
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report ChubaoFS Pentest 08.-09.2020
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. D. Weißer, MSc. F. Fäßler, MSc. R. Peraglie

Index
Introduction

Scope

Identified Vulnerabilities

CFS-01-003 WP1: Insecure SHA1 password-hashing (Low)

CFS-01-004 WP1: Linux file permissions ineffective for ACL (High)

CFS-01-005 WP1: Missing HMAC leads to CBC padding oracle (Medium)

CFS-01-007 WP1: No brute-force protection on time-unsafe comparisons (Low)

CFS-01-008 WP1: Unencrypted raw TCP traffic to Meta- and DataNode (High)

CFS-01-009 WP1: Unauthenticated raw TCP traffic to Meta- and DataNode (High)

CFS-01-010 WP1: Lack of TCP traffic message replay protection (Medium)

CFS-01-011 WP1: Rogue Meta- and DataNodes possible due to lack of ACL (High)

CFS-01-015 WP1: API freely discloses all user-secrets (Critical)

CFS-01-016 WP2: Default Docker deployment insecure on public hosts (High)

CFS-01-022 WP1: HTTP clear-text ObjectNode REST API exposed (High)

CFS-01-024 WP2: Bypassing Skip-Owner-Validation header authentication (Medium)

Miscellaneous Issues

CFS-01-001 WP1: Usage of math/rand within crypto-utils and utils (Info)

CFS-01-002 WP1: TLS version not enforced for AuthNode HTTP server (Low)

CFS-01-006 WP1: Password hashes can be used to authenticate (Low)

CFS-01-012 WP1: HTTP parameter pollution in HTTP clients (Medium)

CFS-01-013 WP1: Unsalted MD5 authKey-Computation in ObjectNode (Low)

CFS-01-014 WP2: Lack of password complexity in MasterNode (Low)

CFS-01-017 WP2: Docker deployment stores client.json as world-readable (Medium)

CFS-01-018 WP1: Docker deployment logs credentials as world-readable (Medium)

CFS-01-019 WP1: Folders can be moved into their own child folders (Low)

CFS-01-020 WP1: Missing filename-validation allows folder corruption (Low)

CFS-01-021 WP1: Debugging endpoint /debug/pprof exposed (Info)

CFS-01-023 WP1: Build system lacks stack canaries, PIE and FORTIFY (Medium)

Cure53, Berlin · 09/08/20 1/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-025 WP1: Outdated vulnerable bzip2 dependency for ARM64 build (Info)

CFS-01-026 WP2: cfs-server processes running with root privileges (Medium)

CFS-01-027 WP1: Potential path traversal in MetaNodes (Low)

CFS-01-028 WP1: Insecure ObjectNode policy-checking behavior (Medium)

Conclusions

Introduction
“ChubaoFS has been commonly used as the underlying storage infrastructure for online
applications, database or data processing services and machine learning jobs
orchestrated by Kubernetes. An advantage of doing so is to separate storage from
compute - one can scale up or down based on the workload and independent of the
other, providing total flexibility in matching resources to the actual storage and compute
capacity required at any given time.”

From https://github.com/chubaofs/chubaofs

This report describes the results of a thorough and broadly scoped security assessment
of the ChubaoFS software, which is a cloud-native storage system with advertised
POSIX- and S3-compatibility/ The work was requested by CNCF and executed by
Cure53 in late August 2020, precisely in calendar weeks CW34 and CW35. Twenty-eight
security-relevant problems were observed by Cure53 on the ChubaoFS-delineated
scope.

In terms of resources, six senior testers were involved in this exercise after being
selected on the basis of their skills and expertise best-matching the requirements and
needs of ChubaoFS. The testing team spent 32 person-days on this project. To ensure
that all key aspects are covered to an expected degree, two work packages (WPs) were
drafted. In WP1, Cure53 completed a security review and audited the source code of the
ChubaoFS in version v2.1.0. Conversely, penetration tests centered on the production-
like ChubaoFS v2.1.0. deployment took place during WP2.

Following best practices of CNCF-related Cure53 work, the chosen methodology here
was white-box. This was especially dictated by the ChubaoFS source code being openly
available on GitHub. In this context, Cure53 was given access to a fully set up testing
instance prepared by the ChubaoFS team. The testers were further supplied with
additional test-supporting material and documentation. All in all, the preparations were
all done very well by the in-house team.

The test started on time and progressed efficiently. A dedicated Slack workspace of
ChubaoFS was used for communications, with relevant members of the Cure53 team

Cure53, Berlin · 09/08/20 2/37

https://cure53.de/
https://github.com/chubaofs/chubaofs
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

joining the exchanges. Ongoing feedback has been shared by the involved teams during
the tests and audits. Communications were helpful and fluent, Cure53 was able to ask
questions and get quick answers, report status updates and keep the ChubaoFS team
updated in regards to the progress and findings spotted over the course of this exercise.
As a result of the proper setup, Cure53 could focus on reaching very good coverage
over the test-targets.

It has already been noted above that Cure53 identified twenty-eight security-relevant
issues. Twelve items were classified to be security vulnerabilities of varying severity
ratings and the remaining sixteen discoveries represent general weaknesses with lower
exploitation potential or impact. One issue was given a Critical score, while further six
problems should be considered High risks. Quite clearly, this is a rather extensive
number of findings, especially compared to the results of many other CNCF-related
projects that Cure53 completed over the years. Moreover, this outcome is exacerbated
by the severity and significance of many flaws to which ChubaoFS has been proven
vulnerable. Foreshadowing the conclusions, this leaves the impression of the ChubaoFS
complex not being up-to-par when it comes to modern security standards.

In the following sections, the report will first shed light on the scope and key test
parameters. Next, all findings will be discussed in a chronological order alongside
technical descriptions, as well as PoC and mitigation advice when applicable. Finally, the
report will close with broader conclusions about this August 2020 project. Cure53
elaborates on the general impressions pertaining to the ChubaoFS complex and
reiterates the verdict based on the testing team’s observations and collected evidence.
Tailored hardening recommendations and advice on moving forward are also
incorporated into the final section.

Cure53, Berlin · 09/08/20 3/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration Tests & Security Reviews against ChubaoFS v2.1.0

◦ WP1: Security review & source code audit against “ChubaoFS” v2.1.0
▪ https://github.com/chubaofs/chubaofs

• commit 5330cf5b250562c29541c20a675f33d50affaea0
◦ WP2: Penetration test against prod-like “ChubaoFS” v2.1.0 deployment

▪ A testing environment was provided.
• Sources were available as OSS
• Test-supporting material was shared with Cure53
• A testing environment was made available for Cure53

◦ The test setup used an AWS EC2 instance with 8 CPU, 32GB memory and 80GB
EBS storage.

◦ The following components were launched in a POD to build a ChubaoFS cluster for
functional testing:
▪ 3 containers running Master
▪ 4 containers running MetaNode
▪ 4 containers running DataNode
▪ 3 containers running ObjectNode
▪ 1 container running Console
▪ 1 container running nginx

◦ The nginx container has been set up to map port 80 to the host and has reverse-
proxied the S3-compatible object storage interface provided by ObjectNode, the web
service provided by the Console, and the management API provided by the Master
node.

◦ In this environment, a user named ltptest has been created in advance, and a
volume named ltptest with a capacity of 30GB has been created for this user.

Cure53, Berlin · 09/08/20 4/37

https://cure53.de/
https://github.com/chubaofs/chubaofs/tree/v2.1.0
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. CFS-01-001) for the purpose of facilitating any
future follow-up correspondence.

CFS-01-003 WP1: Insecure SHA1 password-hashing (Low)
During an audit of the CFS source code, it was identified that the function
encodingPassword() inside master/user.go is using SHA1 for creating a password hash
of the user’s credentials. Since the SHA1 hashing algorithm is no longer considered
secure and collision-free, it is important to replace SHA1 with another, more robust
password hashing algorithm.

Affected File:
master/user.go

Affected Code:
package master

import (
"crypto/sha1"

[...]

func encodingPassword(s string) string {
t := sha1.New()
io.WriteString(t, s)
return hex.EncodeToString(t.Sum(nil))

}

Instead of using SHA1 for hashing the user-credentials, Cure53 recommends to use
other password hashing algorithms, such as argon21 or scrypt2.

1 https://godoc.org/golang.org/x/crypto/argon2
2 https://godoc.org/golang.org/x/crypto/scrypt

Cure53, Berlin · 09/08/20 5/37

https://cure53.de/
https://godoc.org/golang.org/x/crypto/scrypt
https://godoc.org/golang.org/x/crypto/argon2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-004 WP1: Linux file permissions ineffective for ACL (High)
It was discovered that the locally mounted filesystem does not enforce access control,
therefore making it possible for unprivileged local users to edit any file independent of
owner or permission flags. This poses a great risk as local attackers could access any
data on the drive or even escalate privileges and gain persistence in some scenarios.
The problem is described by the following shell excerpt.

Missing access control:
$ ls -al
total 0
-rw------- 1 root root 5 Aug 18 16:18 catz
$ id
uid=1000(bla) gid=1000(bla) groups=1000(bla)
$ cat catz
meow

Under normal circumstances, the user bla should not be able to read the root owned file
due to the permissions of the file. However, as the fuse client lacks the appropriate flags
that would let the Linux kernel handle the permissions, any user can read/write any file.
It is recommended to add the default_permissions3 flag to the mount options of the fuse
client. This ensures that privileges are handled by the operating system and requires no
additional implementation in the client itself.

CFS-01-005 WP1: Missing HMAC leads to CBC padding oracle (Medium)
The authnode is utilized to issue tickets used for authentication. Some parts of the
communication with the service is encrypted using AES in CBC mode. An additional
checksum serves as an integrity check. However, this construct is insecure and does not
protect the data at all as a CBC padding oracle4 can be employed to decrypt and encrypt
arbitrary messages. Shown below is the code responsible for decrypting messages. The
data is first decrypted whereas the decryption function already removes the padding.
Then the length and the checksum of the plain-data are verified. If something goes
wrong, an arrow is returned.

Affected File:
/util/cryptoutil/cryptoutil.go

Affected Code:
func unpad(src []byte) []byte {

length := len(src)
unpadding := int(src[length-1])

3 https://www.kernel.org/doc/Documentation/filesystems/fuse.txt
4 https://en.wikipedia.org/wiki/Padding_oracle_attack

Cure53, Berlin · 09/08/20 6/37

https://cure53.de/
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://www.kernel.org/doc/Documentation/filesystems/fuse.txt
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

return src[:(length - unpadding)]
}

func DecodeMessage(message string, key []byte) (plaintext []byte, err error) {
[...]

if decodedText, err = AesDecryptCBC(key, cipher); err != nil {
return

}

if len(decodedText) <= MessageMetaDataSize {
err = fmt.Errorf("invalid json format with size [%d] less than

message meta data size", len(decodedText))
return

}

msgChecksum := make([]byte, CheckSumSize)
copy(msgChecksum,

decodedText[CheckSumOffset:CheckSumOffset+CheckSumSize])

// calculate checksum
filltext := bytes.Repeat([]byte{byte(0)}, CheckSumSize)
copy(decodedText[CheckSumOffset:], filltext[:])
newChecksum := md5.Sum(decodedText)

// verify checksum
if bytes.Compare(msgChecksum, newChecksum[:]) != 0 {

err = fmt.Errorf("checksum not match")
}

plaintext = decodedText[MessageOffset:]

//fmt.Printf("DecodeMessage CBC: %s\n", plaintext)
return

}

It was further observed that the padding function does not verify if a proper padding was
used. Instead, it just determines how many bytes to remove based on the last character
in the data. This in combination with the key-less checksum makes a CBC attack fairly
easy.

It is recommended to avoid CBC and switch to an authenticated encryption mode such
as AES-GCM. This mode follows the encrypt-then-authenticate principle and eliminates
the risk of data exfiltration via padding oracles.

Cure53, Berlin · 09/08/20 7/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-007 WP1: No brute-force protection on time-unsafe comparisons (Low)
It was found that the authentication makes use of the time-unsafe comparison when
verifying the password of the user. The string comparison in Go lang is an algorithm that
is linearly time-variant to the equivalence of the input strings. In this specific case, the
more the user-input matches the password, the greater the runtime of the comparison.
This could be abused by attackers to send a very large number of requests, rendering
the minimal time differences measurable. From there, the password of a targeted user
could be brute-forced character-by-character.

Affected File:
master/gapi_user.go

Affected Code:
func (s *UserService) validatePassword(ctx context.Context, args struct {
 UserID string
 Password string
}) (*proto.UserInfo, error) {
 ui, err := s.user.getUserInfo(args.UserID)
 if err != nil {
 return nil, err
 }

 ak, err := s.user.getAKUser(ui.AccessKey)
 if err != nil {
 return nil, err
 }

 if ak.Password != args.Password {
 log.LogWarnf("user:[%s] login pass word has err", args.UserID)
 return nil, fmt.Errorf("user or password has err")
 }
 return ui, nil
}

For all string comparisons that contain sensitive information, it is recommended to use
time-safe comparisons, such as those implemented by the function called
ConstantTimeCompare() of the crypto/subtle package. By doing so, the string
comparison runs with a time that is constant for strings of the same length. This will
prevent attackers from using time as a side-channel, thus mitigating the risk of sensitive
information being extracted.

Cure53, Berlin · 09/08/20 8/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-008 WP1: Unencrypted raw TCP traffic to Meta- and DataNode (High)
During an audit of the CFS source code, it was found that every Meta-and DataNode is
starting up a raw TCP server that is handling incoming messages. The communication to
the referred TCP services is performed unencrypted and in clear-text, meaning an
attacker potentially capable of intercepting network communication can eavesdrop on or
tamper with transmitted messages.

Affected File:
datanode/server.go

Affected Code:
func (s *DataNode) startTCPService() (err error) {

[...]
l, err := net.Listen(NetworkProtocol, addr)
[...]

}

Affected File:
metanode/server.go

Affected Code:
func (m *MetaNode) startServer() (err error) {

[...]
ln, err := net.Listen("tcp", ":"+m.listen)
[...]

}

Encrypting communication whenever possible is considered state-of-the-art and is highly
recommended for any communication from / to the Meta-and DataNode. The tls
package5 within Go lang can be used for adding TLS encryption to the listening TCP
services.

CFS-01-009 WP1: Unauthenticated raw TCP traffic to Meta- and DataNode (High)
During an audit of the CFS source code, it was found that every MetaNode and
DataNode starts up a raw TCP server for handling incoming messages. The
communication to the referred TCP services is performed unauthenticated, meaning an
attacker with network connectivity to the Meta- and DataNodes can send arbitrary
messages / commands.

5 https://golang.org/pkg/crypto/tls/

Cure53, Berlin · 09/08/20 9/37

https://cure53.de/
https://golang.org/pkg/crypto/tls/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The startServer() (MetaNode) and startTCPService() (DataNode) functions are starting
the actual TCP listening sockets. Incoming messages / packets for the MetaNode will
then be handled by the following sequence of function calls:

serveConn() > m.handlePacket() > m.metadataManager.HandleMetadataOperation().

Incoming messages / packets for the DataNode will then be handled by the following
function trace:

serveConn() > packetProcessor.ServerConn() > rp.readPkgAndPrepare() >
rp.putToBeProcess().

The function putToBeProcess() puts incoming packets to the to-be-processed channel.

The following depicts an example for the MetaNode service. Inside
m.metadataManager.HandleMetadataOperation(), a switch case statement processes
received messages. Depending on the submitted opCode, it will continue invoking the
respective handler-function. For example the opCode for setting an extended attribute
proto.OpMetaSetXAttr invokes the function of opMetaSetXAttr(), which in turn ends up
invoking mp.SetXAttr() without any authorization checks. This ensures that the caller is
allowed to set an extended attribute.

It is important to emphasize that both TCP servers for the Meta- and DataNodes are
vulnerable against unauthenticated function calls and lack any sort of access control.

Affected File:
datanode/server.go

Affected Code:
func (s *DataNode) startTCPService() (err error) {

[...]
l, err := net.Listen(NetworkProtocol, addr)
[...]
go func(ln net.Listener) {

for {
conn, err := ln.Accept()
[...]
go s.serveConn(conn)
[...]

}

Affected File:
metanode/server.go

Cure53, Berlin · 09/08/20 10/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
func (m *MetaNode) startServer() (err error) {

[...]
ln, err := net.Listen("tcp", ":"+m.listen)
[...]
go func(stopC chan uint8) {

defer ln.Close()
for {

conn, err := ln.Accept()
[...]
go m.serveConn(conn, stopC)
[...]

}

Cure53 wants to stress the importance of adding authentication and proper access
control checks to the TCP servers of the Meta- and DataNode in order to ensure that
unauthenticated communication stops being possible.

CFS-01-010 WP1: Lack of TCP traffic message replay protection (Medium)
During an audit of the CFS source code, it was identified that the packet structure
definition and message processing of the Meta- and DataNode TCP server is not
protecting against potential message replay attacks. An attacker could capture
previously transmitted messages and replay/inject them onto the wire, causing potential
inconsistencies or Denial-of-Service situations within the CFS cluster.

Affected File:
proto/packet.go

Affected Code:
// Packet defines the packet structure.
type Packet struct {

Magic uint8
ExtentType uint8
Opcode uint8
ResultCode uint8
RemainingFollowers uint8
CRC uint32
Size uint32
ArgLen uint32
KernelOffset uint64
PartitionID uint64
ExtentID uint64
ExtentOffset int64
ReqID int64

Cure53, Berlin · 09/08/20 11/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Arg []byte
Data []byte
StartT int64
mesg string
HasPrepare bool

}

The protocol should incorporate some sort of replay protection, ensuring that injecting
and replaying messages is not possible. Such a replay protection could consist of the
sender's source IP address and a timestamp information where the receiver rejects
messages that are older than a predefined time window.

When using time information for determination of message replay, it is crucial to properly
synchronize the time of all Meta- and DataNodes. Considering the entire communication
to the Meta- and DataNode is additionally encrypted, an attacker would have no chance
to tamper with any of the information, rejecting replayed messages.

CFS-01-011 WP1: Rogue Meta- and DataNodes possible due to lack of ACL (High)
During an audit of the CFS source code, it was identified that the registration of new
Meta- and DataNodes is performed without any form of access control mechanism in
place. The sole parameters required to add new nodes are:

• A combination of the source IP address and port number.
• The zone name.

An attacker / malicious user could abuse the lack of access control when adding new
Meta- and DataNodes to potentially inject rogue Meta- and DataNodes.

Affected File:
datanode/server.go

Affected Code:
// registers the data node on the master to report the information such as
IsIPV4 address.
// The startup of a data node will be blocked until the registration succeeds.
func (s *DataNode) register(cfg *config.Config) {

[...]
// get the IsIPV4 address, cluster ID and node ID from the master
for {

[...]
if nodeID, err = MasterClient.NodeAPI().AddDataNode(

fmt.Sprintf("%s:%v", LocalIP, s.port), s.zoneName);
err != nil {
log.LogErrorf("action[registerToMaster]

Cure53, Berlin · 09/08/20 12/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

cannot register this node to master[%v] err(%v).",
masterAddr, err)

[...]
}
[...]

}

Affected File:
metanode/metanode.go

Affected Code:
func (m *MetaNode) register() (err error) {

step := 0
var nodeAddress string
for {

[...]
nodeAddress = m.localAddr + ":" + m.listen
[...]

}
[...]
if nodeID, err = masterClient.NodeAPI().AddMetaNode(nodeAddress,

m.zoneName); err != nil {
log.LogErrorf("register: register to master fail:

address(%v) err(%s)", nodeAddress, err)
[...]

}
[...]

}

It is recommended to ensure that only authorized Meta- and DataNodes are able to join
the network of nodes.

CFS-01-015 WP1: API freely discloses all user-secrets (Critical)
Exploring the exposed functionality of CFS revealed that the API to list all users, and
even the cli tool, discloses the authKey as well as secretKey of every user. This renders
the role-based access control useless as any user can simply get the credentials of the
admin.

PoC:
root@075f2e931570:/go# cfs-cli user list
ID TYPE ACCESS KEY SECRET KEY
root Root cD7iHA2ZVOAUXmSb mCGWXZFF8KiGtyxzd3baW7WbMTCybBeF
ltptest Normal 39bEF4RrAQgMj6RV TRL6o3JL16YOqvZGIohBDFTHZDEcFsyd
root@075f2e931570:/go#
root@075f2e931570:/go# curl "192.168.0.11:17010/user/list"

Cure53, Berlin · 09/08/20 13/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

{"code":0,"msg":"success","data":
[{"user_id":"root","access_key":"cD7iHA2ZVOAUXmSb","secret_key":"mCGWXZFF8KiGtyx
zd3baW7WbMTCybBeF","policy":{"own_vols":["asd"],"authorized_vols":
{}},"user_type":1,"create_time":"2020-08-17
10:02:45","description":"","EMPTY":false},
{"user_id":"ltptest","access_key":"39bEF4RrAQgMj6RV","secret_key":"TRL6o3JL16YOq
vZGIohBDFTHZDEcFsyd","policy":{"own_vols":["ltptest"],"authorized_vols":
{}},"user_type":3,"create_time":"2020-08-17
10:02:55","description":"","EMPTY":false}]}

The credentials should never be exposed by the API. This completely renders all volume
permissions useless and allows any user to gain access to any other user’s setup.
Especially in a multi-tenant setup where different customers use the same deployment,
this is a very serious issue.

CFS-01-016 WP2: Default Docker deployment insecure on public hosts (High)
The default Docker deployment exposes all services on the main network interface. The
test deployment provided by the developers was set up on Amazon Virtual Private
Cloud, which means the machine is luckily not exposed to the Internet. However, if
ChubaoFS is set up based on the instructions on GitHub on a dedicated server not
inside a private network, all services and APIs become publicly accessible.

PoC:
In this PoC, ChubaoFS was set up on a VPS using the provided script of
docker/run_docker.sh. The server in this case had the IP address of 142.93.100.176.
The following output shows that one MasterNode is listening on public port 32958.

server$ docker ps
[...]
e6ac5197cf5f chubaofs/cfs-base:1.1 "/bin/sh /cfs/script…" 3 days ago
Up 3 days 0.0.0.0:32992->5901/tcp, 0.0.0.0:32982->5902/tcp,
0.0.0.0:32971->9500/tcp, 0.0.0.0:32958->17010/tcp, 0.0.0.0:32948->17020/tcp
docker_master2_1
[...]

The following curl command is executed on a different machine using the public IP and
the port above to show that a remote attacker can easily extract all the credentials. This
can then be used by the attacker to mount any of the volumes and extract all private
data.

user$ curl -v 142.93.100.176:32958/user/list
{"code":0,"msg":"success","data":
[{"user_id":"root","access_key":"cD7iHA2ZVOAUXmSb","secret_key":"mCGWXZFF8KiGtyx
zd3baW7WbMTCybBeF","policy":{"own_vols":["asd"],"authorized_vols":

Cure53, Berlin · 09/08/20 14/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

{}},"user_type":1,"create_time":"2020-08-17
10:02:45","description":"","EMPTY":false},
{"user_id":"ltptest","access_key":"39bEF4RrAQgMj6RV","secret_key":"TRL6o3JL16YOq
vZGIohBDFTHZDEcFsyd","policy":{"own_vols":["ltptest"],"authorized_vols":
{}},"user_type":3,"create_time":"2020-08-17
10:02:55","description":"","EMPTY":false}]

Even in a private cloud deployment, it leaves ChubaoFS exploitable once a single host
inside the network gets compromised. It is recommended to not expose the ports by
default, especially because the Docker setup uses an internal network anyway. Without
any form of meaningful authentication and access control reported in other issues,
ChubaoFS must not be deployed on any publicly reachable host.

CFS-01-022 WP1: HTTP clear-text ObjectNode REST API exposed (High)
During an audit of the CFS source code, it was found that the ObjectNode service is
starting up an HTTP REST API for handling incoming messages. The listening port of
this REST API can be configured by the user through the configuration file, however, a
user cannot enforce the HTTP service to be protected by TLS. It has to be noted that the
example configuration of an ObjectNode, stored within docker/conf/objectnode.json of
the official CFS repo, uses the enableHTTPS configuration option within the JSON file.
However, when looking at the respective source code responsible for processing /
parsing the configuration, enableHTTPS is not processed and, therefore, never gets
used.

As a result, the communication to this REST API is performed unencrypted and in clear-
text, meaning an attacker who is potentially capable of intercepting network
communication can eavesdrop on or tamper with transmitted messages.

Affected File:
objectnode/server.go

Affected Code:
func (o *ObjectNode) startMuxRestAPI() (err error) {

[...]
var server = &http.Server{

Addr: ":" + o.listen,
Handler: router,

}

go func() {
if err = server.ListenAndServe(); err != nil {

[...]
o.httpServer = server
return

Cure53, Berlin · 09/08/20 15/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}

Cure53 wants to stress the importance of encrypting communication whenever possible.
HTTP services can, for example, be implemented by using security-aware middleware,
such as the Secure6 library, which offers additional security features and improves the
overall security posture of the HTTP service.

CFS-01-024 WP2: Bypassing Skip-Owner-Validation header authent. (Medium)
It was found that the volume manager takes an authentication key of the owner to return
details of the volume. The information includes the access and secret key for the
volume. Not only is the authentication check weak due to using the md5 hash of the
owner, but it can also be bypassed with the Skip-Owner-Validation HTTP header. The
exposed information allows anybody to mount and access the data of this volume.

Example:
The following request attempts to get the information of the volume named “asd”, but
fails due to the missing authentication key.

curl "192.168.0.11:17010/client/vol?name=asd"

[operate_util.go 174] parameter authKey not found

By providing the Skip-Owner-Validation HTTP header, no key is required and an
attacker gains access to the required keys to access the data of this volume.

curl "192.168.0.11:17010/client/vol?name=asd" -H "Skip-Owner-Validation: 1"

{"code":0,"msg":"success","data":
{"Name":"asd","Owner":"root","Status":0,"FollowerRead":true,"MetaPartitions":
[{"PartitionID":4,"Start":0,"End":16777216,"MaxInodeID":1,"InodeCount":1,"Dentry
Count":0,"IsRecover":false,"Members":
["192.168.0.24:17210","192.168.0.22:17210","192.168.0.21:17210"],
[...]
,"IsRecover":false},{"PartitionID":11,"Status":2,"ReplicaNum":3,"Hosts":
["192.168.0.31:17310","192.168.0.34:17310","192.168.0.33:17310"],"LeaderAddr":"1
92.168.0.34:17310","Epoch":0,"IsRecover":false}],"OSSSecure":
{"AccessKey":"GjAZYkDISiR2tLkF","SecretKey":"yPS1zr6KbG8u9TLyvyJYXtzEdokIs6Ar"},
"CreateTime":1597995597}}

Affected File:
chubaofs/master/api_service.go

6 https://github.com/unrolled/secure

Cure53, Berlin · 09/08/20 16/37

https://cure53.de/
https://github.com/unrolled/secure
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:

The following code excerpt shows the weak authentication check and bypass.

if !param.skipOwnerValidation && !matchKey(vol.Owner, param.authKey) {
 sendErrReply(w, r, newErrHTTPReply(proto.ErrVolAuthKeyNotMatch))
 Return
}

ChubaoFS has a general pattern of openly exposing critical data. Even though the
parameter is called authKey, the method implemented is a very weak form of
authentication. This is made even worse by allowing an entire bypass of the check. It is
recommended to never expose secrets on APIs and add proper authentication for critical
data, especially if intended to be used in a multi-tenant deployment.

Cure53, Berlin · 09/08/20 17/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

CFS-01-001 WP1: Usage of math/rand within crypto-utils and utils (Info)
During an audit of the CFS source code, it was identified that the encodeMessage()
function inside insecure util/cryptoutil.go is using the pseudo-random number7

generation math/rand for generating a random Uint64 number.

Affected File:
util/cryptoutil.go

Affected Code:
rand2 "math/rand"
[...]
func EncodeMessage(plaintext []byte, key []byte) (message string, err error) {

var cipher []byte
// 8 for random number; 16 for md5 hash
buffer := make([]byte, RandomNumberSize+CheckSumSize+len(plaintext))
// add random
random := rand2.Uint64()
binary.LittleEndian.PutUint64(buffer[RandomNumberOffset:], random)

[...]

It was also found that the generation of accessKey and secretKey is using a random
string implementation building upon math/rand while being seeded by the current time.
This results in an insecure generation of secrets.

Affected File:
util/string.go

Affected Code:
import (

"math/rand"
"strings"
"time"

)
[...]
func RandomString(length int, seed RandomSeed) string {

runs := seed.Runes()

7 https://cwe.mitre.org/data/definitions/338.html

Cure53, Berlin · 09/08/20 18/37

https://cure53.de/
https://cwe.mitre.org/data/definitions/338.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

result := ""
for i := 0; i < length; i++ {

rand.Seed(time.Now().UnixNano())
randNumber := rand.Intn(len(runs))
result += string(runs[randNumber])

}
return result

}

The above code snippets illustrate two locations within the CFS source code that are
using the math/rand functionality. It is recommended to revisit the entire source code (a
complete list can be obtained by searching for the string math/rand) for all occurrences
of random value generation, especially those used for authentication and encryption.
They must be replaced with secure random alternatives. The Go package crypto/rand
offers an alternative to providing cryptographically secure random generation.

CFS-01-002 WP1: TLS version not enforced for AuthNode HTTP server (Low)
During an audit of the CFS source code, it was identified that the function
startHTTPService() inside the file authnode/http_server.go has an empty TLS
configuration in place. This effectively allows insecure and deprecated TLSv1.0 version.

Affected File:
authnode/http_server.go

Affected Code:
func (m *Server) startHTTPService() {

go func() {
m.handleFunctions()
if m.cluster.PKIKey.EnableHTTPS {

// not use PKI to verify client certificate
// Instead, we use client secret key for authentication
cfg := &tls.Config{

//ClientAuth: tls.RequireAndVerifyClientCert,
//ClientCAs: caCertPool,

}
[...]

The official Go lang documentation of the tls package8 provides further information about
the configuration setting for MinVersion, allowing to specify the minimum TLS version
supported. As recommended by NIST9, Cure53 encourages strict usage of TLSv1.2 and
TLSv1.3 because older versions of TLS are vulnerable and no longer considered secure.

8 https://golang.org/pkg/crypto/tls/
9 https://csrc.nist.gov/News/2019/nist-publishes-sp-800-52-revision-2

Cure53, Berlin · 09/08/20 19/37

https://cure53.de/
https://csrc.nist.gov/News/2019/nist-publishes-sp-800-52-revision-2
https://golang.org/pkg/crypto/tls/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-006 WP1: Password hashes can be used to authenticate (Low)
It was found that the password hash of a user can be abused to authenticate to
ChubaoFS. This introduces the risk that a compromise of the password storage instantly
leaks all secrets that can be used to authenticate as any user to the system. Usually a
hashing logic forces the attackers to reverse the hash to the clear-text password before
authenticating to the system. ChubaoFS makes use of a hashing scheme to store the
passwords. However, the password is hashed on the client-side before sending it to the
server.

HTTP request:
POST /login HTTP/1.1
Host: console.chubao.io
[...]
content-type: application/json
authorization: null
Origin: http://console.chubao.io
Content-Length: 267
Connection: close

{"operationName":"Login","variables":
{"userID":"root","password":"082c2c44e2bfae761275e7e2f71d8771b276b32a"},"query":
"query Login($userID: String, $password: String) {\n login(userID: $userID,
password: $password) {\n token\n userID\n __typename\n }\n}\n"}

It is recommended that all authentication secrets are hashed on the server. As a result,
the risk of a password store compromise is mitigated by forcing attackers to defeat the
cryptographic hash function used by the password verification logic.

CFS-01-012 WP1: HTTP parameter pollution in HTTP clients (Medium)
It was found that the application embeds potential user-input directly into the value part
of a query parameter within a HTTP URI. This means the risk of user-input being
poisoned by special meta-characters which allow the attackers to escape from the
parameter allowing them to pollute other HTTP parameters. This could be abused by
attackers to change the intention of the request sent to the master service, potentially
resulting in unauthorized actions.

Affected File:
sdk/master/client.go

Affected Code:
func (c *MasterClient) mergeRequestUrl(url string, params map[string]string)
string {
 if params != nil && len(params) > 0 {

Cure53, Berlin · 09/08/20 20/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 buff := bytes.NewBuffer([]byte(url))
 isFirstParam := true
 for k, v := range params {
 if isFirstParam {
 buff.WriteString("?")
 isFirstParam = false
 } else {
 buff.WriteString("&")
 }
 buff.WriteString(k)
 buff.WriteString("=")
 buff.WriteString(v)
 }
 return buff.String()
 }

Also Affected:
cli/api/metaapi.go
util/master_helper.go

It is recommended that the vulnerability is mitigated by escaping the user input before
embedding it into the query parameters. This could be done by Go’s QueryEscape()
function offered by Golang’s net/url package. By doing so, the attackers cannot escape
from the parameter that they inject into preventing the HTTP Parameter Pollution.

CFS-01-013 WP1: Unsalted MD5 authKey-Computation in ObjectNode (Low)
During an audit of the CFS source code, it was identified that the calculateAuthKey()
function uses the MD5 hashing function to compute an authentication key based on the
userID of the user. The authKey value is used by various functions to authenticate the
caller against the API, for example when deleting a volume. The computation of the
MD5 hash is performed without a salt value, making it potentially vulnerable against
rainbow / dictionary attacks.

Affected File:
objectnode/api_handler_bucket.go

Affected Code:
func calculateAuthKey(key string) (authKey string, err error) {

h := md5.New()
_, err = h.Write([]byte(key))
[...]
cipherStr := h.Sum(nil)
return strings.ToLower(hex.EncodeToString(cipherStr)), nil

}

Cure53, Berlin · 09/08/20 21/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 recommends to replace MD5 with scrypt10 for computing hashes that are used
for authentication purposes, as it is the case for the authKey value.

CFS-01-014 WP2: Lack of password complexity in MasterNode (Low)
An audit of the CFS source code revealed the user-management API is not enforcing a
password complexity when creating a new user or updating the password of an existing
user. It should enforce for instance, at least one uppercase and/or lowercase letter, a
number or special characters or a minimum password length.

The lack of password policy allows users to set weak passwords, which makes it easy
for attackers to guess passwords of existing users, for instance by mounting automated
brute force or dictionary attacks.

Affected File:
master/user.go

Affected Code:
func (u *User) createKey(param *proto.UserCreateParam) (userInfo
*proto.UserInfo, err error) {

var (
AKUser *proto.AKUser
userPolicy *proto.UserPolicy
exist bool

)
[...]
var userID = param.ID
var password = param.Password
if password == "" {

password = DefaultUserPassword
}
[...]

Longer passwords are generally more resilient to brute-force attacks and the minimal
length should be set at eight characters. As also described by NIST11, passwords shorter
than eight characters are considered to be weak.

10 https://godoc.org/golang.org/x/crypto/scrypt
11 https://pages.nist.gov/800-63-3/sp800-63b.html

Cure53, Berlin · 09/08/20 22/37

https://cure53.de/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://godoc.org/golang.org/x/crypto/scrypt
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-017 WP2: Docker deploym. stores client.json as world-readable (Medium)
The default Docker deployment stores accessKey and secretKey in the client.json file,
making it world-readable for all users. Even unprivileged users can gain access to the
necessary credentials, achieving direct access on the volume.

PoC:
sh-4.4$ id
uid=1000(test1) gid=1000(test1) groups=1000(test1)
sh-4.4$ ls -la /cfs/conf/client.json
-rw-r--r-- 1 root root 501 Aug 17 12:48 /cfs/conf/client.json
sh-4.4$ cat /cfs/conf/client.json
{
 "masterAddr": "192.168.0.11:17010,192.168.0.12:17010,192.168.0.13:17010",
 "mountPoint": "/cfs/mnt",
 "volName": "ltptest",
 "owner": "ltptest",
 "logDir": "/cfs/log",
 "logLevel": "info",
 "consulAddr": "http://192.168.0.101:8500",
 "exporterPort": 9500,
 "profPort": "17410",
 "authenticate": false,
 "ticketHost": "192.168.0.14:8080,192.168.0.15:8081,192.168.0.16:8082",
 "enableHTTPS": "false",
 "accessKey": "39bEF4RrAQgMj6RV",
 "secretKey": "TRL6o3JL16YOqvZGIohBDFTHZDEcFsyd"
}

Storing sensitive information, like credentials, in clear-text inside a world-readable file is
insecure and poses a severe security risk. In this context, it is recommended to change
the permissions of the file to be more specific and not grant read permissions to any
user on the system.

CFS-01-018 WP1: Docker deploym. logs credentials as world-readable (Medium)
It was discovered that the client stores logs which are quite verbose as they contain
credentials (accessKey and secretKey). This log file is stored as world-readable, letting
local attackers obtain the information with full access to the filesystem. Shown below is
an excerpt from the logged information.

Affected File:
/cfs/log/client/output.log

Affected Logs:
2020/08/19 06:54:34 [certFile] string:

Cure53, Berlin · 09/08/20 23/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

2020/08/19 06:54:34 [token] string:
2020/08/19 06:54:34 [accessKey] string: 39bEF4RrAQgMj6RV
2020/08/19 06:54:34 [secretKey] string: TRL6o3JL16YOqvZGIohBDFTHZDEcFsyd
2020/08/19 06:54:34 [disableDcache] bool: false
2020/08/19 06:54:34 [subdir] string:

Sensitive information like credentials should not be logged at all. In this context, it is
recommended to censor the information in the log file. Additionally, the affected files
should not be accessible for local users.

CFS-01-019 WP1: Folders can be moved into their own child folders (Low)
Inspecting the binary protocol demonstrated that the nodes lack plausibility checks for
what clients submit, allowing to partly corrupt the filesystem. For example, it was found
possible to move a folder into its own child item which render the affected directories
useless on a standard Linux system. The following shell excerpt shows how such a
directory loop was created. Reproducing the issue will require adjustments to the Inode
and partition numbers.

PoC:
root@51cc9bb14576:/cfs/mnt/bla# mkdir a b
root@51cc9bb14576:/cfs/mnt/bla# ls -id a b
33554504 a 71 b
root@51cc9bb14576:/cfs/mnt/bla# (perl -e
'$r="{\"vol\":\"ltptest\",\"pid\":3,\"pino\":33554504,\"ino\":71,\"name\":\"b\",
\"mode\":2147484141}";print "\xff\x00\x22\x00" . "\x00"x8 . chr(length($r)) . "\
x00"x34 . "\x07\xbe" . "\x00"x8; print $r;') | nc
docker_metanode1_1.docker_extnetwork 17210
" O {"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748�"�O�{"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748 �"�O�{"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748 �"�O�{"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748

4141}
root@51cc9bb14576:/cfs/mnt/bla# ls -al b/a/
ls: cannot access 'b/a/b': Too many levels of symbolic links
total 0
d????????? ? ? ? ? ? b

The impact of this issue is fairly low. Given that it requires direct communication with the
node, an attacker would have better ways for causing damage than corrupting individual
folders. However, there might be scenarios where an attacker can gain more from this
issue than simply delete all files. The issue is already partly addressed in the code of the
MetaNode server but it is only checked if the ParentID is equal to the current Inode. As
this issue shows, this check is not sufficient to prevent directory loops.

Affected File:
metanode/partition_op_dentry.go

Cure53, Berlin · 09/08/20 24/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
if req.ParentID == req.Inode {

err = fmt.Errorf("parentId is equal inodeId")
p.PacketErrorWithBody(proto.OpExistErr, []byte(err.Error()))
return

}

Despite the low impact of the issue, it is recommended to check if Dentries link to one of
their parents when created or modified in order to prevent corruptions caused by
directories linking in the wrong way.

CFS-01-020 WP1: Missing filename-validation allows folder corruption (Low)
Inspecting the binary protocol reveals that the nodes lack plausibility checks for what
clients submit, allowing to create file-names which lead to errors on Linux systems. This
renders the affected directory useless and makes the contained data inaccessible unless
the problem is resolved by manually crafting requests to the MetaNodes. The following
shell excerpt shows how such a directory loop was created. Reproducing the issue will
require adjustments to the Inode and partition numbers.

PoC:
root@51cc9bb14576:/cfs/mnt/t# ls -id . bla
33554514 . 82 bla
root@51cc9bb14576:/cfs/mnt/t# (perl -e
'$r="{\"vol\":\"ltptest\",\"pid\":3,\"pino\":33554514,\"ino\":82,\"name\":\"a/\"
,\"mode\":2147484141}";print "\xff\x00\x22\x00" . "\x00"x8 . chr(length($r)) .
"\x00"x34 . "\x07\xbe" . "\x00"x8; print $r;') | nc
docker_metanode4_1.docker_extnetwork 17210
" P {"vol":"ltptest","pid":3,"pino":33554514,"ino":82,"name":"a/","mode":21474�"�O�{"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748 �"�O�{"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748 �"�O�{"vol":"ltptest","pid":3,"pino":33554504,"ino":71,"name":"b","mode":214748

84141}
root@51cc9bb14576:/cfs/mnt/t# ls -al
ls: reading directory '.': Input/output error
total 0

Similar to CFS-01-019, the impact of this issue is also fairly low. There are easier ways
to cause damage once an attacker can talk to nodes directly. However, it is
recommended to check on the node's side if the submitted data can lead to problems on
the client-side. In this particular case, this can be achieved by validating names of fields
and directories.

Cure53, Berlin · 09/08/20 25/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-021 WP1: Debugging endpoint /debug/pprof exposed (Info)
During an audit of the CFS source code, it was noted that the pprof debug endpoint12 is
exposed by various services of the CFS ecosystem. The pprof debugging endpoint can
potentially leak sensitive information, such as internal memory addresses and
configuration.

PoC:
The pprof debugging endpoint of the fuse client can, for example, be queried as follows:

wget -O trace.out http://127.0.0.1:17410/debug/pprof/trace?seconds=5

Running the above command will store a five-seconds trace inside trace.out.

Affected File:
client/fuse.go

Affected Code:
import (

"flag"
"fmt"
syslog "log"
"net"
"net/http"
_ "net/http/pprof"

[...]

func mount(opt *proto.MountOptions) (fsConn *fuse.Conn,
super *cfs.Super, err error) {
[...]
go func() {

if opt.Profport != "" {
syslog.Println("Start pprof with port:", opt.Profport)
http.ListenAndServe(":"+opt.Profport, nil)

} else {
pprofListener, err := net.Listen("tcp", ":0")
if err != nil {

daemonize.SignalOutcome(err)
os.Exit(1)

}

[...]
http.Serve(pprofListener, nil)

}

12 https://golang.org/pkg/net/http/pprof/

Cure53, Berlin · 09/08/20 26/37

https://cure53.de/
https://golang.org/pkg/net/http/pprof/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}()

Affected File:
cmd/cmd.go

Affected Code:
import (

"flag"
"fmt"
syslog "log"
"net/http"
_ "net/http/pprof"

[...]

func main() {
[...]

if profPort != "" {
go func() {

http.HandleFunc(log.SetLogLevelPath, log.SetLogLevel)
e := http.ListenAndServe(fmt.Sprintf(":%v", profPort), nil)
if e != nil {

log.LogFlush()
daemonize.SignalOutcome(fmt.Errorf("cannot listen” \

“ pprof %v err %v", profPort, err))
os.Exit(1)

}
}()

}
[...]

Cure53 wants to stress the importance of not exposing debug interfaces in an
unauthenticated form to all users that are in the position to interact with the CFS cluster.
pprof should only be exposed within debug builds and when explicitly configured by
users.

Cure53, Berlin · 09/08/20 27/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-023 WP1: Build system lacks stack canaries, PIE and FORTIFY (Medium)
While checking the properties of the compiled cfs-authtool, cfs-cli, cfs-client and cfs-
server binaries, it has been identified that none of the binaries have compile time security
hardening flags enabled. The following security hardening options are missing across all
binaries:

• STACK CANARY
• PIE
• FORTIFY

The following security hardening options are missing for the cfs-authtool and cfs-client
binary as well:

• RELRO

A detailed description of the referred security hardening compiler flags can be found
online13.

PoC:
cfs-server:
/root/tools/checksec.sh/checksec --file=cfs-server
[...] STACK CANARY [...] PIE [...] FORTIFY
 No canary found No PIE No

cfs-cli:
/root/tools/checksec.sh/checksec --file=cfs-cli
[...] STACK CANARY [...] PIE [...] FORTIFY
 No canary found No PIE No

cfs-authtool:
/root/tools/checksec.sh/checksec --file=cfs-authtool
RELRO STACK CANARY PIE FORTIFY
Partial RELRO No canary found No PIE No

cfs-client:
/root/tools/checksec.sh/checksec --file=cfs-client
RELRO STACK CANARY PIE FORTIFY
Partial RELRO No canary found No PIE No

Setting the following environment variables within the build process in the file
build/build.sh will result in having the referred security hardening options enabled:

13 https://wiki.archlinux.org/index.php/Arch_package_guidelines/Security#Golang

Cure53, Berlin · 09/08/20 28/37

https://cure53.de/
https://wiki.archlinux.org/index.php/Arch_package_guidelines/Security#Golang
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

export GOFLAGS='-buildmode=pie'
export CGO_CPPFLAGS="-D_FORTIFY_SOURCE=2"
export CGO_LDFLAGS="-Wl,-z,relro,-z,now"

Cure53 encourages the use of existing compiler security features in order to raise the bar
for attackers who aim to exploit vulnerabilities within CFS.

CFS-01-025 WP1: Outdated vulnerable bzip2 dependency for ARM64 build (Info)
While reviewing the CFS build script, it has been noticed that the build for ARM64
architecture uses an outdated and vulnerable version of the bzip2 library14.

Affected File:
build.sh

Affected Code:
wget compress dep
get_rocksdb_compress_dep() {

if [! -d "${RootPath}/vendor/dep"]; then
 mkdir -p ${RootPath}/vendor/dep
 cd ${RootPath}/vendor/dep
 wget https://astuteinternet.dl.sourceforge.net/project/bzip2/bzip2-1.0.6.tar.gz
 [...]

Affected File:
build/build.sh

Affected Code:
pre_build_server() {
 rocksdb_libs=(z bz2 lz4 zstd)
 if [["$CPUTYPE" == arm64*]];
 then
 build_zlib
 build_bzip2
 build_lz4
 # build_zstd
 else
 [...]

 build_bzip2() {
 Bzip2SrcPath=${VendorPath}/dep/bzip2-1.0.6

 [...]

14 https://www.cvedetails.com/vulnerability-list/vendor_id-1198/produ...Bzip-Bzip2-1.0.6.html

Cure53, Berlin · 09/08/20 29/37

https://cure53.de/
https://www.cvedetails.com/vulnerability-list/vendor_id-1198/produ...Bzip-Bzip2-1.0.6.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The current stable version is bzip2 1.0.815 and it is recommended to use the latest
available version to prevent potential exploitation of existing vulnerabilities.

CFS-01-026 WP2: cfs-server processes running with root privileges (Medium)
It was found that the nodes of the CFS cluster, including MetaNode, DataNode and
MasterNode, are running with root privileges. It is considered bad practice to let services
run under root privileges, also inside Docker containers. A single bug within one of the
running processes could potentially be leveraged by an attacker to gain root privileges.

PoC:

MetaNode

root@c61d3d4d9d16:/cfs/log/metaNode# top
[...]
7 root 20 0 839816 63144 14400 S 0.0 0.8 63:33.52 cfs-server
root@c61d3d4d9d16:/cfs/log/metaNode# cat /proc/7/cmdline
/cfs/bin/cfs-server -f -c /cfs/conf/metanode.json

DataNode:

root@b9065346f8ee:~# top
[...]
8 root 20 0 2006564 114992 14280 S 0.0 1.4 265:56.13 cfs-server
root@b9065346f8ee:~# cat /proc/8/cmdline
/cfs/bin/cfs-server -f -c /cfs/conf/datanode.json

Master:

root@1b326b438ba2:~# top
[...]
7 root 20 0 1447252 65388 15100 S 0.0 0.8 74:53.19 cfs-server
root@1b326b438ba2:~# cat /proc/7/cmdline
/cfs/bin/cfs-server -f -c /cfs/conf/master.json

Cure53 recommends to assign the least privileges necessary and not to run all nodes
within the CFS cluster with root privileges. This can be accomplished by creating a user
with a known UID in the Dockerfile and running the applications as the newly created
user.

15 https://www.sourceware.org/bzip2/downloads.html

Cure53, Berlin · 09/08/20 30/37

https://cure53.de/
https://www.sourceware.org/bzip2/downloads.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

CFS-01-027 WP1: Potential path traversal in MetaNodes (Low)
While auditing the code of the MetaNodes, it was noticed that some operations are
vulnerable to path traversals. When a protocol participant can send arbitrary operations
to MetaNodes, commands like opFSMInternalDelExtentCursor can be used to influence
arbitrary files.

Affected File:
chubaofs/metanode/partition_fsmop.go

Affected Code:
func (mp *metaPartition) setExtentDeleteFileCursor(buf []byte) (err error) {

str := string(buf)
var (

fileName string
cursor int64

)
_, err = fmt.Sscanf(str, "%s %d", &fileName, &cursor)
fp, err := os.OpenFile(path.Join(mp.config.RootDir, fileName),

os.O_CREATE|os.O_RDWR,
0644)

//[...]
if err = binary.Write(fp, binary.BigEndian, cursor); err != nil
//[...]

The full impact of this issue is unclear, as the limited time frame did not allow for a
complete research into the raft protocol. Cure53 is unclear on whether this code path is
only reachable for other MetaNodes, or if anybody on the network could join and issue
such operations. That is why the issue is labeled as an informational misc flaw.
However, it is a security beneficial approach if an input is seen as attacker-controlled.
Thus, file-paths should not be blindly trusted and additional checks should be used to
make sure a path-traversal outside of the configured root directory is not possible.

CFS-01-028 WP1: Insecure ObjectNode policy-checking behavior (Medium)
While auditing the code of the ObjectNode component, it was noticed that the policy-
checking routing is verifying the bucket policy and ACL. The verification of the policy and
ACL is performed in two steps:

1. The bucket policies are checked; if the request is not allowed, the function
returns false.

2. The bucket ACLs are checked; if the request is not allowed, the function should
return false.

Cure53, Berlin · 09/08/20 31/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

However, it was noticed that the function verifying if the request is allowed for an ACL is
returning true when the list of ACL grants is empty. This insecure default behavior is
risky and should be negated, meaning that if an empty list of ACL grants is provided, the
bucket access should be denied. Moreover, it was noticed that the function
policyCheck() returns true, similarly to allowing bucket access when the calls to
policy.IsEmpty() and acl.IsAclEmpty() return true. This is demonstrated below.

Affected File:
objectnode/policy.go

Affected Code:
func (o *ObjectNode) policyCheck(f http.HandlerFunc) http.HandlerFunc {

[...]
if vol != nil && policy != nil && !policy.IsEmpty() {

allowed = policy.IsAllowed(param, isOwner)
if !allowed {

log.LogWarnf("policyCheck: bucket policy not allowed:
requestID(%v) userID(%v) accessKey(%v) volume(%v) action(%v)",
[...]
return

}
}

if vol != nil && acl != nil && !acl.IsAclEmpty() {
allowed = acl.IsAllowed(param, isOwner)
if !allowed {

log.LogWarnf("policyCheck: bucket ACL not allowed:
requestID(%v) userID(%v) accessKey(%v) volume(%v) action(%v)",
[...]
return

}
}

allowed = true
[...]

Affected File:
objectnode/acl.go

Affected Code:
func (acp *AccessControlPolicy) IsAllowed(param *RequestParam, isOwner bool) bool {

log.LogDebugf("acl is allowed: %v param: %v", acp, param)
if len(acp.Acl.Grants) == 0 {

return true
}
if isOwner {

return true

Cure53, Berlin · 09/08/20 32/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}
for _, grant := range acp.Acl.Grants {

if grant.IsAllowed(param) {
return true

}
}
return false

}

The full impact of this default ALLOW behavior, and in case the list of ACL grants is
empty, it has not been verified by Cure53 as this issue has been identified at the end of
the assessment. The behavior of the IsAllow() method for ACL objects should be similar
to the IsAllow() method for policy objects and return false (denying access) in case an
empty list of ACL grants is provided.

Cure53, Berlin · 09/08/20 33/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As already discussed in the opening paragraphs of this report, Cure53 believes that the
ChubaoFS project still has a long way to go before reaching decent security maturity. As
can be derived from the large total number of findings standing at twenty-eight, as well
as numerous high-graded problems, this August 2020 project makes it very clear that
ChubaoFS needs further security-centered investments and efforts. After spending 32
days investigating the scope, six members of the Cure53 team can conclude that
approaching the problems with a large-scale re-audit is advised. While the project
benefited from generous support from the CNCF scheme, Cure53 identifies a pressing
need for a follow-up that needs to take place once the majority of issues has been fixed
by the ChubaoFS development team.

Even though the outcome might not be in line with what has been expected, Cure53
must emphasize that the ChubaoFS team has been extremely helpful in terms of both
test-preparations and during the actual assessment. It is clear to Cure53 that a lot of
time and energy has been invested to make optimal coverage possible. Further, the
work has undoubtedly gone into preparing a properly set-up and complex test-
environment, which is just another positive sign of professionalism and dedication in-
house. It is also in part this steady support that enabled the audit team to get very good
coverage reflected by the numbers of findings in this report.

To offer some general notes on the security posture of the examined compound, it
should be repeated that the claimed core functionality of ChubaoFS is to provide a
distributed filesystem. In the current state, however, this goal is not realized due to
lacking authentication features. In a private network deployment, ChubaoFS can likely
be used while maintaining low risk. At the same time, the lack of authentication means
that any multi-tenant-style deployment is inherently insecure, making it possible for any
client to access any other client’s data.

This means that even inside an internal network deployment, vulnerable or malicious
hosts inside that same network place the deployment at risk. As such, ChubaoFS might
be a fruitful target for an attacker who wishes to further escalate or steal data. In that
sense, the software is not ready for production use when it comes to storage of
personalised, private or confidential information. It is only deemed fit for storing publicly
available information at the moment. The developers themselves already reference
some of the security concerns in docs/source/design/authnode.rst. Some of these points
were raised by the auditors during this assessment as well. Once the mentioned
AuthNode feature has been completed, it will potentially solve some of the issues, yet it
is simply not ready for going through the security ‘graduation’.

Cure53, Berlin · 09/08/20 34/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Moving to some details, authentication is a primary concern and shall be seen as ‘work
in progress’ at the moment. The provided test-setup lacked this feature, basically letting
everyone within the test network access all data. This is especially problematic for the
API that can be accessed by pretty much anyone (CFS-01-015). Authentication
problems are also present in the client itself as there are no restrictions for local system
users, signifying that anyone can read and modify root-owned files (CFS-01-004).

On top of that, the client stores world-readable logs and configuration files containing the
credentials used to access the filesystem (CFS-01-017, CFS-01-018). Specifically, the
lack of authentication for HTTP endpoints also opens up the possibility of SSRF attacks
as this report shows in CFS-01-015. Further, the fuse mount options disable the default
Linux file permissions behavior. Thus, unprivileged users can access everything in the
same way a root user could. In most deployments this might not be an issue, however
this is not clearly communicated and might result in unexpected problems elaborated on
in CFS-01-004.

Cure53 wishes to next up comment on the encryption issues. On a few occasions where
ChubaoFS actually utilizes cryptography related functions, they are mostly used in
insecure ways. The encryption mechanism used to protect authentication tickets is
flawed and could allow attacks via a padding oracle (CFS-01-005), especially since
random data is generated using functions with predictable output rather than with
reliance on proper cryptographic generators (CFS-01-001). Further, comparisons are not
safe against timing attacks (CFS-01-007) and obsolete hashing functions are in use as
well (CFS-01-003, CFS-01-013). Beyond the authentication related parts, the insufficient
encryption security could also be an issue inside bigger deployments across network
boundaries, for example when a ChubaoFS is deployed across multiple datacenters, as
shown in CFS-01-008.

To sum up this realm, it was rather surprising to see ChubaoFS test setup offering a
multi-tenant deployment, as no security boundaries between tenants can be established
in the first place. For potential future audits, it is strongly advised to foster some deep-
dive research into the raft protocol dependency16 ChubaoFS makes use of. Close
inspection of the security impact it might have on ChubaoFS in a multi-tenant
deployment should be seen as “a must” step for securing the premise.

When it comes to best practices and documentation, the ChubaoFS console features
exposes various problematic issues related to storage (CFS-01-003) and verification
(CFS-01-007, CFS-01-006) of user-passwords. Therefore, authentication on the console
should be improved in general to prevent unauthorized access either after the
compromise of the password storage or via targeted timing-attacks that are cluster-

16 https://github.com/tiglabs/raft

Cure53, Berlin · 09/08/20 35/37

https://cure53.de/
https://github.com/tiglabs/raft
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

optimized. After fixing the issues in this report and introducing several new security
settings, particularly to improve authentication, the documentation for ChubaoFS should
make use of a dedicated security section where the intended modus operandi is
described and relevant security goals and security recommendations are explained in-
depth.

It is advisable that the majority of best-practice security settings within the proposed
guide should be applied by default to both the Docker system and the Kubernetes Helm
Chart. In Cure53’s view, this should also include explanations for potential
NetworkPolicies and ingress controllers. Anything that requires custom configuration by
user-interaction should be followed-up on with alerting the user both in the administrator
panel and in CLI that deploys ChubaoFS. Cure53 envisions best practice settings being
deployed in a test-environment with multiple clients, so that such complex can be
targeted during a re-audit, verifying whether the security promises made by ChubaoFS
are in fact kept.

Another point to make is that the maintainers claim that it is not necessary to perform
data and / or metadata encryption at rest. They justify this by relying on the fact that, for
example, data is stored as distributed within the filesystem and an attacker needs
access to metadata information in order to get all relevant chunks of a file before being
able to combine them. However, this statement is not accurate and it must be
emphasized that, in the current state, the ChubaoFS lets anyone query metadata
information of their choosing, thus potentially facilitating file-recovery. This weakness
might be mitigated once the mentioned AuthNode setup has been completed.

In addition, the ObjectStorage interface for S3 is also incomplete and certain features
and operations offered by S3 are not implemented in ChubaoFS (e.g. encryption).
Features, such as S3 encryption, are very valuable for protecting data at rest within S3
buckets and would offer additional security for the CFS customers. On the plus side, the
support of HTTPS within the various exposed HTTP services is inconsistent. This is
apparent when one searches for the configuration directive and string “enableHTTPS”
within the GitHub repository. For example, various .json configuration files are having
“enableHTTPS” set to false.

When looking at the corresponding Go lang code fragments responsible for parsing the
.json files, the parser is not even looking for the “enableHTTPS” option. This lets Cure53
conclude that the relevant code is still being largely developed. Correspondingly,
encrypted communication for the various services has been considered but not
implemented yet. For future assessments and engagements auditing this scope, it is
highly encouraged to engage externals once the AuthNode development has been
finished.

Cure53, Berlin · 09/08/20 36/37

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is quite difficult to briefly summarize the state of security found on ChubaoFS during
this summer 2020 project requested by CNCF. On the one hand, Cure53 can conclude
that the core features and basic idea behind the ChubaoFS complex as a distributed
storage platform is great from a functional and feature-centric perspective. This is
especially valuable when providing POSIX-compliant and S3-compatible interfaces is at
stake. However, taking all identified security problems and further considerations into
account, it is evident that security and privacy have not been the highest priority during
the development of ChubaoFS until now.

Conclusively, one can safely say that ChubaoFS was audited in a rather early state of
security implementations. Cure53 can recommend using this August 2020 audit and its
results for clear pointers regarding the existing gaps and shortcomings. It is hoped that
the ChubaoFS team can use it for direction when reworking the software in terms of
security and general resilience against attacks and data leaks. In its current state, the
software cannot be recommended for production as long as the intended use involves
non-public data. It cannot be repeated enough that another thorough look must be taken
at the ChubaoFS project upon the implementation of AuthNode and successful
finalization of fixes for issues identified by Cure53 and beyond.

Cure53 would like to thank Liying Zhang, Mofei Zhang and Wei Ding from the ChubaoFS
team as well as Chris Aniszczyk of The Linux Foundation for their excellent project
coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 09/08/20 37/37

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report ChubaoFS Pentest 08.-09.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	CFS-01-003 WP1: Insecure SHA1 password-hashing (Low)
	CFS-01-004 WP1: Linux file permissions ineffective for ACL (High)
	CFS-01-005 WP1: Missing HMAC leads to CBC padding oracle (Medium)
	CFS-01-007 WP1: No brute-force protection on time-unsafe comparisons (Low)
	CFS-01-008 WP1: Unencrypted raw TCP traffic to Meta- and DataNode (High)
	CFS-01-009 WP1: Unauthenticated raw TCP traffic to Meta- and DataNode (High)
	CFS-01-010 WP1: Lack of TCP traffic message replay protection (Medium)
	CFS-01-011 WP1: Rogue Meta- and DataNodes possible due to lack of ACL (High)
	CFS-01-015 WP1: API freely discloses all user-secrets (Critical)
	CFS-01-016 WP2: Default Docker deployment insecure on public hosts (High)
	CFS-01-022 WP1: HTTP clear-text ObjectNode REST API exposed (High)
	CFS-01-024 WP2: Bypassing Skip-Owner-Validation header authent. (Medium)

	Miscellaneous Issues
	CFS-01-001 WP1: Usage of math/rand within crypto-utils and utils (Info)
	CFS-01-002 WP1: TLS version not enforced for AuthNode HTTP server (Low)
	CFS-01-006 WP1: Password hashes can be used to authenticate (Low)
	CFS-01-012 WP1: HTTP parameter pollution in HTTP clients (Medium)
	CFS-01-013 WP1: Unsalted MD5 authKey-Computation in ObjectNode (Low)
	CFS-01-014 WP2: Lack of password complexity in MasterNode (Low)
	CFS-01-017 WP2: Docker deploym. stores client.json as world-readable (Medium)
	CFS-01-018 WP1: Docker deploym. logs credentials as world-readable (Medium)
	CFS-01-019 WP1: Folders can be moved into their own child folders (Low)
	CFS-01-020 WP1: Missing filename-validation allows folder corruption (Low)
	CFS-01-021 WP1: Debugging endpoint /debug/pprof exposed (Info)
	CFS-01-023 WP1: Build system lacks stack canaries, PIE and FORTIFY (Medium)
	CFS-01-025 WP1: Outdated vulnerable bzip2 dependency for ARM64 build (Info)
	CFS-01-026 WP2: cfs-server processes running with root privileges (Medium)
	CFS-01-027 WP1: Potential path traversal in MetaNodes (Low)
	CFS-01-028 WP1: Insecure ObjectNode policy-checking behavior (Medium)

	Conclusions

