
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit-Report noble-ed25519 TypeScript Library 02.2022
Cure53, Dr.-Ing. M. Heiderich, Dr. A. Pirker, Dipl.-Ing. David Gstir

Index
Introduction

Scope

Vulnerability Summary

Testing Methodology

Miscellaneous Issues

NBL-03-001 WP1: verify method non-compliant with RFC 8032 (Info)

NBL-03-002 WP1: Missing validation on point/extended point addition (Low)

NBL-03-003 WP1: Signature malleability due to insufficient validation (Medium)

NBL-03-004 WP1: Missing validations for RistrettoPoint operations (Low)

NBL-03-005 WP1: Missing validations on extended point conversion (Low)

NBL-03-006 WP1: Improper naming of the private key generation function (Info)

NBL-03-007 WP1: Insufficient equality comparison for extended points (Low)

NBL-03-008 WP1: Use of deprecated hash library when run in Deno (Low)

Conclusions

Cure53, Berlin · 02/14/22 1/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Fastest JS implementation of ed25519 / ristretto255. High-security, auditable, 0-
dependency EDDSA signatures and ECDH key agreement”

From https://github.com/paulmillr/noble-ed25519

This report describes the results of a security assessment of the noble-ed25519 elliptic
curve TypeScript implementation. Carried out by Cure53 in January and February of
2022, the project included a dedicated audit of the source code and a comprehensive
review of the cryptographic premise.

Registered as NBL-03, the project was requested by Paul Miller, the library maintainer,
in January 2022. Given the scope, it could be scheduled for upcoming weeks and was
ultimately carried out in CW05. A total of five days were invested to reach the coverage
expected for this assignment, whereas a team of three testers has been composed and
tasked with this project’s preparation, execution and finalization.

The work was contained into a single Work Package (WP):

• WP1: Crypto reviews and code audits against noble-ed25519 TypeScript
implementation

Cure53 was given access to all relevant sources, material supporting documentation to
review. Additionally, chat access to the maintainer team for Q&A during the audits and
reviews was set up. White-box approaches were favored and deployed in this
examination. The project progressed effectively on the whole. All preparations were
done in CW04 to foster a smooth transition into the testing phase. As the software is
available as open-source, Cure53 just needed to verify which is the correct release to
look at.

Over the course of the engagement, the communications were done using a private,
dedicated and shared Slack channel with Paul Miller and the involved testers from the
Cure53’s side. The discussions throughout the test were very good and productive and
not many questions had to be asked. The scope was well-prepared and clear, greatly
contributing to the fact that no noteworthy roadblocks were encountered during the test.

Cure53, Berlin · 02/14/22 2/18

https://cure53.de/
https://github.com/paulmillr/noble-ed25519
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 gave frequent status updates about the test and the related findings, live-
reporting was not explicitly requested by Paul Miller but several of the findings were
discussed in depth in the mentioned Slack channel, so the library maintainer could
already start working on fixes and benefit from having the results of repairs reviewed by
the auditors.

The Cure53 team managed to get very good coverage over the scope. Among eight
security-relevant discoveries, not a single item was classified to be a security
vulnerability, hence indicating that all issues represent general weaknesses with lower
exploitation potential. In summation, the number of findings is moderate and the spotted
items have limited - if any - security impact. This is clearly an outstanding result,
testifying to the good security posture of the project. The spotted general weaknesses
were not only ranked as Low or Info but, in fact, most of them have been eradicated
before the submission of this final report.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. A dedicated chapter on test
methodology and coverage then clarifies what the Cure53 did in terms of attack-
attempts, coverage and other test-relevant tasks. Next, all findings will be discussed in
the miscellaneous category in a chronological order. Alongside technical descriptions,
PoC and mitigation advice are supplied when applicable. Finally, the report will close
with broader conclusions about this early 2022 project. Cure53 elaborates on the
general impressions and reiterates the verdict based on the testing team’s observations
and collected evidence. Tailored hardening recommendations for the noble-ed26619
TypeScript library complex are also incorporated into the final section.

Cure53, Berlin · 02/14/22 3/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Reviews & Code audits against noble-ed25519 TypeScript implementation

◦ WP1: Crypto reviews & code audits against noble-ed25519 TypeScript
implementation
▪ https://github.com/paulmillr/noble-ed25519/releases/tag/1.6.0-pre-audit
▪ Commit:

• fa14496908cf286da53d17b739accd8f7c3790be
◦ Key focus areas

▪ Possible timing attacks targeting algorithmic resistance
▪ Functional correctness of elliptic curve operations in use
▪ Safety in the face of known side-channels
▪ Elliptic curve validation errors and elliptic-curve-specific attacks
▪ Checks against constant-time operations
▪ Side-channels and information leaks, secure storage and data processing
▪ DoS vectors, information leakage and logic bugs as applicable
▪ Secure random number usage and generation as applicable
▪ Secure handling of numeric values and floating point numbers
▪ Tests against the existing third-party integrations & dependencies

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 02/14/22 4/18

https://cure53.de/
https://github.com/paulmillr/noble-ed25519/releases/tag/1.6.0-pre-audit
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Vulnerability Summary

Project name Number of findings by type

noble-ed25519 Total: 8
Medium: 1
Low: 5
Informational: 2

Table 1: Overview of the findings under the given scope and threat model

Testing Methodology
This section describes the testing methodology and the resulting coverage of the
security audit against the noble-ed25519-1.6.0-pre-audit repository. The repository
contains an implementation for generating and verifying signatures for the elliptic twisted
Edwards curve Ed25519, an implementation of ECDH over curve25519 (X25519), as
well as an implementation of Ristretto (ristretto255).

Overall, Cure53 was able to achieve good coverage of the areas in scope and the
review focused primarily on the following areas and tasks:

• Possible timing attacks targeting algorithmic resistance
• Functional correctness of elliptic curve operations in use
• Safety in the face of known side-channels
• Elliptic curve validation errors and elliptic-curve-specific attacks
• Checks against constant-time operations
• Side-channels and information leaks, secure storage and data processing
• DoS vectors, information leakage and logic bugs as applicable
• Secure random number usage and generation as applicable
• Secure handling of numeric values and floating point numbers
• Tests against the existing third-party integrations & dependencies
• Tests against known implementation vulnerabilities

The implementation of ristretto255 was checked for standards-compliance1. It was
quickly noticed that the implementation of Ristretto used in the tested realm is fully
standard-compliant, revealing no deviations whatsoever.

1 https://ristretto.group/ristretto.html

Cure53, Berlin · 02/14/22 5/18

https://cure53.de/
https://ristretto.group/ristretto.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The Ed25519 implementation of the verify and sign functions appears to support two
standards: RFC 80322 and ZIP2153. The former standard requires more stringent checks
of input parameters. In particular, for a signature (R,S) it should be validated that the
parameter R is a valid curve point and S is within the range 0 <= s < L, wherein L is the
order of the curve. Furthermore, the public key A needs to be a valid curve point as well.
Here, a valid curve point means that also the y coordinate of the point is < p, where p is
again a constant specific to Ed25519, specifically 2255 - 19. The ZIP215 standard relaxes
these conditions for R and A slightly, thereby allowing the y coordinate to be unreduced
2255 - 19.

It was observed that the Ed25519 implementation is not fully standards-compliant with
regard to the validation criteria, neither RFC 8032 nor ZIP215. This is further explained
in NBL-03-001 and NBL-03-003. Since RFC 8032 and ZIP215 actually contradict each
other in terms of verification, another item is required. This could either concern two
dedicated functions or a parameter where the caller can select the standard to verify
against.

Besides the observations noted above both implementations appear cryptographically
sound and correct. No issues related to the implementation of the verify and sign
functions were identified.

Timing attacks represent a common issue within elliptic curve cryptography. One popular
target is the scalar point multiplication during signature generation. The noble-ed25519
codebase attempts to rely on constant-time, however, it was discovered that it fails to
fully achieve this. One reason is that the code omits usage of constant-time operations
(e.g., the data-dependent branching operation in the mod function), and the selection of
JavaScript as a programming language. The latter does not directly support constant-
time operation, namely JavaScript is commonly just-in-time compiled, hence making the
aforementioned impossible to guarantee.

As noble-ed25519 is written in JavaScript and JavaScript is commonly just-in-time-
compiled, it is not possible to guarantee constant-time operations. This is a fact that is
known and the README.md file of noble-ed22519 explains this subject matter. As a
result of this, Cure53 refrained from reporting any findings related to non-constant time
operations. Furthermore, the utility implementations Point, RistrettoPoint and
ExtendedPoint were reviewed. All of them appear sound, however, for addition and
subtraction in Point, it was identified that - in principle - points which are not on the curve
could be provided. This issue is summarized in NBL-03-002. Similar observations apply
to the Ristretto point’s addition and subtraction, as explained in NBL-03-004. Finally, the

2 https://datatracker.ietf.org/doc/html/rfc8032
3 https://zips.z.cash/zip-0215

Cure53, Berlin · 02/14/22 6/18

https://cure53.de/
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.vnyq8024cwxy
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.7h4tw8n5q8k4
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.ualazw813q56
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.8fnlku6lr038
https://zips.z.cash/zip-0215
https://datatracker.ietf.org/doc/html/rfc8032
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

transformation from an extended point back to an affine point accepts a parameter for
the inverse of the z component for performance speed-ups. However, negative values,
invalid inverse elements or even zero are allowed, as shown in NBL-03-005. Cure53
also noted that the comparison of two extended points for equality was not done
properly, as captured by NBL-03-007.

Apart from the issues indicated above, the algorithms in place for addition and
multiplication appear correct and sound. The multiplication of a point with a scalar was
also investigated, given that it uses the wNAF method for performance-speed-up. For
that purpose, it keeps a weak map of points associated with pre-computed values,
potentially opening a side-channel for timing-attacks due to shorter look-up times.
However, the auditors were unable to deliver a Proof-of-Concept which would
demonstrate subject matter.

To support X25519, noble-ed25519 offers two functions. The first is getSharedSecret,
which accepts the same format for private and public keys as the Ed25519 code,
converting them to X25519 format and then calls curve25519.scalarMult. The second
function performs an ECDH in principle. Contrary to Ed25519, the scalar multiplication is
implemented here using the Montgomery Ladder algorithm4, as suggested in the original
X25519 paper5. The principle further rejects non-contributory scalars. This is not strictly
required for ECDH but needed for other use-cases6. During the audit of the code, no
security-relevant vulnerabilities were uncovered in the allotted time-frame. The verify
operation of Ed25519 and the curve25519.scalarMult operation used for X25519 were
also tested against a ported version of Google’s Project Wycheproof7. This confirmed the
signature malleability issues documented in NBL-03-003. For the
curve25519.scalarMult, no issues were identified using this tool.

The generation of random bytes is done through crypto.node or crypto.web, which
allows for the secure generation of random values for cryptographic use. Therefore, no
issues related to the generation of random private keys were spotted. However, the
method hashToPrivateKey, which according to the developers should not be used for
the generation of a private key for Ed25519, has a misleading name. In fact, it should be
essentially used for the generation of a private scalar rather than for a private key, which
is elaborated on under NBL-03-006.

4 https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
5 https://cr.yp.to/ecdh/curve25519-20060209.pdf
6 https://cr.yp.to/ecdh.html#validate
7 https://github.com/google/wycheproof

Cure53, Berlin · 02/14/22 7/18

https://cure53.de/
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.t2dkm4sbj2tv
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.ualazw813q56
https://github.com/google/wycheproof
https://cr.yp.to/ecdh.html#validate
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
https://docs.google.com/document/d/1Wj11CjCAoGS9jfVFNtZuhSCVjGUwXHyDzb3Z9UnP4ak/edit?userstoinvite=richard.weinberger@gmail.com&actionButton=1#heading=h.bf95p5rznsr9
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Lastly, the external dependencies with regard to other libraries and packages were
verified and it was found that the library uses a deprecated hash library, as summarized
in NBL-03-008.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

NBL-03-001 WP1: verify method non-compliant with RFC 8032 (Info)
While investigating the code repository of the noble-ed25519-1.6.0-pre-audit, it was
observed that the verify method relaxes conditions for the input parameters, normally
imposed by RFC 80328. Specifically, section 5.1.7 of RFC 8032 requires the following
validations:

• Decode the point R from the first half of the signature bytes as a point on the
curve; fail if results correspond to an invalid point.

• Decode the value S from the second half of the signature bytes, and make sure it
is within the range 0 <= s < L where L is a constant specific to Ed25519; fail
otherwise.

• Decode the public key A as a point on the Ed25519 curve, and fail if A is not a
valid point on the Ed25519 curve.

The current implementation is not compliant with RFC 8032. In case the caller provides
parameters different from the Signature type for the signature and different from Point for
the public key, it always applies the fromHex methods with strict set to false. In effect,
this allows public keys as points, in accordance with ZIP215 rather than RFC 8032.

Furthermore, the code in Point.fromHex fails to be fully RFC 8032-compliant even with
the strict mode enabled. It does not adhere to the following requirement from section
5.1.3.:

Use the x_0 bit to select the right square root. If
 x = 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod
 2, set x <-- p - x, return the decoded point (x,y).

Whenever the conditions of x = 0 and x_0 = 1 are met, the decoding logic of Point does
not fail in strict mode.

8 https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7

Cure53, Berlin · 02/14/22 8/18

https://cure53.de/
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
index.ts

Affected code:
export async function verify(sig: SigType, message: Hex, publicKey: PubKey):
Promise<boolean> {

[...]
message = ensureBytes(message);
if (!(publicKey instanceof Point)) publicKey = Point.fromHex(publicKey,
false);
if (!(sig instanceof Signature)) sig = Signature.fromHex(sig, false);
const SB = ExtendedPoint.BASE.multiplyUnsafe(sig.s);
const k = await sha512ModqLE(sig.r.toRawBytes(), publicKey.toRawBytes(),
message);
[...]

}

// Converts hash string or Uint8Array to Point.
// Uses algo from RFC8032 5.1.3.
static fromHex(hex: Hex, strict = true) {
 [...]
 // 4. Finally, use the x_0 bit to select the right square root. If
 // x = 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod
 // 2, set x <-- p - x. Return the decoded point (x,y).
 const isXOdd = (x & _1n) === _1n;
 const isLastByteOdd = (hex[31] & 0x80) !== 0;
 if (isLastByteOdd !== isXOdd) {
 x = mod(-x);
 }
 return new Point(x, y);
}

It is recommended to differentiate which parameter validation the verify method applies.
This can be done by a boolean parameter to the verify function which could be passed
on further to the Point.fromHex and Signature.fromHex methods, similar to the handling
of the strict parameter. In order to be compliant with RFC 8032, the strict parameters
need to be set to true.

It is further recommended to adapt the decoding logic in Point.fromHex to exactly match
the RFC when used in strict mode, so as to avoid implementation fingerprinting.

Cure53, Berlin · 02/14/22 9/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NBL-03-002 WP1: Missing validation on point/extended point addition (Low)
During a source code review of the noble-ed25519-1.6.0-pre-audit repository, it was
observed that the point addition and extended point addition (hence also the
subtraction), skip the validation of the provided point. They do not check whether the
point to add is a valid point on the curve. Such a check would involve the verification of
the equation x² = (y² - 1) / (d y² + 1) (mod p), where d and p denote curve constants.
Therefore, it is possible to perform point additions and subtractions with points and
extended points which are not on the curve.

Affected file:
index.ts

Affected code:
class ExtendedPoint {

[...]
add(other: ExtendedPoint) {

const X1 = this.x, Y1 = this.y, Z1 = this.z, T1 = this.t; //
prettier-ignore
const X2 = other.x, Y2 = other.y, Z2 = other.z, T2 = other.t; //
prettier-ignore
const A = mod((Y1 - X1) * (Y2 + X2));
const B = mod((Y1 + X1) * (Y2 - X2));
const F = mod(B - A);
if (F === _0n) return this.double(); // Same point.
const C = mod(Z1 * _2n * T2);
const D = mod(T1 * _2n * Z2);
const E = mod(D + C);
const G = mod(B + A);
const H = mod(D - C);
const X3 = mod(E * F);
const Y3 = mod(G * H);
const T3 = mod(E * H);
const Z3 = mod(F * G);
return new ExtendedPoint(X3, Y3, Z3, T3);

}
[...]

}
[...]
class Point {

[...]
add(other: Point) {

return
ExtendedPoint.fromAffine(this).add(ExtendedPoint.fromAffine(other)
).toAffine();

}
[...]

Cure53, Berlin · 02/14/22 10/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}

It is recommended to provide two methods for point and extended point addition, one
with point validation and one without it. The latter could be used in case of performance-
critical operations. Furthermore, the documentation should clearly state that the
functions without point validation do not validate the points in any form.

NBL-03-003 WP1: Signature malleability due to insufficient validation (Medium)
Note: This issue was resolved9 during the security assessment and no longer exists, as
verified by Cure53.

During a source code review of the noble-ed25519-1.6.0-pre-audit repository, it was
observed that the verify method is not fully compliant with ZIP21510 and RFC 8032. The
ZIP215 standard relaxes the conditions on the y coordinate of points from the Ed25519
curve in the sense that it allows for y coordinates larger than or equal to p, wherein p is a
constant. The commonality between the standards is that the value s of a signature is
still required to be within the range 0 <= s < L, where L is a constant.

Affected file:
index.ts

Affected code:
function normalizeScalar(num: number | bigint, max: bigint, strict = true):
bigint {

if (!max) throw new TypeError('Specify max value');
if (typeof num === 'bigint') {

if (strict) {
if (_0n < num && num < max) return num;

} else {
if (_0n <= num && num < MAX_256B) return num;

}
}
if (typeof num === 'number' && Number.isSafeInteger(num)) {

if (strict) {
if (0 < num) return BigInt(num);

} else {
if (0 <= num) return BigInt(num);

}
}
throw new TypeError('Expected valid scalar: 0 < scalar < max');

}
[...]

9 https://github.com/paulmillr/noble-ed25519/commit/8c08ff6750cf0604b3089891c397061cf9464724
10 https://zips.z.cash/zip-0215

Cure53, Berlin · 02/14/22 11/18

https://cure53.de/
https://zips.z.cash/zip-0215
https://github.com/paulmillr/noble-ed25519/commit/8c08ff6750cf0604b3089891c397061cf9464724
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

export async function verify(sig: SigType, message: Hex, publicKey: PubKey):
Promise<boolean> {

[...]
message = ensureBytes(message);
if (!(publicKey instanceof Point)) publicKey = Point.fromHex(publicKey,
false);
if (!(sig instanceof Signature)) sig = Signature.fromHex(sig, false);
[...]

}

The consequence of this is that two signatures for the same message will be considered
valid by the verify method, as the following code snippet illustrates:

import * as ed from '@noble/ed25519';

(async () => {
const privateKey = ed.utils.randomPrivateKey();
const message = Uint8Array.from([0xab, 0xbc, 0xcd, 0xde]);
const publicKey = await ed.getPublicKey(privateKey);
const signature = await ed.sign(message, privateKey);

const sig_valid = await ed.Signature.fromHex(signature);
const sig_invalid = await new ed.Signature(sig_valid.r, sig_valid.s +
ed.CURVE.l, false);

const sig_invalid_bytes = await sig_invalid.toHex();

const isValid = await ed.verify(signature, message, publicKey);
const isValid2 = await ed.verify(sig_invalid_bytes, message, publicKey);

console.log('Done');
})();

Both variables isValid and isValid2 evaluate to true. This was also confirmed using a
ported version of Google Project Wycheproof with test vectors 63-66 from the EdDSA
set being accepted as valid signatures when they should not be seen as such11. As
signature malleability could be problematic in the blockchain context12, this finding was
given a Medium severity level.

It is recommended to check that the provided value s of the signature is within the range
of 0 <= s < L, as specified in ZIP215 and RFC 8032.

11 https://github.com/google/wycheproof/blob/master/testvectors/eddsa_test.json#L529-L568
12 https://en.bitcoin.it/wiki/Transaction_malleability

Cure53, Berlin · 02/14/22 12/18

https://cure53.de/
https://en.bitcoin.it/wiki/Transaction_malleability
https://github.com/google/wycheproof/blob/master/testvectors/eddsa_test.json#L529-L568
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NBL-03-004 WP1: Missing validations for RistrettoPoint operations (Low)
During a source code review of the noble-ed25519-1.6.0-pre-audit repository, it was
observed that the RistrettoPoint class implements methods for addition and subtraction.
For that purpose, these methods accept RistrettoPoint as parameters, transform them
into extended coordinates, perform the operation and transform them back.

However, for addition and subtraction, the implementation fails to verify whether the
provided points are indeed valid Ristretto points. In the worst case, someone could add
a valid Ristretto point with a non-RistrettoPoint, potentially leading to a non-Ristretto
point being accepted.

Affected file:
index.ts

Affected code:
add(other: RistrettoPoint): RistrettoPoint {

return new RistrettoPoint(this.ep.add(other.ep));
}

subtract(other: RistrettoPoint): RistrettoPoint {
return new RistrettoPoint(this.ep.subtract(other.ep));

}

It is recommended to perform validity checks inside the add and subtract methods.

NBL-03-005 WP1: Missing validations on extended point conversion (Low)
Note: This issue was resolved13 during the security assessment and no longer exists, as
verified by Cure53.

During a source code review of the noble-ed25519-1.6.0-pre-audit repository, it was
observed that the ExtendedPoint class provides a method for transforming the extended
point to an affine point.

For that purpose, the method toAffine accepts a parameter named invZ, which the
function uses to calculate the x and y component of the affine point. However, the
implementation does not check whether the provided invZ value corresponds to the
inverse of the z component of the extended point. This essentially permits invalid
inverses of the z component, but also provides, for example, the possibility of value 0,
which should not be allowed for this transformation.

13 https://github.com/paulmillr/noble-ed25519/commit/e51f79bc23d7fdb5dfdec56f1d26639f23b5158c

Cure53, Berlin · 02/14/22 13/18

https://cure53.de/
https://github.com/paulmillr/noble-ed25519/commit/e51f79bc23d7fdb5dfdec56f1d26639f23b5158c
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
index.ts

Affected code:
toAffine(invZ: bigint = invert(this.z)): Point {

const x = mod(this.x * invZ);
const y = mod(this.y * invZ);
return new Point(x, y);

}

It is recommended to verify the provided invZ parameter with regard to its validity,
including a check for being greater than zero, as well as checking that it is indeed the
inverse of z (for example by verifying mod(this.z * invZ) == 1n).

NBL-03-006 WP1: Improper naming of the private key generation function (Info)
Note: This issue was resolved14 during the security assessment and no longer exists, as
verified by Cure53.

During a source code review of the noble-ed25519-1.6.0-pre-audit repository, it was
observed that the library supports the generation of Ed25519 private keys by using
either the function randomPrivateKey or hashToPrivateKey.

The randomPrivateKey randomly samples 32 bytes using a secure random function,
whereas hashToPrivateKey takes the provided parameter module L and excludes the 1-
element and the 0-element. This is not in accordance with the key generation process
outlined in RFC 8032.15

Affected file:
index.ts

Affected code:
hashToPrivateKey: (hash: Hex): Uint8Array => {

hash = ensureBytes(hash);
if (hash.length < 40 || hash.length > 1024)

throw new Error('Expected 40-1024 bytes of private key as per FIPS
186');

const num = mod(bytesToNumberLE(hash), CURVE.l);
// This should never happen

14 https://github.com/paulmillr/noble-ed25519/commit/00fc580d53eacc9e4844a2789336219e51028b44
15 https://datatracker.ietf.org/doc/html/rfc8032

Cure53, Berlin · 02/14/22 14/18

https://cure53.de/
https://datatracker.ietf.org/doc/html/rfc8032
https://github.com/paulmillr/noble-ed25519/commit/00fc580d53eacc9e4844a2789336219e51028b44
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

if (num === _0n || num === _1n) throw new Error('Invalid private key');
return numberToBytesLEPadded(num, 32);

}

It is recommended to rename the function in order to better reflect its actual purpose and
avoid possible confusion.

NBL-03-007 WP1: Insufficient equality comparison for extended points (Low)
Note: This issue was resolved16 during the security assessment and no longer exists, as
verified by Cure53.

The noble-ed25519 implementation uses extended homogeneous coordinates17 (X, Y, Z,
T) with x = X/Z, y = Y/Z, x * y = T/Z for its Ed25519 signature creation and verification.
To compare two instances of such points, the ExtendedPoint class implements a
equals() method. It works by comparing the T element of both points. However, this is
insufficient due to not guaranteeing that both points are in fact identical.

To exemplify, consider p1 = (0, 10, 1, 0) and p2 = (42, 0, 1, 0). These points have
different values for X and Y, but identical values for T. Hence, they would be treated as
equal by this method. This also works with the non-zero values, e.g., p3 = (3, 14, 1, 42)
and p4 = (2, 24, 1, 42) which would be considered equal.

This will result in points being treated as equal even if they are not. Similarly, a
comparison with the ZERO point would return true when it should not do so.

Affected file:
index.ts

Affected code:
equals(other: ExtendedPoint): boolean {
 const a = this;
 const b = other;
 return mod(a.t * b.z) === mod(b.t * a.z);
}

To compare two Edwards Points without converting the points into affine coordinates, it
is recommended to follow a similar approach as in the curve25519_dalek Rust library18,

16 https://github.com/paulmillr/noble-ed25519/commit/e51f79bc23d7fdb5dfdec56f1d26639f23b5158c
17 https://www.rfc-editor.org/rfc/rfc8032#section-5.1.4
18 https://doc.dalek.rs/src/curve25519_dalek/edwards.rs.html#341

Cure53, Berlin · 02/14/22 15/18

https://cure53.de/
https://doc.dalek.rs/src/curve25519_dalek/edwards.rs.html#341
https://www.rfc-editor.org/rfc/rfc8032#section-5.1.4
https://github.com/paulmillr/noble-ed25519/commit/e51f79bc23d7fdb5dfdec56f1d26639f23b5158c
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

which essentially compares x and y coordinates of two points without performing a
transformation into affine coordinates.

NBL-03-008 WP1: Use of deprecated hash library when run in Deno (Low)
Note: This issue was resolved19 during the security assessment and no longer exists, as
verified by Cure53.

The noble-ed25519 can be used in the browser, Node.js or Deno. Deno is a more
modern alternative to Node.js, supporting JavaScript as well as TypeScript. The Deno
version of noble-ed25519 is exposed via the file mod.ts which is just a wrapper around
the main index.ts file.

As Deno does not have the same API as Node.js, the SHA512 implementation exposed
via utils.sha512 is replaced with the one from Deno’s standard library, using the
deprecated Deno std/hash namespace and its deprecated SHA512 implementation20.
The newer and still maintained namespace is std/crypto, which implements the Web
Crypto API21 and uses a WASM-compiled version of the Rust crate sha222.

Affected file:
mod.ts

Affected code:
import { getPublicKey, sign, verify, utils, CURVE, Point, ExtendedPoint } from
'./index.ts';
import { Sha512 } from 'https://deno.land/std@0.119.0/hash/sha512.ts';

utils.sha512 = async (message: Uint8Array): Promise<Uint8Array> => {
 return new Uint8Array(new Sha512().update(message).arrayBuffer());
};

export { getPublicKey, sign, verify, utils, CURVE, Point, ExtendedPoint };

It is recommended to switch to the maintained version of SHA512 provided by Deno.

19 https://github.com/paulmillr/noble-ed25519/commit/15defe186870a493025777410189db293c6ba35d
20 https://deno.land/std@0.119.0/hash/sha512.ts
21 https://deno.land/std@0.119.0/crypto/mod.ts
22 https://docs.rs/crate/sha2/latest

Cure53, Berlin · 02/14/22 16/18

https://cure53.de/
https://docs.rs/crate/sha2/latest
https://deno.land/std@0.119.0/crypto/mod.ts
https://deno.land/std@0.119.0/hash/sha512.ts
https://github.com/paulmillr/noble-ed25519/commit/15defe186870a493025777410189db293c6ba35d
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The assessment featured one repository, namely noble-ed25519-1.6.0-pre-audit. The
main focus of this Cure53 investigation was to identify possible timing attacks and judge
the repository’s safety against known side-channels in general. Furthermore, the
involved testers were to ensure the functional correctness of the elliptic curve operations
in use, looking also at the potential for curve validation errors or curve-specific attacks.
Checks for information leaks were also performed, while evaluations of storage and data
processing in general served as a backdrop. Secure generation of random and the
secure handling of numeric and floating point values were also verified.

The repository contained two source files, namely index.ts and mod.ts. They are used
for implementing signature generation and verification for the elliptic curve Curve25519
(Ed25519), ECDH using the same curve (X25519), as well as the implementation of
Ristretto (ristretto255). The code is very clean and robust. It is evident that the
developer(s) are fully aware of secure coding principles.

The Ristretto implementation is in accordance with the Ristretto proposal and the
signature generation complies with Ed25519 from RFC 8032 as well. The signature
verification implementation, however, neither fully complies with ZIP215 nor with RFC
8032, as described in NBL-03-001 and NBL-03-003. Further dynamic testing of the
library with a ported version of Google’s Project Wycheproof confirmed NBL-03-003 but
did not reveal any other issues.

In total, the assessment revealed eight miscellaneous issues. The majority pertain to
non-standard compliance, like NBL-03-001 and NBL-03-003. Alternatively, they relate to
missing validations. Even though not directly leading to a security issue at the moment,
the missing validation may still lead to invalid points or operations which should not be
executable. Lastly, one use of a deprecated, but not insecure SHA512 library, was found
when used with the Deno runtime (see NBL-03-008).

As already mentioned within the testing methodology section, issues related to timing
attacks due to non-constant time operations were not reported and treated as findings,
since the author is fully aware of this subject matter in connection to using JavaScript.
Confirmation can be seen in the README.md of the project.

Cure53 was in constant communication with the customer and frequently sent status
updates and raised questions or concerns. The communication with the client on Slack
was excellent and help was provided whenever requested. The testing team could
actually perform fix verification towards the end of this review.

Cure53, Berlin · 02/14/22 17/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The outcome of this source code review demonstrates that the repository is in a good
shape from a security perspective. In light of the findings gathered during this Cure53
examination, only minor adjustments are required to harden the already good security
posture of the library.

Cure53 would like to thank Paul Miller for his excellent project coordination, support and
assistance, both before and during this assignment.

Cure53, Berlin · 02/14/22 18/18

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report noble-ed25519 TypeScript Library 02.2022
	Index
	Introduction
	Scope
	Vulnerability Summary
	Testing Methodology
	Miscellaneous Issues
	NBL-03-001 WP1: verify method non-compliant with RFC 8032 (Info)
	NBL-03-002 WP1: Missing validation on point/extended point addition (Low)
	NBL-03-003 WP1: Signature malleability due to insufficient validation (Medium)
	NBL-03-004 WP1: Missing validations for RistrettoPoint operations (Low)
	NBL-03-005 WP1: Missing validations on extended point conversion (Low)
	NBL-03-006 WP1: Improper naming of the private key generation function (Info)
	NBL-03-007 WP1: Insufficient equality comparison for extended points (Low)
	NBL-03-008 WP1: Use of deprecated hash library when run in Deno (Low)

	Conclusions

