
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report ExpressVPN Linux Clients 07.-08.2022
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, MSc. F. Fäßler

Index
Introduction
Scope
Severity Glossary
Table of Findings
Testing Methodology
Identified Vulnerabilities

EXP-09-002 WP1: Lack of application firewall rules for VPN gateway (Medium)
EXP-09-003 WP2: Buffer overflow through config-entries on endpoints (Medium)

Miscellaneous Issues
EXP-09-001 FP : MFA code verification throttled incorrectly (Medium)
EXP-09-004 WP2: JSON helpers should check for 0-length strings (Low)
EXP-09-005 WP2: Inconsistent use of he_cli_calloc() (Low)

Conclusions

Cure53, Berlin · 11/09/22 1/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“A VPN (virtual private network) is the easiest and most effective way for people to
protect their internet traffic and keep their identities private online. As you connect to a
secure VPN server, your internet traffic goes through an encrypted tunnel that nobody
can see into, including hackers, governments, and your internet service provider.”

From https://www.expressvpn.com/what-is-vpn

This report describes the results of a penetration test and source code audit against the
ExpressVPN Linux Clients, codebase and associated OS services. Carried out by
Cure53 in the frames of an established, long-term cooperation, the project was
registered as EXP-09.

The work delineated within EXP-09 was requested by ExpressVPN in June 2022 and
initiated by Cure53 in late July and early August 2022. The testing team, consisting of
three senior testers, worked on the scope in CW29, CW30 and CW31. A total of fifteen
days were invested to reach the coverage expected for this project. The work was split
into two separate work packages (WPs). These read as follows:

• WP1: Source code-assisted penetration tests against ExpressVPN Linux client
binaries

• WP2: Source code audits and reviews of the ExpressVPN Linux client codebase

Note that some parts of the scope have already been covered in one of the previous
evaluations conducted by Cure53, namely in EXP-04, which was completed in March
2021. In this project, the Cure53 team analyzed the Lightway VPN protocol (known as
Helium internally). While Lightway was audited again as part of EXP-09, it was treated
with a lower priority. Furthermore, other components were assessed as part of EXP-08
(macOS) and this rendered the tests of the ExpressVPN Linux clients a bit more
compact in this instance. Cure53 was given access to the codebase which was shared
during the pentest preparatory phase. Detailed, test-supporting information and scope
documentation were also provided. The methodology chosen here was white-box.

All preparations were done in July 2022, namely in CW28, making it possible for the
Cure53 team to have a smooth start into the actual testing phase. Communications
during the project were done using a shared Slack channel into which all involved
personnel from ExpressVPN and Cure53 were invited. Test-related information could be
exchanged on Slack, especially in regard to progress being made. The discussions
throughout the test were very good and productive and not many questions had to be
asked. The scope was well-prepared and clear, greatly contributing to the fact that no
noteworthy roadblocks were encountered during the test.

Cure53, Berlin · 11/09/22 2/17

https://cure53.de/
https://www.expressvpn.com/what-is-vpn
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 offered frequent status updates about the test and the emerging findings. Live-
reporting was not specifically requested and, given the rather low severity ratings of all
findings, would not have been necessary. The Cure53 team managed to get very good
coverage over the WP1-WP2 scope items. Among five security-relevant discoveries, two
were classified to be security vulnerabilities and three to be general weaknesses with
lower exploitation potential. It needs to be stated clearly that this list of issues is very
short, pointing to the overall good outcome of this testing round. In addition, in EXP-09
the highest severity score reached by a single issue stood at Medium, which is rather
impressive.

While Cure53 obtained good coverage of all the in-scope items and source code, it is
worth noting that most native implementations of the RPC methods were employed in a
library where no sources could be shared. Due to coverage of most of the shared
components as part of the EXP-08 (macOS) assessment, this audit was quite narrowly
scoped and focused on the interactions with the Linux OS through the Golang interfaces.
Nevertheless, findings such as EXP-09-003 - which describes a buffer overflow
vulnerability in the Helium CLI - are quite noteworthy. Still, they are not easily exploitable
without sufficient access to the backend systems of ExpressVPN. Next to this, EXP-09-
00 1 is a rate-limiting issue that most likely affects one of the backend API systems but
can be exploited from the Linux clients as well. Finally, EXP-09-002 is a finding that was
originally spotted during the macOS audit and has been tracked as EXP-08-004. This
problem was found to affect the Linux deployment as well. The remaining issues can be
regarded as recommendations pertinent to further improving the code quality.
Remediation of these minor flaws can raise the overall robustness of the app further.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. A dedicated section then
offers a glossary to explain the system behind the categorization of the security
problems spotted. This is followed by a chapter on test methodology and coverage,
which specifies what the Cure53 team did in terms of attack-attempts and other test-
relevant tasks.

Next, all findings will be discussed in grouped vulnerability and miscellaneous
categories, then following a chronological order in each group. Alongside technical
descriptions, PoC and mitigation advice are supplied when applicable. Finally, the report
will close with broader conclusions pertinent to this summer 2022 project. Cure53
elaborates on the general impressions and reiterates the verdict based on the testing
team’s observations and collected evidence. Tailored hardening recommendations for
the ExpressVPN complex, specifically the Linux clients and the corresponding
codebase, are also incorporated into the final section.

Cure53, Berlin · 11/09/22 3/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Code audits & Security assessments of ExpressVPN’s Linux clients & codebase

◦ WP1: Source-code assisted penetration tests against ExpressVPN Linux client
binaries
▪ Primary audit focus:

• ExpressVPN client applications for Linux
• Version: v3.28.0.6-1

▪ Secondary audit focus:
• Integrated lightway client

▪ In-scope items:
• All communications from the CLI binary and browser extensions to the

ExpressVPN daemon, listening on the UNIX socket, including the respective
implementations for CLI and browser extensions.

• The ExpressVPN daemon, which is responsible for handling all functionality
and logic of the application.

• The ExpressVPN Linux application installers for the respective Linux
distributions.

▪ Out-of-scope items:
• Denial-of-Service on the lightway protocol included in the Linux client

application and caused by out-of-memory errors
• Dependencies for “xv_engine”, “xv_linux”, OpenVPN and Lightway
• Development or testing tools provided in the source code
• VPN servers themselves with the exception of all traffic to/from the VPN

servers, which is in scope.
• Any split tunneling-related files that are not supported by the Linux

application.
• AWS APIs used by the client application with the exception of MitM between

the APIs and the client application, which are included in scope
◦ WP2: Source code audits & Reviews of the ExpressVPN Linux client codebase

▪ All in-scope sources for ExpressVPN client for Linux were shared
• Test-user accounts were created and activated for the auditing team
• All binaries in scope were shared with Cure53
• Test-supporting material was shared with Cure53
• All relevant sources were made available for Cure53

Cure53, Berlin · 11/09/22 4/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Severity Glossary
The following section details the varying severity levels assigned to the issues
discovered in the ExpressVPN complex.

Critical: The highest possible severity level. Indicates issues that allow attackers to
achieve extensive access to sensitive areas, such as critical systems, applications, data
or other pertinent components in scope.

High: This marker is used for issues that allow attackers to achieve significant yet
somewhat limited access to sensitive areas in scope. It also includes issues with limited
exploitability that can nevertheless facilitate a significant impact upon the target in scope.

Medium: This level is ascribed to issues that do not cause major implications for the
areas in scope. Additionally, the issues requiring a more limited exploitation are graded
as Medium.

Low: This level characterizes issues that have a highly limited impact on the areas in
scope. Mostly they do not point to the level of exploitation but rather to the minor
consequence of obtainable information or lower grade damage on the targeted
components or areas in scope.

Info: This category covers issues considered merely informational in nature. They
should mostly be viewed as hardening recommendations or improvements that can
generally enhance the security posture of the areas in scope.

Cure53, Berlin · 11/09/22 5/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Table of Findings

Identified Vulnerabilities

ID Title Severity

EXP-09-002 WP1: Lack of application firewall rules for VPN gateway Medium

EXP-09-003 WP2: Buffer overflow through config-entries on endpoints Medium

Miscellaneous Issues

ID Title Severity

EXP-09-001 FP: MFA code verification throttled incorrectly Medium

EXP-09-004 WP2: JSON helpers should check for 0-length strings Low

EXP-09-005 WP2: Inconsistent use of he_cli_calloc() Low

Cure53, Berlin · 11/09/22 6/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Testing Methodology
The following section summarizes Cure53's testing process in a more detailed manner.
The goal of this section is to make the overall coverage more transparent by including all
steps that were taken during the assessment. A section of this type is usually included
when the number of findings is quite low or when the findings seem to cover only one
aspect of the targeted scope.

With the following bullet points, Cure53 highlights the pentest-relevant tasks and findings
from different angles. Additionally, the list can inform the maintainers about the
attempted attacks which did not work or were mitigated more generally.

• As mentioned in the scope document, the main goal of the pentest was to find
vulnerabilities within the ExpressVPN Linux clients, as well as in the associated
services that they register with. Some libraries were examined using the black-
box methodology, as sources for them could not be provided for internal reasons.

• Cure53 started by enumerating which services the ExpressVPN installer
registers with and determined which components of the whole software
architecture provide the most interesting attack surface.

• Since a multi-user scenario on the host system was deemed as out-of-scope,
cross-user attacks have been entirely omitted and attention was mostly on
privilege escalation, data stealing and overall robustness of the clients.

• Among the targets, the expressvpnd, the VPN command and control service, and
the lightway protocol service (actually called xv_helium_cli) run with highest
permissions as root. Thus, they form the most sensitive layer that can be
targeted for privilege escalation. While expressvpnd can be communicated with
through JSON RPC over a UNIX domain socket in the default case, interaction
with lightway mostly runs through config files that are generated on the fly at
runtime when VPN connections are going to be established.

• As such, the first specific aim was to find how JSON RPC calls are handled by
the privileged VPN service. The definition for all reachable RPC calls can be
found in the xvpnd/jsonrpc/server/service.go. From here, all implementations for
each RPC method can be reached, along with all necessary properties and types
for the passed arguments.

• For each of the listed RPC methods, Cure53 went ahead and studied the
implementation for potential pitfalls in the Go language. Calls that branch out to
os.exec or sensitive file read operations were studied for potential side-effects
that could result in CLI injection or information leaks through passed files.

• It was also checked how the arguments of each RPC call are handled and
whether the type-definitions made sense. Especially when string types were
used, it had to be made sure that additional validations are present, for example
when generating values for config file entries.

Cure53, Berlin · 11/09/22 7/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• For example, the SetEnginePreferences method takes a significant portion of
client configurations and later passes them to lightway in order to define how
connections are established. In this process, every preference needs to be
sufficiently validated and it must be ensured that potentially malicious input
cannot escape the JSON config definition. In addition, it needs to allow injection
of arbitrary config entries that result in arbitrary up and down scripts to be
invoked.

• In this context, the relevant code of xvpnd/jsonrpc/server/service_default.go
needed to be carefully studied and every args definition of type string had to be
validated. Actual validation happens in xvpnd/vpn/preferences.go where the call
to SetUserPreferences() guarantees that all types are correct.

• Cure53 attempted to spot potential flaws that originate from Go's interaction with
the underlying operating system. Additionally, the more native functions in the
socket delegations and inside the xvclient were studied as well. Many of the
implementations there were found decorated with Go's unsafe keyword and,
thus, had to be written very carefully, especially when natively handling C strings
which get allocated dynamically.

• As to not create potential use-after-free scenario's, a check concerned deferring
and freeing memory in a correct way. For this, careful auditing of
xv_engine/pkg/xvclient/client.go was carried out. While that portion of the pentest
took up a lot of the allocated testing time, Cure53 did not find any flaws in this
area. The testers shared the feeling that the ExpressVPN developers knew what
they were doing when implementing the native interfaces.

• However, it should be noted that Cure53 only got access to the Go part of the
client, and no source code of the other internal libraries was shared. This means
it was not possible to conduct code review beyond the Go layer. Especially in
regard to the potentially unsafe data passed from Go to the internal libraries, it
was not possible to verify whether their handling was safe in the actual source
code.

• Next to the source code audit, additional dynamic testing of the RPC methods
was performed. This was necessary since many native implementations of the
method branch out to the native libxvclient library, which was tested using a
black-box methodology as no source code could be provided. This is, for
example, how ticket EXP-09-001 was discovered, since random invocations of
different RPC calls already trigger unexpected behaviors.

• Further dynamic testing was done on how the VPN connection is set up in
general. For example, a simple check with the route command to check how the
routing through the network interfaces is set up showed one potential leak. This
leak can be accomplished when an attacker has Man-in-the-Middle capabilities. It
turned out that a very similar issue was already present and found during the test
of the macOS previously, as mentioned in EXP-09-002. No further issues were

Cure53, Berlin · 11/09/22 8/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

identified in that regard, mainly because the Linux client is much simpler from a
design perspective.

• As one tester already gained experience with several areas of the application
during the OSX specific test, Cure53 could spend time on the secondary scope
items as well. For example, the lightway client (xv_helium_cli) was the secondary
focus for this assessment and as such was studied for potential issues. Since it is
natively written in C, it is much more prone to potential memory corruption
issues.

• As already mentioned, the main interaction between the user-facing ExpressVPN
CLI and lightway happens through config files that are dynamically generated
and stored in safe locations on the OS. Again, it was made sure that all of the
relevant file permissions for the created directories and config files were correct
and could not be read or stolen by unauthorized users.

• While the threat surface of the lightway client is greatly reduced due to it being
only invoked by the daemon, it still makes sense from an audit point of view to
treat the application as a standalone binary. In this case, the config file is the
most obvious point of attack. During code review of the JSON parsing routine, it
was found that bounds checking was missing from the endpoint list. This led to a
classic buffer overflow situation EXP-09-003.

• Besides the logic of the JSON parsing helper functions, the code was also
reviewed with regard to other classic C anti-patterns, such as format string
vulnerabilities, use-after-frees and buffer/heap overflows. This uncovered a few C
anti-patterns, as clarified in EXP-09-004 and EXP-09-005. However, nothing else
of significance was found.

• After the initial review of the first layer, Cure53 wanted to go deeper into the code
review by extending the test with fuzzing. Quite some time was spent on mocking
missing functions and types in order to build and execute the config parse
functions.

• While the source code for these binaries was out of scope, Cure53 was unable to
draw meaningful conclusions from the mocked-up code. ExpressVPN is planning
a more thorough review of the client at a later date.

Cure53, Berlin · 11/09/22 9/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. EXP-09-001) for the purpose of facilitating any
future follow-up correspondence.

EXP-09-002 WP1: Lack of application firewall rules for VPN gateway (Medium)
Note from ExpressVPN: There are multiple preconditions required for there to be any
security impact on this finding, some of which include social engineering or getting the
user to visit a malicious website. Furthermore, any attempts to remediate this finding is
likely to worsen security as a result of the large complexity associated.

The only impact to users exists as a result of social engineering, where a user is tricked
into visiting a malicious website. In this case, there are significantly more damaging
actions an attacker would likely try to take.

While checking whether previous vulnerabilities that have been reported in past pentest
iterations might be applicable for the Linux scope of this testing round, it was noticed that
the ticket "EXP-08-004 WP1: Lack of application firewall rules for VPN gateway
(Medium)" was applicable. While this finding was originally spotted on macOS, the
problematic route is present on Linux machines with the activated ExpressVPN as well.
This is shown in the following excerpt of the routing table that is pushed by the client.

Affected route (shell excerpt):
$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.65.0.5 128.0.0.0 UG 0 0 0 tun0
default 10.0.0.1 0.0.0.0 UG 0 0 0 enp0s3
10.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 enp0s3
10.0.0.0 10.0.0.1 255.0.0.0 UG 0 0 0 enp0s3
10.65.0.1 10.65.0.5 255.255.255.255 UGH 0 0 0 tun0
10.65.0.5 0.0.0.0 255.255.255.255 UH 0 0 0 tun0
84.247.59.229 10.0.0.1 255.255.255.255 UGH 0 0 0 enp0s3
[..]

As such, the PoC which has already been documented in the original ticket works on
Linux as well. It has to be noted that this issue can only be exploited by nation-state level
attackers who are able to intercept connections to the highlighted IP address - either by
directly being able to perform an MitM attack or by compromising the machine and
accessing incoming connections to it. In this case, an attacker can trick the victim into

Cure53, Berlin · 11/09/22 10/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

sending a clear text packet through the victim's default network interface (enp0s3 in this
case). From this it follows that the same recommendation applies here, too:

To prevent leaking the clear IP of VPN users to attackers with network sniffing
capabilities, it is recommended to configure an application firewall rule that only allows
the ExpressVPN daemon to use this route. Furthermore, one should consider disabling
services that allow unencrypted connections on the VPN gateways.

EXP-09-003 WP2: Buffer overflow through config-entries on endpoints (Medium)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

During a deep-dive into the xv_helium_cli client, a buffer overflow in the config-parsing
code was found. The number of possible endpoints is a constant value defined by
MAX_ENDPOINTS to be eight. By passing in a config with more than eight endpoints,
arbitrary memory can be overwritten.

Affected file:
xv_helium_cli/src/he_config.c

Affected code:
// endpoints
json_object* jendpoints = json_object_object_get(jobj, "endpoints");
if (jendpoints) {
 // array
 if (json_object_is_type(jendpoints, json_type_array)) {
 size_t len = json_object_array_length(jendpoints);
 if (len == 0) {
 HE_LOG_ERROR("error parsing config: empty 'endpoints'");
 goto fail;
 }
 for (size_t i = 0; i < len; i++) {
 json_object* item = json_object_array_get_idx(jendpoints, i);
 if (item) {
 int rc = he_endpoint_from_json(item, &config->endpoints[i]);

Proof-of-Concept:

The following poc.json config file can overflow the endpoints array.

{
 "up": {
 "path": "/usr/sbin/expressvpnd", "args": ["--update-dns-
config=static_resolv_conf"]
 },

Cure53, Berlin · 11/09/22 11/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 "down": {
 "path": "/usr/sbin/expressvpnd", "args": ["--update-dns-
config=static_resolv_conf"]
 },
 "endpoints": [
 {
 "server": "127.0.0.1", "server_dn": "AAAAAAAAAAAAAAAAA",
 "protocol": "udp", "port": 4919,
 "username": "xsi6vtrg3qjfiswsqy4yl64u",
 "password": "jb13noadqb357n5hl6stkf1e"
 },
 // [....] repeat endpoint objects dozens of times
 {
 "server": "127.0.0.1", "server_dn": "AAAAAAAAAAAAAAAAA",
 "protocol": "udp", "port": 4919,
 "username": "xsi6vtrg3qjfiswsqy4yl64u",
 "password": "jb13noadqb357n5hl6stkf1e"
 }
],
 "keepalive": 10, "keepalive_timeout": 60
}

The following output shows various crashes from the overflowing config:

/usr/lib/expressvpn/lightway -c poc.json
{"time":"2022-07-25T22:37:43.660+0000","log_level":"ERROR","message":"error
parsing config: invalid 'up'"}
Segmentation fault (core dumped)

/usr/lib/expressvpn/lightway -c poc.json
{"time":"2022-07-25T22:43:46.525+0000","log_level":"ERROR","message":"error
parsing config: invalid 'up'"}
free(): invalid next size (fast)
Aborted (core dumped)

The reason that this issue exposes a lower-to-medium severity level is attributed to the
fact that it cannot easily be exploited by a remote attacker. Being able to send the
relevant config entries to the ExpressVPN client would require access to ExpressVPN
backend systems. Nevertheless, this is an input validation issue where it is
recommended to limit the endpoints array loop to eight or to dynamically allocate the
array. This should be depending on the endpoints configured in the JSON file.

Cure53, Berlin · 11/09/22 12/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

EXP-09-001 FP: MFA code verification throttled incorrectly (Medium)
Note: After review of the issue, Cure53 and ExpressVPN agree that the the rate limits
currently in place are sufficient, and that ExpressVPN has sufficient protections in place
for the GenerateMfaCode endpoint. As a result of these protections, this issue is limited
to a self-attack. Due to the protections in place, there is no security issue here and this
issue is marked as a false positive.

The xvpnd service under Linux implements two additional JSON-RPC commands that
are used to verify MFA codes. While the original usage of both calls is not entirely clear,
they are apparently employed to verify new client app installations through a second
factor, in this case the client's email address.

While the XVPN.RequestMfaCode call is used to initiate the MFA verification flow and
send out the six-digit value to the client's registered email address,
XVPN.ValidateMfaCode simply validates it through the libxvclient.so library. It was
noticed that the latter RPC call is highly throttled and allows only a few attempts at
verifying the submitted code.

However, an alternative to submitting RequestMfaCode and ValidateMfaCode seems to
reset the brute-force protection, so that a new MFA code is being resent for every
iteration of the loop. As such, simply sending messages to xvpnd - like in the following
example - would signify bruteforcing of the MFA code without interruption of throttling. In
addition to that, this functionality will also generate an unlimited number of emails in the
user's address box.

Example message:
{"method":"XVPN.RequestMfaCode","params":[{}],"id":3}
{"method":"XVPN.ValidateMfaCode","params":[{"code":"123456"}],"id":3}
{"method":"XVPN.RequestMfaCode","params":[{}],"id":3}
{"method":"XVPN.ValidateMfaCode","params":[{"code":"123456"}],"id":3}
{"method":"XVPN.RequestMfaCode","params":[{}],"id":3}
{"method":"XVPN.ValidateMfaCode","params":[{"code":"123456"}],"id":3}

It is recommended to correctly apply the throttling and brute force protections when both
RPC messages are called.

Cure53, Berlin · 11/09/22 13/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-09-004 WP2: JSON helpers should check for 0-length strings (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

During further source code audits of the JSON parsing functionalities that are used for
lightweight, it was noticed that the string helper function might get misused. This is
because the function itself expects buffer sizes that are always greater than zero,
without actually checking whether the passed length-field is actually long enough. The
following snippet depicts the affected code:

Affected file:
xv_helium_cli/src/json_helpers.c

Affected code:
he_json_object_retval_t json_object_object_get_string(json_object* jobj,
 const char* key,
 char* buf,
 size_t buflen) {
[...]
 const char* str = json_object_get_string(jval);
 strncpy(buf, str, buflen);
 buf[buflen - 1] = 0;

The problem here is that the function expects the buflen parameter, which is the length
of the supplied buffer to write the string value to, to be greater than zero. This is because
it requires one byte of room for the 0-byte. However, in the case of an exactly 0-sized
buffer and thus a 0-length, the subtraction of buflen - 1 will actually wrap around and
cause an out-of-bounds write. Developers who implement further usage of the
json_object_object_get_string function might not be aware of this behavior and could
introduce additional bugs into the codebase.

It is recommended to make sure that the function checks whether buflen is greater than
zero and returns with an appropriate retval_t value if that is not the case.

Cure53, Berlin · 11/09/22 14/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-09-005 WP2: Inconsistent use of he_cli_calloc() (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Another rather minor code quality issue was identified with the usage of the
he_cli_malloc() function, which is called instead of he_cli_calloc(). When libuv is
supposed to handle the UDP communication between clients and servers, the
uv_udp_recv_start() function is used to register the callbacks for allocating temporary
memory and receiving the actual data. The first callback is defined at on_udp_alloc() and
can be seen in the following snippet.

Affected file:
xv_helium_cli/src/uv_callbacks.c

Affected code:
#define NUM_MMSG_CHUNK 16

void on_udp_alloc(uv_handle_t *handle, size_t suggested_size, uv_buf_t *buf) {
#if defined(__linux__) || defined(__APPLE__)
 // Must allocate multiples of `suggested_size` to use `UV_UDP_RECVMMSG`
 buf->base = he_cli_malloc(NUM_MMSG_CHUNK * suggested_size);
 buf->len = NUM_MMSG_CHUNK * suggested_size;
#else
 he_cli_buffer_alloc(handle, suggested_size, buf);
#endif
}

Since he_cli_malloc() is used to reserve heap memory, the arithmetic operation to
determine the total size of the needed memory (NUM_MMSG_CHUNK *
suggested_size) might overflow, depending on the value of suggested_size. Since no
check for 0-sized allocation parameters is made, it is possible that only a very small
memory region is reserved. This could be entirely prevented by using he_cli_calloc()
instead, since the underlying libc call will additionally check for overflows and return an
error code that can be caught.

It is recommended to simply replace the he_cli_malloc() call with an appropriate call to
he_cli_calloc().

Cure53, Berlin · 11/09/22 15/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As already suggested in the Introduction, this assessment of the ExpressVPN Linux
client and codebase demonstrated that the components in scope have been developed
and deployed with a lot of attention to security best practices. Therefore, three Cure53
testers responsible for this white-box examination only managed to spot five security-
relevant issues with limited impact. The positive impression about the scope of EXP-09
is further ensured by the fact that this summer 2022 examination benefited from a
generous budget and a tight scope, thus making it less likely that some issues evaded
detection.

Absence of findings beyond a Medium rank is yet another strong positive indicator of the
condition of the security premise at the ExpressVPN Linux targets. One could argue that
the scope was possibly too narrow to fully judge the codebase, but the code provided for
review was consistently clean, correct and free from security pitfalls. In sum, the overall
code of the main ExpressVPN CLI and VPN command and control services adhere to a
very high standard. This is applicable to pretty much every area of the code that is
written in the Go language. None of the common Go security flaws could be detected
throughout the project. Sanitization routines of the sensitive RPC layer leading to the
privileged services were complete and stopped all potential attacks that Cure53
attempted. Side-channel leaks through, for example, incorrectly set directory
permissions, could also not be identified.

Only two non-serious, Medium-ranked issues, were spotted in EXP-09-002 and EXP-09-
001 in the key area of the codebase. The first is a rediscovery of incorrectly pushed VPN
interface routes. They might allow nation-state level attackers with Man-in-the-Middle
capabilities to extract a user's original IP address. The latter is a faultily implemented
rate-limiting mechanism that allows brute-forcing of the requested 2FA token.

Other than that, no issues of major significance were spotted during the Linux-specific
audit of the Go codebase of ExpressVPN and its underlying architecture. This is also
why this report is extended to include a substantial testing methodology section that
highlights the overall process followed when covering the scope. Specifically, that
section made it possible to present a little more detail regarding what Cure53 tried to
accomplish when auditing specific parts of the application.

For the secondary in-scope items, findings such as EXP-09-003, together with the
miscellaneous issues that were uncovered in this codebase, show that writing C code
can be very tricky. As such, Cure53 recommends a full review of the lightway client is
performed to ensure that such issues are identified and removed from the software stack
written in C and C++.

Cure53, Berlin · 11/09/22 16/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It needs to be noted that the native libxvclient library that was only looked at using the
black-box methodology during this pentest, even though it actually implements most
functionalities of the underlying RPC mechanism of the VPN command and control
service. Cure53 could only assess the client "frontend" or "wrapper code" written in Go
which severely limited the testing depth.

Upon several requests from the testing team, some additional source files were shared,
allowing Cure53 to get slightly more insights. However, the provided data turned out to
reference even more source code that was missing. Generally, it can be said that this
severely hindered the in-depth source code reviews and Cure53 had to rely mostly on
the dynamic, closed-source testing of certain parts.

With applications written in unsafe languages like C, C++ or even unsafe Go code which
is directly calling C functions, it is very important to understand all referenced types and
functions. If the provision of additional materials was more extensive, Cure53 could have
used the time to conduct additional fuzz tests and get a better overview and a much
deeper understanding of the application complex as a whole.

In conclusion, it is important to note that there is a clear recommendation of performing
further tests on the areas that were deemed out-of-scope or could not be audited fully.
Nevertheless, the items that were in fact in scope and auditable received good
coverage, as the comprehensive testing methodology chapter shows. The overall
impression here is a rather good one. After a remediation of the mentioned findings, the
general robustness of the code should be raised to an even better level.

Cure53 would like to thank Brian Schirmacher and Timothy Tan from the ExpressVPN
team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · 11/09/22 17/17

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report ExpressVPN Linux Clients 07.-08.2022
	Index
	Introduction
	Scope
	Severity Glossary
	Table of Findings
	Testing Methodology
	Identified Vulnerabilities
	EXP-09-002 WP1: Lack of application firewall rules for VPN gateway (Medium)
	EXP-09-003 WP2: Buffer overflow through config-entries on endpoints (Medium)

	Miscellaneous Issues
	EXP-09-001 FP: MFA code verification throttled incorrectly (Medium)
	EXP-09-004 WP2: JSON helpers should check for 0-length strings (Low)
	EXP-09-005 WP2: Inconsistent use of he_cli_calloc() (Low)

	Conclusions

