E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Pentest-Report Dive CAE Web Ul, API & Infra 09.2025

Cureb53, Dr.-Ing. M. Heiderich, BSc. C. Kean, MSc. A. Schloegl, BSc. C. Mayr, L. Stockner,
H. Crawford

Index
Introduction

Scope
Test Methodology

WP1: Gray-box penetration tests & assessments of dive solutions SSO features

WP2: White-box penetration tests & assessments of dive solutions web Ul & API

WP3: White-box penetration tests & reviews of dive solutions Azure & k8s setup

Identified Vulnerabilities
DIV-03-001 WP2: Missing ACL grants access to subscription data (Low)
Miscellaneous Issues
DIV-03-002 WP2: SSH service hardening for employed algorithms (Info)
DIV-03-003 WP2: Remote VM hardening recommendations (Low)
DIV-03-004 WP2: Lack of search engine protection (Info)
DIV-03-005 WP2: Lack of general HTTP security headers (Low)
DIV-03-006 WP3: Open ingress in Azure resources (Low)
DIV-03-007 WP2: Weak Content Security Policy configuration (Low)
Conclusions

Cure53, Berlin - Sep 30, 25 1/16

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Introduction

“We provide a compelling and fast cloud-native CAE experience combining smart simulation
technologies with scalable cloud HPC. Our simple browser-based software hides complexity
while giving engineers access to data and tools from anywhere in the world.”

From https://www.divecae.com/about

This report describes the results of a security assessment of the Dive CAE web application
complex, focusing on its frontend Ul and backend API endpoints, its SSO features, as well
as its Azure and k8s setup. The project, which included source code audits and penetration
tests conducted in both white- and gray-box manners, was conducted by Cure53 in
September 2025.

The audit, registered as DIV-03, was requested by the Dive CAE (formerly dive solutions
GmbH) in January 2025 and then scheduled to start in the late second quarter of the year to
give both sides time to prepare.

The project is the third cooperation between Cure53 and Dive CAE on security matters. In
fact, the preceding tests entailed investigations of some of the same aspects. These
assessments took place back in May 2023 (see DIV-01), as well as again more recently,
namely in August and September 2024 (see DIV-02).

In terms of the exact timeline and specific resources allocated to DIV-03, the Cure53 team
has completed their research in CW37. In order to achieve the expected coverage for this
task, a total of twelve days were invested. A team consisting of six senior testers was
formed and assigned to the preparation, execution, documentation, and delivery of this
project.

For optimal structuring and tracking of tasks, the assessment was divided into three
separate work packages (WPs):

* WP1: Gray-box penetration tests & assessments of dive solutions SSO features
* WP2: White-box penetration tests & assessments of dive solutions web Ul & API
* WP3: White-box penetration tests & reviews of dive solutions Azure & k8s setup

As the titles of the WPs indicate, mixed-methodology was overall used during DIV-03. More
specifically, gray-box approaches were leveraged for inspections of the SSO features
(WP1), while the web applications and the Azure and k8s setup (WP2 & WP3) were tested
through white-box methods. Cure53 was provided with URLS, sources, test-user credentials,
as well as all further means of access required to complete the tests.

Cure53, Berlin - Sep 30, 25 2/16

https://cure53.de/
https://www.divecae.com/about
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

The project could be carried out without any major issues. To facilitate a smooth transition
into the testing phase, all preparations were completed in CW36 of 2025. Throughout the
engagement, communications were conducted through a private, dedicated, and shared
Slack channel. Stakeholders - including Cure53 testers and the internal staff from Dive CAE
- were able to participate in discussions in this space.

Cure53 did not need to ask many questions, and the quality of all project-related interactions
was consistently excellent. Although the testers offered frequent status updates on the
examination and emerging findings, live-reporting was not used during this project.
Continuous communication contributed positively to the overall results of this project.
Significant roadblocks were avoided thanks to clear and careful preparation of the scope, as
well as through subsequent support.

The Cure53 team achieved very good coverage of the WP1-WP3 objectives. Of the seven
security-related discoveries, only one was classified as a security vulnerability and six were
classified as general weaknesses with low exploitation potential.

The overall small number of findings, as well as the general lack of issues above a Low
severity rating, indicates that the inspected Dive CAE web application and features have
already been correctly strengthened. Cure53 can confirm that good security measures have
been crafted and put in place across the Dive CAE SSO features, web Ul, API and
infrastructure inspected during DIV-03.

Nevertheless, Cure53 recommends addressing all findings in a timely manner, even though
they might carry risks from the lower-end of the threat spectrum. The current impact of the
findings aside, it needs to be acknowledged that these kinds of flaws often become stepping
stones for more severe and sophisticated attacks.

The following sections first describe the scope and key test parameters, as well as how the
work packages were structured and organized.

Then, what the Cure53 team did in terms of attack attempts, coverage, and other test-
related tasks is explained in a separate chapter on test methodology.

Next, all findings are discussed in grouped vulnerability and miscellaneous categories. The
problems are then discussed chronologically within each category. In addition to technical
descriptions, PoC and mitigation advice is provided where applicable.

The report ends with general conclusions relevant to this summer 2025 project. Based on
the test team's observations and the evidence collected, Cure53 elaborates on the overall
impressions and reiterates the verdict. The final section also includes tailored hardening
recommendations for the inspected components within the Dive CAE complex, specifically
the project’s frontend Ul and backend API endpoints, SSO features, as well as Azure and
k8s setup.

Cure53, Berlin - Sep 30, 25 3/16

https://cure53.de/
mailto:mario@cure53.de

E I I r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106

Fine penetration tests for fine websites D 10629 Berlin

Scope

cure53.de - mario@cure53.de

* Penetration tests & assessments of selected components and aspects

(0]

WP1: Gray-box penetration tests & assessments of dive solutions SSO features
= URL (staging):
» https://app.preview.dive-solutions.de
WP2: White-box penetration tests & assessments of dive solutions web Ul & API
= URLs:
» Staging application:
o https://app.preview.dive-solutions.de
* Admin panel:
o https://app.preview.dive-solutions.de/admin
* REST API:
o https://app.preview.dive-solutions.de/api
* (Old) "Clipper" websocket API:
o wss://app.preview.dive-solutions.de/fetch
* (New) "Pontoon" websocket API (explicit focus):
o wss://app.preview.dive-solutions.de/pontoon
* Knowledge base (Hubspot):
o https://help.dive-solutions.de
* Production application (EU):
o https://eu.divecae.app
WP3: White-box penetration tests & reviews of dive solutions Azure & k8s setup
= Access via invite to Intra ID tenant:
* Domain:
o https://www.divecae.com/
* Account invites:
o U: alex@rs.cure53.de
o U: christian@rs.cure53.de
Credentials for test-users
= Admin (staging):
+ E: christian@rs.cure53.de
+ E:alex@rs.cure53.de
= Contributor (staging)
* E:chris@cure53.de
Test-supporting material was shared with Cure53
All relevant sources were shared with Cure53

Cure53, Berlin - Sep 30, 25 4/16

https://cure53.de/
mailto:chris@cure53.de
mailto:alex@rs.cure53.de
mailto:christian@rs.cure53.de
mailto:christian@rs.cure53.de
mailto:alex@rs.cure53.de
https://www.divecae.com/
https://eu.divecae.app/
https://help.dive-solutions.de/
https://app.preview.dive-solutions.de/api
https://app.preview.dive-solutions.de/admin
https://app.preview.dive-solutions.de/
https://app.preview.dive-solutions.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Test Methodology

Since this penetration testing iteration did not reveal any vulnerabilities that could be
exploited, this section provides a more detailed description of Cure53's testing methodology.
On the one hand, this aims to bring more transparency into the overall work that was
performed during this DIV-03 security assessment. On the other hand, it also provides
assurance of the extensive coverage achieved and the work completed within the given
scope of this project.

The testing methodology employed during this assessment explicitly covers the designated
focus areas, as listed by the Dive CAE team. These included the inspection of the Security
Assertion Markup Language (SAML) integration for B2B customers' identity providers, the
newly introduced Pontoon websocket API, and the implementation of strict user separation
between the knowledge base and main application. The following sections outline the
approaches used in each of the work packages delineated in the Scope of Work (SOW)
documentation.

WP1: Gray-box penetration tests & assessments of dive solutions SSO features

In order to audit the integration of customers' identity providers (IdP), a custom AuthO
instance was set up by Cure53 and linked to the pentesting organization. This integration
utilizes SAML to anchor trust and ensure authenticity.

Cureb53 audited the SAML exchange to ensure all requests are replay-protected and
properly verified for authenticity. Attempts to inject or falsify data during the SAML login
process were rejected correctly on the basis of invalid signatures.

Overall, the usage of AuthO as a third-party authentication provider was judged positively, as
it left little room for error or misconfiguration with regard to B2B IdP integrations.

Finally, it was tested whether the application only accepts login tickets from the IdP where
users already exist in the dive database. This ensures improperly configured IdPs will not
jeopardize the security of the dive ecosystem as a whole.

WP2: White-box penetration tests & assessments of dive solutions web Ul & API

For both the web frontend and the backend, Dive CAE provided source code access to
Cure53, thus upgrading the engagement from a grey-box to a white-box assessment. This
approach can be seen as more robust when it comes to excluding hidden or deeply nested
risks. For the backend, the assessment focused on analyzing the codebase for common API
security pitfalls®.

! https://owasp.org/www-project-api-security/

Cure53, Berlin - Sep 30, 25 5/16

https://cure53.de/
https://owasp.org/www-project-api-security/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

This entailed - but was not limited to - checking for Broken Object Level Authorization
(BOLA), authentication weaknesses, authentication in general and security
misconfigurations. Server-Side Request Forgery (SSRF) vulnerabilities were considered as
well.

To this end, static analysis tools were first employed to evaluate the overall security posture,
and to identify low-complexity findings through code flow analysis with predefined rules. This
process also covered configuration files related to the building and deployment of the
backend. Static code analysis did not yield any findings or security recommendations.

Next, the object-level authorization controls in the APl were audited. Overall, the access
control for creating, updating, and deleting items across the dive application was found to be
reasonably secure. All but one of the tested endpoints correctly check the permissions of the
current user before granting access. The one exception documented in this report is a minor
information leak documented in DIV-03-001. The issue stems from the fact that one
endpoint delivers information for two web pages that are only access-controlled by the user
interface.

Another key area of focus was the implemented authentication mechanism. For access to
simulation and documentation applications, dive implements Auth0, which provides a single
method of sign-in across their applications. A specific area of concern was whether a self-
registering user who signed up via the documentation application, could in any way access
the main simulation application. Cure53 validated that the implemented controls are
appropriate and robust to prevent users from accessing other applications in this scenario.

During the sign-in process, all successful authentication attempts are assessed to check
whether the user has the application attribute of "knowledgebase only” assigned to their
account. Since this attribute cannot be modified by users, and its validation logic runs prior
to the issuance of an authentication token, no risks could be noted.

In the end, the authorization logic was deemed to be secure. This was further validated with
the support of dynamic testing, reviewing whether the application logic is vulnerable to
injection or timing attacks. This manual testing confirmed that the implementation of this
control is appropriate.

While auditing the dive solutions web Ul and API, several other configuration-related issues
were identified. While they are lower in impact, it could not be excluded that they still
introduce unnecessary risk if left unaddressed.

Some applications lacked explicit controls to prevent indexing by search engines (DIV-03-
004), signifying that potentially sensitive or internal-facing endpoints could appear in public
search results, if discovered. In addition, there were misconfigurations and omissions in the
use of security-related HTTP headers (DIV-03-005).

Cure53, Berlin - Sep 30, 25 6/16

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Common issues included missing Referrer-Policy headers, which may allow older browsers
to leak sensitive referrer information.

The absence of consistent anti-framing protections across applications was raised as it
means that pages are potentially exposed to clickjacking. Only one application host
implemented a limited Content-Security Policy, offering little meaningful defense-in-depth
against modern browser-based attacks (DIV-03-007). Similarly, while HSTS was present, it
was not configured with preload or applied to subdomains, which weakens its effectiveness
against downgrade and first-visit attacks. Taken together, these gaps do not represent
immediately critical risk, but they reflect an overall lack of hardened baseline across
configurations.

The WebSocket APIs were closely audited for injection vulnerabilities in client-to-server
messages. The main focus was laid on the newly added pontoon notification API. The entire
websocket stack and configuration was audited for opportunities to inject commands or
malicious data.

In this portion of the audit, Cure53 found proper authentication to be in place for all
messages. A type-checked, library-assisted parsing of user data is performed before
handling any data. Only heartbeat message types are accepted in the first place, and their
handling was observed to be free of vulnerabilities. All other message types are immediately
rejected.

The user interface frontend was also reviewed for common security pitfalls and weaknesses.
The various parameters of user-controlled input supplied to the application were populated
with HTML markup to check for the possibility of unsanitized rendering within the various
sinks of the application. However, all submitted payloads were either blocked or correctly
output-encoded, resulting in no findings concerning HTML injection or Cross-Site Scripting
(XSS).

WP3: White-box penetration tests & reviews of dive solutions Azure & k8s setup

Dive's Azure environment was audited through live access, as well as the Terraform
Infrastructure-as-Code (lIaC) sources provided by the commissioning team. The audit
showed a cloud environment that evidently considers security as a core principle.

More precisely, various security features offered by Azure, like KeyVaults for secret
management, are properly utilized. Concerns in the dive ecosystem are also properly
separated using microservices. This leaves each individual microservice with a small and
easy-to-understand attack surface.

Cure53, Berlin - Sep 30, 25 7/16

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

In the course of auditing the Azure environment, it was discovered that many resources,
among them sensitive key vaults, are open to the public Internet. While this is apparently
known to the dive development team, a ticket discussing the associated risks has still been
created (see DIV-03-006).

VPC and especially ingress configurations were audited using automated tooling and
manual reviews of the results. This highlighted the fact that isolation of dive’'s VPC is
currently incomplete, and many internally used services (and KeyVaults) are openly
accessible from the internet. Although protections from Azure RBAC rules still apply, a
cleaner separation of the VPC, potentially combined with a dedicated VPN into the VPC,
would be preferable in this context.

Cure53, Berlin - Sep 30, 25 8/16

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., DIV-03-001)
to facilitate any follow-up correspondence, if needed.

DIV-03-001 WP2: Missing ACL grants access to subscription data (Low)

The dive solution web application offers two user-roles to manage and restrict access.
These are the less-privileged Contributor role and the privileged Admin role. While reviewing
the restrictions imposed on the Contributor role, it was revealed that it can access
Subscription data from the underlying Subscription API endpoints. This goes against what
the landing page for those API endpoints appears to do, as access restrictions should apply.

The impact of this issue was evaluated as Low because only some data regarding the
subscription is disclosed beyond what can be already found in the Usage & Budget
endpoint. At the same time, the flaw demonstrates a misimplementation of access control in
which access is only restricted cosmetically in the Ul, without being enforced in the API.

Landing page:
https://app.preview.dive-solutions.de/settings/subscription

Affected APl endpoint:
https://app.preview.dive-solutions.de/api/organizations

The data is only accessible to Contributors in the Subscription landing page and not in the
Usage & Budget page.

To mitigate this issue, Cure53 recommends enforcing the access control mechanisms
implied within the user interface on the server-side. This may include separating the
information from the Organizations endpoint into two separate endpoints, one for Usage &
Budget and one for Subscription information. This approach would match the separation
found in the user interface. The OWASP Authorization Cheat Sheet* can be reviewed for
further guidance in the context of hardening this aspect of the application.

2 https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Cure53, Berlin - Sep 30, 25 9/16

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://app.preview.dive-solutions.de/api/organizations
https://app.preview.dive-solutions.de/settings/subscription
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

DIV-03-002 WP2: SSH service hardening for employed algorithms (Info)

An automated review utilizing ssh-audit® revealed several minor misconfigurations
concerning the underlying SSH configuration utilized for the SFTP server. The component in
guestion is deployed via the Virtual Machine settings on app.preview.dive-solutions.de and
hosted on udxzlpjaloesrqhf.dev.divesolutions.de.

The SSH service exhibited several opportunities for hardening. Improvements can be
achieved by using stronger algorithms and omitting insecure cryptographic parameters, such
as weak elliptic curves or hashing algorithms.

Nevertheless, the impact of this issue was merely deemed Info, since successful exploitation
of these weak cryptographic parameters within an SSH protocol context tends to require

both significant resources and Man-in-the-Middle (MitM) capabilities.

Command:

./ssh-audit.py udxzlpjaloesrghf.dev.divesolutions.de

[...]

algorithm recommendations (for OpenSSH 8.9)

(rec) -ecdh-sha2-nistp256 -- kex algorithm to remove
(rec) -ecdh-sha2-nistp384 -- kex algorithm to remove
(rec) -ecdh-sha2-nistp521 -- kex algorithm to remove
(rec) -ecdsa-sha2-nistp256 -- key algorithm to remove
(rec) -hmac-shal -- mac algorithm to remove
(rec) -hmac-shal-etm@openssh.com -- mac algorithm to remove
(rec) -diffie-hellman-groupl4-sha256 -- kex algorithm to remove
(rec) -hmac-sha2-256 -- mac algorithm to remove
(rec) -hmac-sha2-512 -- mac algorithm to remove
(rec) -umac-128@openssh.com -- mac algorithm to remove
(rec) -umac-64-etm@openssh.com -- mac algorithm to remove
(rec) -umac-64@openssh.com -- mac algorithm to remove

To mitigate this issue, Cure53 advises reviewing the items enumerated above and disabling
those considered surplus to requirement. A tightened access strategy will help minimize the
attack surface incurred by weak cryptographic parameters.

3 https://github.com/jtesta/ssh-audit

Cure53, Berlin - Sep 30, 25 10/16

https://cure53.de/
https://github.com/jtesta/ssh-audit
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

DIV-03-003 WP2: Remote VM hardening recommendations (Low)

While auditing the post-processing environment in dive, the Cure53 testers noted that the
test VMs allow access via SFTP, and thus via SSH. This can lead to unforeseen actions of
potentially malicious users operating on these VMs.

Based on communication between Cure53 and dive, it seems that the main intent behind
this setup is the possibility of offering customers the option to post-process simulation
results without first pulling the intermediate files to their network. The SFTP access
mechanism seems to also be based on the requirements associated with some customers.

Nevertheless, some hardening recommendations can be made in this context. While the
VMs are properly isolated from other components in the dive ecosystem, no isolation
towards the public Internet or the Azure VPC internal components seems to be in place.

This means that the other dive components are adequately separated and protected from
attacks. However, attackers can still gain information about the Azure deployment using the
Azure metadata endpoint. In the same vein, illicit or illegal activity can also be performed
from the VMs. Allowing this could drag dive into potential litigation.

To increase the robustness of the post-processing VMs, Cure53 recommends filtering
outbound connections, such that traffic can only travel the already established routes. Thus,
data can flow via the connection established to the VM, but no further requests can be
made, neither into the Azure environment nor to the public Internet.

DIV-03-004 WP2: Lack of search engine protection (Info)

While reviewing application server configurations via dynamic testing, it was observed that
multiple applications lack proper search engine protection. Both the production and staging
environments of the dive CAE applications fail to implement robots.txt or equivalent
mechanisms to restrict automated indexing.

As a result, more sensitive routes such as /admin and /api may be indexed by search
engines and found via OSINT activities. Although search engine protection decreases the
risk of unintended data exposure, there is a negligible security impact because web crawlers
do not have to respect this configuration. This finding has been included for information-
sharing purpose only.

Affected URIs:

e https://app.preview.dive-solutions.de
* https://eu.divecae.app

Cure53, Berlin - Sep 30, 25 11/16

https://cure53.de/
https://eu.divecae.app/
https://app.preview.dive-solutions.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Cure53 recommends implementing proper search engine protection mechanisms - such as
configuring robots.txt files and meta tags - to prevent unauthorized indexing of sensitive
directories and endpoints. This measure will reduce the risk of exposing critical application
content through public search engines, concurrently strengthening the overall security
posture.

DIV-03-005 WP2: Lack of general HTTP security headers (Low)

During the review of the in-scope applications and web servers, several issues were noted
with regard to security-related headers. None of the applications set a Referrer-Policy
header, which could result in the browser including sensitive information in the Referrer
header.

What is more, anti-framing controls through the X-Frame-Options were generally absent,
though they could be spotted on the authentication page. Finally, while HSTS was
implemented, it was missing the includeSubDomains directive in the help.dive-solutions.de
application.

It is recommended to generally review the composition of security headers, paying particular
attention to the following options.

* X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent clickjacking attacks, a plethora of
alternative breach strategies are achievable when a web page is frameable*.
Cure53 recommends configuring the value to either SAMEORIGIN or DENY.

» Strict-Transport-Security: The absence of the HSTS header may encourage a
Man-in-the-Middle (MitM) to attempt channel downgrade attacks using readily
available tools such as sslistrip®. In this scenario, the attacker would simply proxy
clear-text traffic to the victim user and establish an SSL connection with the targeted
website, stripping all cookie security flags if required. Cure53 recommends
configuring the header as follows:

Strict-Transport-Security: max-age=31536000; includeSubDomains;
In cases where HSTS was implemented, Cure53 observed a lack of use of the
includeSubDomains directive. Pertinently, the HSTS preload flag has been omitted

since it is considered a risk-inducing implementation®.

* Referrer-Policy: This header allows a site to restrict how much referrer information
is included in requests. Failing to set this header correctly might inadvertently have

4 https://cure53.de/xfo-clickjacking.pdf
5 https://github.com/moxie0/sslstrip

5 https://www.tunetheweb.com/blog/dangerous-web-security-features/

Cure53, Berlin - Sep 30, 25 12/16

https://cure53.de/
https://www.tunetheweb.com/blog/dangerous-web-security-features/
https://github.com/moxie0/sslstrip
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

a user leak potentially sensitive information. The risk is carried through the referrer
header upon navigating to another site.

Failure to incorporate beneficial security headers is suboptimal and should be avoided. To
mitigate this issue, Cure53 advises inserting the aforementioned headers into every server
response, including error responses such as 4xx items.

Generally speaking, it is important to deploy all HTTP headers at a specific, shared, and
central location, rather than randomly assigning them. This should either be handled by a
load-balancing server or a similar infrastructure. If this is deemed infeasible, then
remediation can be achieved by deploying a web server configuration and a matching
module.

DIV-03-006 WP3: Open ingress in Azure resources (Low)

Note: This issue is known to the dive developers, yet it was decided to include it in the
report for tracking.

While auditing the Azure environment of dive, testers noticed promiscuous ingress rules,
permitting access from any IP address. The listed resources still have RBAC in place;
however, limiting access to operations within a VPC/VPN's CIDR range would reduce the
likelihood of credential spraying and brute-force attacks.

Affected registry:

/subscriptions/9d1f24f0-6f5f-4€56-8849-be60dee36027/resourceGroups/Development-
Sandbox/providers/Microsoft. ContainerRegistry/registries/divesandbox

To mitigate this issue, Cure53 recommends establishing a VPC and limiting access to
sensitive components, especially key vaults. For situations where direct access to the
resources is required, a VPN connection into the VPC should be used to provide an IP from
the appropriate CIDR range.

DIV-03-007 WP2: Weak Content Security Policy configuration (Low)

While testing, Cure53 observed that usage of the Content SecurityPolicy (CSP) header was
very limited in dive. Only one site deployed a minimal policy (upgrade-insecure-requests).
Consequently, a more comprehensive CSP should be adopted to restrict the sources of
scripts, styles, and other assets, reducing the risk of XSS and other injection-based attacks.

Configured CSP:
Content-Security-Policy: upgrade-insecure-requests

Cure53, Berlin - Sep 30, 25 13/16

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Affected resources:
e https://app.preview.dive-solutions.de
* https://help.dive-solutions.de
e https://eu.divecae.app

Without a script-src directive, the browser has no restriction on where JavaScript can be
loaded from, which means an attacker could inject and execute scripts from malicious
domains. Similarly, no style-src or font-src directive means that CSS and fonts can be
loaded from anywhere, opening the door to malicious styling or information leaks.

Without img-src or media-src, images and videos can also be pulled from untrusted sources,
which attackers sometimes exploit for tracking or exfiltration. The absence of frame-
ancestors means the site could be embedded in a hostile iframe. The latter means the
extended attack options for clickjacking. Leaving out object-src further allows dangerous
legacy plugins to run. In essence, while HTTPS upgrades are enforced, the policy is missing
nearly all of the content restrictions that actually reduce XSS and injection risks.

A robust CSP should extend beyond upgrade-insecure-requests and explicitly define trusted
content sources. A default-src 'self' directive should be added to block all external content by
default, with exceptions granted only where necessary.

Next up, a script-src directive should be used to limit JavaScript execution to approved
domains. This needs to be done while remembering to avoid 'unsafe-inline' and ‘unsafe-eval
whenever possible. Similarly, directives such as style-src and font-src should be configured
to restrict stylesheet and font loading, while img-src and media-src should be specified to
control image and media sources.

To prevent clickjacking, frame-ancestors ‘none’' or a list of trusted parents should be
included, and object-src ‘none’ should be set to block legacy plugins. Finally, a report-uri or
report-to directive should be implemented, so that policy violations can be monitored. The
latter would also assist the dive team with refining the configuration over time.

Cure53, Berlin - Sep 30, 25 14/16

https://cure53.de/
https://eu.divecae.app/
https://help.dive-solutions.de/
https://app.preview.dive-solutions.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

Conclusions

This DIV-03 assignment represents the third iteration of Cure53 being tasked with security
testing the Dive CAE web application. As noted in the Introduction, this September 2025
engagement concludes positively, as only one Low-ranking vulnerability could be spotted
and confirmed. Otherwise, just minor recommendations could be formulated in terms of
additional hardening of the dive complex.

To reiterate, the Dive CAE components provide applications and infrastructure for
computational fluid dynamics (CFD) software. Such software is designed to run
computationally intensive simulations for dive customers.

As part of this assessment, Cure53 reviewed the simulation application in both the
production and staging environments, as well as looked at the supporting infrastructure. The
latter included a Microsoft Azure cloud subscription, documentation application, associated
APls, as well as two WebSocket APIs.

Due to the nature of the time-boxed security audit, Cure53 restricted the testing focus to
tackling key security concerns. These can be enumerated as unauthorized access, cross-
account access between customers, arbitrary code execution, as well as privilege escalation
within the simulation environment. Notably, the in-scope applications and infrastructure were
found to be well protected from such attacks.

Cure53 must underline that the authorization policy for the main API (jellyfish) was reviewed
and found to be appropriate. As such, Cure53 shifted to producing hardening
recommendations that would provide additional layers of security, in line with the defense-in-
depth approach.

It was positively noted that the application does not contain serious server-side flaws like
code execution or SQL injection. This indicates that the exposed attack surface is kept as
small as possible. Moreover, the outcomes show that security is taken seriously at Dive
CAE. The same holds for the client-side web application.

With regard to web and API security, the dive application makes a robust impression and is
observably effective in minimizing the attack surface. This is further underlined by the limited
severities ascribed to the reported problems, specifically not exceeding Low-risk levels.

The documented issues mainly concern hardening measures for services such as SSH, the
remote VM, or HTTP headers, as well as access control. The proposed measures should be
interpreted as suggestions rather than necessary steps. At the same time, they will help
harden the dive application further.

Cure53, Berlin - Sep 30, 25 15/16

https://cure53.de/
mailto:mario@cure53.de

E u r E E Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
Fine penetration tests for fine websites D 10629 Berlin
cure53.de - mario@cure53.de

The Pontoon websocket API, newly introduced to provide a push mechanism for server-to-
client messages, was thoroughly audited for injection capabilities, but none were found. Only
heartbeats are handled by the server, where the authentication header is properly validated
before proceeding. Further, deserialization of the payload is done using Pydantic, leaving
little room for development errors.

Generally, the usage of Oso and AuthO to handle authorization and authentication was
observed to be well thought-out and properly integrated. As expected, the correct use of
established third-party libraries reduces the system’s attack surface. This stands in contrast
to common implementations of authentication mechanisms from scratch, which risks
introducing security flaws.

The business SSO integration was also found to be safely implemented. The Cure53 testing
team uncovered no viable attack vectors for privilege escalation or cross-account
impersonation over the course of this audit.

Last but not least, the Azure and Kubernetes configurations were found to be robust within
the scope of this assessment. Some security recommendations were identified, and it is
advised to review them and, ideally, follow the proposed guidance on additional
improvements.

In conclusion, the results of this September 2025 assessment paint a positive picture of the
system’s overall security posture. The Dive CAE components benefit from security controls
implemented across both frontend and backend realms, making the project capable of
effectively mitigating a wide range of potential threats. By continuing to conduct regular
security assessments, Dive CAE can maintain a strong security posture and minimize
emerging risks.

Cure53 would like to thank Nicholas Greenall, Johannes Gutekunst and Ivo Simonsmeier

from the Dive CAE (formerly dive solutions GmbH) team for their excellent project
coordination, support, and assistance, both before and during this assignment.

Cure53, Berlin - Sep 30, 25 16/16

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Dive CAE Web UI, API & Infra 09.2025
	Index
	Introduction
	Scope
	Test Methodology
	WP1: Gray-box penetration tests & assessments of dive solutions SSO features
	WP2: White-box penetration tests & assessments of dive solutions web UI & API
	WP3: White-box penetration tests & reviews of dive solutions Azure & k8s setup

	Identified Vulnerabilities
	DIV-03-001 WP2: Missing ACL grants access to subscription data (Low)

	Miscellaneous Issues
	DIV-03-002 WP2: SSH service hardening for employed algorithms (Info)
	DIV-03-003 WP2: Remote VM hardening recommendations (Low)
	DIV-03-004 WP2: Lack of search engine protection (Info)
	DIV-03-005 WP2: Lack of general HTTP security headers (Low)
	DIV-03-006 WP3: Open ingress in Azure resources (Low)
	DIV-03-007 WP2: Weak Content Security Policy configuration (Low)

	Conclusions

