IPs used by
Cure53 during this assignment were communicated in advance of the actual
commencement of the testing activities and allow-listed by the responsible entity.

Cure53, Berlin · 07/27/20 1/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To best address the scope and coverage in accordance with what has been requested
by GovTech, the actual work was split into two distinct and complementary work
packages (WPs). The initial WP1 encompassed white-box testing of the provided
deployment and a simultaneous audit of the respective source code, consisting of
FormSG, its SDK and webhooks. The secondary WP2 was solely focused on reviewing
the cryptography employed in the FormSG E2E encryption components. The latter was
also done by a dedicated specialist.

The project started on time and progressed efficiently. All communications during this
security assessment were done via a dedicated Slack channel provided by GovTech and
into which relevant personnel from Cure53 were invited. A secondary channel was made
available as well, but predominantly used for the preparation work, which took place
ahead of the actual testing activities. Technical conversations were polite and efficient,
Cure53 was able to ask questions, get the respective answers quickly and was able to
share status updates about the progression of the assignment.

Given the chosen white-box methodology, with unobstructed access to source code and
deployed server application, and considering the overall good preparation and
supporting materials, Cure53 managed to cover a very wide range of subjects and
targets, while simultaneously achieving quite significant depth of research. All this
contributed to the very positive penetration test and source code audit results, with a
total of four findings, of which two were later re-evaluated as false positives. The
remaining issues were classified as general weaknesses of Low and informational
severity and, by nature, held limited exploitation potential. This is a very good result,
especially in connection to the rather large and complex attack surface of the application
compound.

In the following sections, the report will first shed some light on the scope of this
assessment and the respective test setup, moving on to elaborate on the actual test
coverage, test methodology and work packages used to structure this July 2020
exercise. Cure53 precisely documents what exactly was checked, despite the unusually
small number of findings in several areas. Subsequently, all valid findings, false positives
or not, are discussed in chronological order, alongside their technical descriptions,
optional Proof-of-Concept (PoC) displays and mitigation advice, whenever applicable.
Finally, the report will close with broader conclusions, subsuming the testing team’s
impressions on security and privacy of the software complex while further expanding on
some of the more abstract insights gained during these passed penetration tests and
source code audits. Cure53 offers additional high-level advice on possible improvements
and continued hardening where appropriate.

Cure53, Berlin · 07/27/20 2/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• White-Box Security Tests & Crypto Audits against FormSG Web App & SDK

◦ WP1: White-Box Security Tests against FormSG, SDK and Webhooks
▪ http://uat.form.gov.sg/

◦ WP2: Crypto Review against FormSG E2E Encryption Components
◦ Additional Info:

▪ FormSG user guide:
• https://guide.form.gov.sg

◦ FormSG Sources were shared with Cure53
◦ Additional Material was shared with Cure53
◦ Whitelisted Cure53 IPs

▪ 188.165.115.83
▪ 119.17.157.228
▪ 82.102.25.226
▪ 185.173.226.49
▪ 81.17.246.108
▪ 192.145.124.238
▪ 206.189.218.238

Cure53, Berlin · 07/27/20 3/12

https://cure53.de/
https://guide.form.gov.sg/
http://uat.form.gov.sg/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
The following section documents the testing methodology applied during this
engagement and sheds light on the various areas of the web application subject to
inspection and audit. It further clarifies which areas were examined by Cure53 but did
not yield any findings.

WP1: White-Box Security Tests against FormSG, SDK and Webhooks
The information below describes the tests and coverage achieved for the web security-
related testing of the given FormSG scope. The section comments on which areas were
investigated by utilizing the enumerated approaches.

• During the source code review and white-box penetration testing of the given
web platform, it was made sure that all common web security practices are
followed.

• Additional fuzzing and input-validation testing, along with verification of the
appropriate parts of the source code, was done to achieve maximum possible
coverage.

• Starting with general checks on the web server, in particular of all the expected
security headers, it was noticed that a certain selection was missing. Although
this is not a serious issue, it is recommended to make sure the web server
responds with the advised configurations. Details can be found in the appropriate
ticket at GTA-01-004.

• Although one of the set cookies was scoped to the parent domain, Cure53 was
not able to identify any related risks. Session cookies correctly set all
recommended flags and even included the samesite attribute to prevent CSRF
attacks.

• During request parsing checks, it was additionally ensured that recent attack
types - such as request smuggling - are prevented. Cure53 ran all checks for
TE.CL and CL.TE vectors without success, thus proving that potentially disjunct
frontend and backend software agree on the same transfer encoding types.

• Continuing with checks against all currently defined routes and making sure that
all request paths within the web application are correctly handled, it was noticed
that routing is terminally defined. Static routes via insecure filesystem operations
were absent and no accidentally left-behind or still reachable artifacts could be
spotted. All other parts of the routing follow recommended formats with strict
limitations on what comprises valid request paths.

• Verifying that login functionality works as expected, it was realized that OTP
generation is secure and expiration times are consistently checked. Hashed
storage of tokens was found to be up to current standards.

Cure53, Berlin · 07/27/20 4/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• OTP challenges were found to be invincible to brute-force attacks, as the
maximum number of attempts is limited and the concurrent generation of multiple
valid codes is prohibited.

• Additional testing of login and all other methods receiving user-input (also for
shared forms) was completed for injection-type attacks. Since Mongoose is the
NoSQL solution of choice, it was ensured that all delivered request variables
follow the expected content type.

• The audit proceeded to white-box testing of dangerous NodeJS sinks, e.g.
fs.read-, writeFile-calls and similar pitfalls like child_process invocations,
resulting in the discovery of a limited SSRF vulnerability, which is described in
GTA-01-002. While the problem’s impact is rather limited, Cure53 still feels this is
a flaw which is worth-resolving to limit possible consequences.

• Deep checks were done against all attachment and upload features, in particular
for form submissions. File handling and checks for potential directory traversal
vulnerabilities and symlink attacks against zip uploads (as this is an explicitly
allowed file format) were executed in vain. The integration with AWS was
evaluated and is considered flawless.

• A similarly good impression (apart from one issue) was left by the webhooks
functionality. All checks are deemed clean and it was verified that the chosen
Axios client library is specifically configured to not follow HTTP redirects.
Hostnames are consistently resolved and checked against private address
spaces, even though it may be possible that this functionality is vulnerable to
DNS rebinding. Judging by the coding style, it may very well be possible that the
timeframe between the host validation and the actual POST request offers a race
window, as described in GTA-01-003. Such impact would most likely be quite
limited and highly dependent on attackers being able to conduct extensive
network reconnaissance before being able to successfully attempt exploitation.

• The FormSG web application and API made a robust impression with regard to
client-side vulnerabilities. Not a single XSS vulnerability could be identified, which
should be attributed to the developer’s correct use of the AngularJS framework.

• All access controls for creating, updating and deleting items across the FormSG
application were found to be secure and all tested endpoints correctly verify the
current user’s permissions before granting access.

Cure53, Berlin · 07/27/20 5/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

WP2: Crypto Review against FormSG E2E Encryption Components
A list of items below seeks to detail the tasks completed during the cryptography-
centered portion of the security testing phase of this project. This is to underline what the
Cure53 testers covered during their analysis, particularly in regard to mobile application
security within FormSG.

• FormSG’s form encryption primitives were traced back to their original
implementation (TweetNaCl) and reviewed for proper and secure usage.

• Care was taken to assess whether forgery of submissions was possible, as well
as in terms of additional information gleaned based on their cipher-text (aside
from file-size and information about the submitter.)

• “Encoding for encrypted data” was verified for correctness and abuse potential;
specifically instances constructing encodings were checked for the possibility to
create colliding or misleading encodings.

• The generation and communication of public keys using X25519 between
servers and clients was checked. The standard submission methodology, which
employs the local secret signing key for authentication and a communicated
server public key for encryption, was examined in order to verify against
scenarios where clients could be tricked into encrypting payloads incorrectly. A
critical assumption in this regard is that the server is not compromised and that
TLS is employed on all secure channels.

• The usage of TweetNaCl rules out issues that plague other cryptographic APIs,
such as nonce reuse/misuse and the usage of low-level cryptographic functions
without message authentication or flawed Diffie-Hellman operations.

• Password management and hashing was checked for resistance against GPU-
based attacks and other kinds of attempts to undermine the security gains from
stretching user-provided passwords or key material.

• The controllers for email form encryption and submission were checked to
ensure that encryption functions were bound correctly.

Cure53, Berlin · 07/27/20 6/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Every vulnerability is
additionally given a unique identifier (e.g. GTA-01-001) for the purpose of facilitating any
future follow-up correspondence.

GTA-01-001 WP2: Key derivation function vulnerable to certain vectors (Low)
Note: This issue was evaluated as false-positive, since the mentioned functions are
used for hash integrity checks and not for key stretching.

It was found that FormSG uses PBKDF2-HMAC-SHA512 in order to stretch encryption
key information. On the one hand, the chosen hash function - namely SHA512 - is
relatively computation-expensive. On the other hand, 10.000 rounds of PBKDF2 is below
recommended minimums, and the P2BKDF approach in general is still vulnerable to a
multitude of attacks including parallelization1, optimization and GPU-based cracking2.

Affected File:
dist/backend/app/controllers/email-submissions.server.controller.js

Affected Code:
function createHash(response, salt) {
 let saltLength = 32;
 salt = salt || crypto.randomBytes(saltLength).toString('base64');
 let iterations = 10000;
 let keylen = 64;
 let digest = 'sha512';
 return new Promise((resolve, reject) => {
 crypto.pbkdf2(response, salt, iterations, keylen, digest, (err, hash) =>
{
 if (err)
 reject(err);
 else {
 resolve({
 hash: hash.toString('base64'),
 salt,
 });
 }
 });
 });

1 https://www.usenix.org/conference/woot16/workshop-program/presentation/ruddick
2 https://link.springer.com/chapter/10.1007/978-3-319-26823-1_9

Cure53, Berlin · 07/27/20 7/12

https://cure53.de/
https://link.springer.com/chapter/10.1007/978-3-319-26823-1_9
https://www.usenix.org/conference/woot16/workshop-program/presentation/ruddick
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to replace PBKDF2 with a password-hashing function that is more
resistant to these attacks, such as scrypt3. Unlike PBKDF2, scrypt depends on memory
performance and is therefore more difficult to parallelize or crack by utilizing GPU
computation. scrypt could be deployed with the parameters: N = 218, r = 8, p = 1.

Miscellaneous Issues
This section covers the noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

GTA-01-002 WP1: Blind SSRF via SNS signature verification (Low)
During the source code audit, a small input validation error resulting in a SSRF
vulnerability via HTTP GET was discovered. It lies in the fact that the SigningCertURL
URL is extracted from the request body without any allow-listing in place. This is visible
in the following part of the application’s source code.

Affected File:
formsg-master/src/app/utils/sns.js

Affected Code:
const isValidSnsSignature = async (body) => {
 const { data: cert } = await axios.get(body.SigningCertURL)
 const verifier = crypto.createVerify('RSA-SHA1')
 verifier.update(getSnsBasestring(body), 'utf-8')
 return verifier.verify(cert, body.Signature, 'base64')
}

The only limitation is the request URL being forced to HTTPS and having to end with
“.pem”. The file extension does not appear to be a problem though, since it can actually
be moved to the request query. The following request demonstrates this against an
attacker-controlled web server.

Example Request:
POST /emailnotifications HTTP/1.1
Host: uat.form.gov.sg
Content-Length: 204
Content-Type: application/json;charset=UTF-8

3 https://www.tarsnap.com/scrypt.html

Cure53, Berlin · 07/27/20 8/12

https://cure53.de/
https://www.tarsnap.com/scrypt.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

{"Message":"asd","MessageId":"asd","Timestamp":"asd","TopicArn":"asd","Type":"as
d","Signature":"asd","SigningCertURL":"https://apple.com.mmap.space/arbitrary-
rest-api?discard=.pem","SignatureVersion":"1"}

Observed server log entry:
13.250.48.167 - - [17/Jul/2020:17:03:50 +0200] "GET /arbitrary-rest-api?
discard=.pem HTTP/1.1" 404 178 "-" "axios/0.19.2"

It is consequently possible for attackers to abuse this vulnerability to send arbitrary GET
requests to internal web servers not open to the public. Such an attempt requires
additional information gathering and port scanning, however, thus only rating this issue
miscellaneous. The risk does exist though and should still be treated as an input-
validation problem. It is recommended to verify the SigningCertURL against an allow-list
of URLs before sending the GET request.

Note: This issue was fixed by the maintainers and the fix was reviewed by Cure53 in
late July 2020. Cure53 had access to the PR and accepted the fix as working and valid.

GTA-01-003 WP1: Webhooks potentially vulnerable to DNS rebinding (Low)
During the source code audit and verification of webhook functionality, an issue similar
to GTA-01-002 was found. This time around it stems from the fact that the passed
webhook URL may resolve to an unexpected resource after it has been verified. This is
visible in the following excerpt of the application’s source code.

Affected File:
formsg-master/src/app/controllers/webhooks.server.controller.js

Affected Code:
function post(req, _res, next) {
 const { form, submission } = req
 if (form.webhook.url) {
 const webhookUrl = form.webhook.url
[...]
 validateWebhookUrl(webhookParams.webhookUrl)
 .then(() => postWebhook(webhookParams))

While the code depicted above correctly verifies the passed webhook URL (in terms of
having it only point to HTTPS URLs and prohibiting private IP ranges), the DNS server
might actually resolve webhookUrl to another resource during postWebhook. This way of
verification and posting leaves room for a race condition within which the DNS entry
might get updated.

Cure53, Berlin · 07/27/20 9/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Because the attack is quite impractical and the timeframe rather small, Cure53 did not
attempt to exploit it, but resolved to warn of the potential impact. The risk is similar to
what was already described in GTA-01-002, meaning that this issue should be treated
as another potential SSRF vulnerability. It is recommended to store the resolved IP
address as the request target (along with the passed hostname) when initiating the
webhook.

Note: After discussing this issue with the client, it became apparent that a working fix in
the current NodeJS implementation is not easily possible. Manually pinning the resolved
IP to outgoing requests results in TLS certificate verification problems where the only
solution appears to be to disable cert validation entirely.

This, however, is an unacceptable trade-off because a hard to exploit SSRF is not
reason enough to weaken the security posture of NodeJS’ TLS configuration.
Additionally, GovTech does not appear to host sensitive endpoints inside the internal
network, thus generally lowering the impact of a potential SSRF through DNS
Rebinding.

GTA-01-004 WP1: Inconsistent use of HTTP security headers (Info)
It was found that the FormSG platform is missing certain HTTP security headers in some
HTTP responses. This does not directly lead to a security issue, yet it might aid
attackers in their efforts to exploit other problems. The following list enumerates the
headers that need to be reviewed to prevent this and similar flaws.

• X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent Clickjacking attacks, there are
many other attacks which can be achieved when a web page is frameable4. It is
recommended to set the value to either SAMEORIGIN or DENY.

• Note that the CSP framework offers similar protection to X-Frame-Options in
ways that overcome some of the shortcomings of the aforementioned header. To
optimally protect users of older browsers and modern browsers at the same time,
it is recommended to consider deploying the Content-Security-Policy: frame-
ancestors 'none'; header as well.

Missing security headers are generally bad practice and should be avoided. It is
recommended to add the following headers to every server response, including error
responses like 4xx items. It is recommended to more broadly reiterate the importance of
having all HTTP headers set at a specific, shared and central place rather than setting
them randomly. This should either be handled by a load balancing server or similar

4 https://cure53.de/xfo-clickjacking.pdf

Cure53, Berlin · 07/27/20 10/12

https://cure53.de/
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

infrastructure. If the latter is not possible, mitigation can be achieved by using the web
server configuration and a matching module.

Note: This issue was ultimately judged as a false-positive, since the omission of the
XFO header is a business requirement.

Conclusions
The FormSG web application, SDK and E2E cryptography implementation tested during
this 2020 project made a very good impression, especially when taking a look at the
actual tickets this penetration test and source code audit yielded. Since the only
identified actual vulnerability eventually proved to be a false positive, and all other
findings have been classified as being general weaknesses of maximum Low severity,
the security standing of the software complex can only be described as solid. Having
spent twelve days on the project in the summer of 2020, five members of the Cure53
reached a positive verdict about the security premise of the examined scope.

The observed unexpectedly good security posture can partly be attributed to the correct
application of the AngularJS framework, as no potentially exploitable injections into the
website, the forms or the emails could be achieved. While some general
recommendations about header security were made in GTA-01-004, they had to be
retracted as being false positives by design to satisfy the given business requirements of
X-Frame-Options needing to be omitted. The general deployment of the web application
with other services like AWS appears rock-solid and properly implemented, as no
immediate issues could be identified.

The OTP implementation left a robust impression on the testers, since the generation,
validation and invalidation of tokens left no room for brute-force attacks or similar
mischievous action, for example due to leaked emails. Input-validation checks managed
to identify no flaws except for the ones of little significance, as documented in the
respective tickets GTA-01-002 and GTA-01-003. Both of the mentioned discoveries
concern SSRFs, allowing potential attackers to initiate requests into the local network.
Notably, these have unknown consequences, as Cure53 has not been given any insight
into GovTech’s internal network architecture.

FormSG uses TweetNaCl as the basis for all individual operations of its E2E encryption
implementation. This is an absolutely praiseworthy choice, being a well-specified and
publicly available cryptographic library. All relevant operations were found to be
appropriately bound to the high-level application controllers on both the client and the
server. The code responsible for managing form submissions on the server was
observed to be extra careful in avoiding known pitfalls and any incorrect application of

Cure53, Berlin · 07/27/20 11/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

cryptographic principles. The initial finding GTA-01-001 was later re-evaluated as being
inapplicable, therefore the cryptographic implementation was concluded to be free of
errors.

The audited source code is quite clean and of overall high quality. It was defensively
programmed and follows most of today’s industry standards for modern and secure web
development. It was refreshing to observe that even some of the more exotic attributes
like samesite were correctly applied to sessions, acting as a good additional defense
mechanism. In summary, after re-evaluating the false positives in this report and
possibly mitigating the remaining general weaknesses, it can be conclusively stated that
GovTech has built a solid web application which does not leave much room for security-
relevant errors.

Cure53 would like to thank Sonjia Yan, Yuanruo Liang, Leonard Loo, Darrell Wee and
the rest of the Government Technology Agency (GovTech) team for their excellent
project coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 07/27/20 12/12

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report GovTech FormSG Web & API 07.2020
	Index
	Introduction
	Scope
	Test Methodology
	WP1: White-Box Security Tests against FormSG, SDK and Webhooks
	WP2: Crypto Review against FormSG E2E Encryption Components

	Identified Vulnerabilities
	GTA-01-001 WP2: Key derivation function vulnerable to certain vectors (Low)

	Miscellaneous Issues
	GTA-01-002 WP1: Blind SSRF via SNS signature verification (Low)
	GTA-01-003 WP1: Webhooks potentially vulnerable to DNS rebinding (Low)
	GTA-01-004 WP1: Inconsistent use of HTTP security headers (Info)

	Conclusions

