
         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Pentest-Report IVPN Apps & Daemon 03.2021
Cure53, Dr.-Ing. M. Heiderich, BSc. C. Kean, BSc. B. Walny, MSc. R. Peraglie, MSc. F. Fäßler

Index
Introduction

Scope

Identified Vulnerabilities

IVP-03-007 WP4: Root privilege escalation via race condition (Critical)

IVP-03-011 WP4: OpenVPN management interface injection (Medium)

IVP-03-012 WP4: Firewall allows deanonymization for eavesdropper (Medium)

IVP-03-013 WP4: Root privilege escalation via WireGuard (Critical)

Miscellaneous Issues

IVP-03-001 WP1: Lack of restricted segments for dylib code injection (Info)

IVP-03-002 WP  4  : Buffer overflow and erroneous parsing in Wifi notifier (High)  

IVP-03-003 WP4: Buffer Out-Of-Bounds read in WiFi notifier (Low)

IVP-03-004 WP4: Trivial bypass of allowedClients list on Linux (Medium)

IVP-03-005 WP4: Invalid pointer conversion via unsafe package (Medium)

IVP-03-006 WP1: Enabled NSURLCache logs login credentials (Low)

IVP-03-008 WP1: Incomplete iOS filesystem protections (Low)

IVP-03-009 WP2: Lack of FORTIFY_SOURCE for third-party shared objects (Info)

IVP-03-010   False Alert  : Unencrypted login credentials in local storage (Info)  

IVP-03-014 WP  4  : Potential CSRF allows stealing VPN credentials (Medium)  

Conclusions

Cure53, Berlin · 03/03/21                              1/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Introduction
“What you do online can be tracked by organizations you may not know or trust and
become part of a permanent record. A VPN can’t solve this on its own, but can prevent
your ISP from being able to share or sell your data.”

From https://www.ivpn.net/

This report describes the results of a security assessment targeting the IVPN complex.
Carried out by Cure53 in the frames of a broader security-centered cooperation with
IVPN, the project included a penetration test and a source code audit,  with the main
targets being the mobile and desktop applications that IVPN offers for various platforms,
as well as the IVPN daemon software.

As for timeline and resources, the work was requested by IVPN in late 2020 and then
scheduled for late January and early February 2021. The testing team consisted of five
senior  testers  from the  Cure53  team.  The  budget  allocated  to  the  project  stood  at
eighteen person-days.

To best respond to the goals communicated by IVPN, four distinct work packages (WPs)
were  formulated.  All  WPs  consistently  utilized  penetration  testing  and  source  code
auditing as key approaches, yet the targets were shifting. In WP1 Cure53 focused on the
IVPN iOS application,  while  the Android branch took center stage in WP2. Next,  the
IVPN  Electron  application  was  assessed  in  WP3.  Finally,  the  IVPN  demon  was
subjected to extensive examinations in WP4.

As all code pertinent to the IVPN complex is available on GitHub as OSS, the Cure53
testers used white-box methodology during this project. Alongside source code access,
the team members were supplied with a variety of builds for various platforms. Builds
linked to both staging and production servers, with various debugging means enabled,
were furnished to Cure53. The ultimate goal was to enable acquisition of good coverage
and expected research depth.

All preparations were completed in January 2020, namely CW03 and early CW04, so
that the Cure53 team could have a smooth start. The project moved forward without any
interruptions. Communications during the test were done using a Rocketchat instance
into which IVPN invited the involved Cure53 team members. Since the scope was clear
and well-prepared, not many discussions were needed. The IVPN team was very helpful
and assisted Cure53 with various aspects of this work.

Cure53, Berlin · 03/03/21                              2/16

https://cure53.de/
https://www.ivpn.net/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Nevertheless,  Cure53  gave  frequent  status  updates  about  the  test  and  the  related
findings.  Live-reporting  was used for  all  spotted findings,  with  the IVPN bug tracker
running on Bitbucket used for this purpose.

The Cure53 team managed to reach a good coverage over the WP1-4 scope items.
Fourteen  security-relevant  discoveries  were  made  on  the  scope.  Four  items  were
classified to be security vulnerabilities and ten need to be seen as general weaknesses
with  lower  exploitation  potential.  Two  findings  were  considered  Critical  in  terms  of
severity. The first shows how a local attacker can abuse the tested software to achieve a
root privilege escalation via a race condition (see IVP-03-007). The second has similar
consequences but  leverages weaknesses in WireGuard,  as demonstrated in IVP-03-
013. The remaining issues were mostly classified as Medium and might be seen as less
concerning threats.

Note that at the time of authoring of this final report document, all but three issues were
addressed by the IVPN team and the fixes were verified successfully by Cure53. One of
the three remaining issues was flagged as a false alert and two to be of acceptable risk
for now and a possible work-in progress for later releases. Each issue description in this
final report was amended with a fix note describing it’s current state. Proof-of-Concept
material was removed from this report upon IVPN’s request.

In  the  following  sections,  the  report  will  first  shed  light  on  the  scope  and  key  test
parameters, as well as the structure and content of the WPs. Next, all findings will be
discussed  in  grouped  vulnerability  and  miscellaneous  categories,  then  following
chronological order in each array. Alongside technical descriptions, PoC and mitigation
advice  are  supplied  when  applicable.  Finally,  the  report  will  close  with  broader
conclusions about this January-February 2021 project. Cure53 elaborates on the general
impressions and reiterates the verdict  based on the testing team’s observations and
collected evidence. Tailored hardening recommendations for the IVPN complex are also
incorporated into the final section.

Cure53, Berlin · 03/03/21                              3/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Scope
• Penetration-Tests & Code Audits against IVPN Apps & IVPN Daemon Software

◦ WP1: Penetration-Tests & Source Code Audits against IVPN iOS App
▪ https://github.com/ivpn/ios-app  
▪ Testflight invite received.

◦ WP2: Penetration-Tests & Source Code Audits against IVPN Android App
▪ https://github.com/ivpn/android-app  

◦ WP3: Penetration-Tests & Source Code Audits against IVPN Electron App
▪ CLI:

• https://github.com/ivpn/desktop-app-cli  
▪ UI:

• https://github.com/ivpn/desktop-app-ui2  
◦ WP4: Penetration-Tests & Source Code Audits against IVPN Daemon

▪ https://github.com/ivpn/desktop-app-daemon  
◦ Test-user accounts were provided for Cure53
◦ Debugging-friendly binaries were shared with Cure53
◦ Test-supporting material was shared with Cure53
◦ Sources were shared and available as OSS

Cure53, Berlin · 03/03/21                              4/16

https://cure53.de/
https://github.com/ivpn/desktop-app-daemon
https://github.com/ivpn/desktop-app-ui2
https://github.com/ivpn/desktop-app-cli
https://github.com/ivpn/android-app
https://github.com/ivpn/ios-app
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of  severity  and impact.  The  aforementioned  severity  rank  is  simply  given in
brackets  following  the  title  heading  for  each  vulnerability.  Each  vulnerability  is
additionally given a unique identifier (e.g. IVP-03-001) for the purpose of facilitating any
future follow-up correspondence.

IVP-03-007 WP4: Root privilege escalation via race condition (Critical)

While analyzing the architecture of the IVPN client and service daemon, a very severe
flaw was found. The IVPN service creates a listening TCP interface on a seemingly
random port, which is used by OpenVPN for connections to the management interface.
This means that there is a race condition wherein the daemon is already listening, but
OpenVPN is still connecting. Because the daemon trusts the output of OpenVPN and
parses commands originating there for execution, this  Critical  problem can be used to
escalate privileges to root.

There are a few different recommendations regarding this issue. The IVPN service could
improve the randomization of the ports, though this might also impact reliability in case
the system has no free ports to allocate. In this case, the strongest mitigation is to fix the
route command parsing in  mi.go. At the moment, it liberally accepts anything that just
contains the string “route add <ip> <ip>”. Thus, the  ovpn mi  injection almost led to a
privilege escalation before (IVP-03-011). If IVPN employs a strict allow-listing for valid
route commands, the issue would be fixed.

Generally, the daemon should consider all responses from the OpenVPN management
interface to be potentially malicious. Handling of those messages should be designed
with potential malice in mind.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Cure53, Berlin · 03/03/21                              5/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

IVP-03-011 WP4: OpenVPN management interface injection (Medium)

Using the trick to bypass the allowed clients described in IVP-03-004, the protocol was
investigated further. Here it was found that the MultihopExitSrvID option in the “Connect”
command  can  be  used  to  inject  OpenVPN  management  interface  commands  by
including newlines.

While the OpenVPN management port cannot be directly used to perform very critical 
attacks, IVPN clearly wants to prevent arbitrary clients from connecting to it. Thus, it is 
recommended to encode all strings sent to the ovpn mi properly.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

IVP-03-012 WP4: Firewall allows deanonymization for eavesdropper (Medium)

It was found that the IVPN firewall rules allow all TCP connections to the currently used
IVPN entry node. This means attackers may deanonymize all IVPN users that browse an
attacker-controlled website by passively observing the network traffic of all IVPN entry
nodes.

An unencrypted HTTP request including a token that is unique for every visitor will be
sent to all IVPN entry nodes. This request is sent from the attacker-controlled website
that is browsed by the victim protected by IVPN. Due to routing and lax firewall rules, the
request will not be protected by IVPN and the token coupled with the IP address of the
victim can be observed in the network traffic of an entry node.

It is recommended to tighten the firewall rules in a way that only the VPN process is
allowed to connect to the IVPN entry node. This could be implemented by making use of
the owner module and supplying a process ID or user ID that only the OpenVPN process
can hold. It is important to note that supplying the root as the user ID still leaves all users
who run the browser as root - (i.e. old Kali Linux systems) affected by this problem.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Cure53, Berlin · 03/03/21                              6/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

IVP-03-013 WP4: Root privilege escalation via WireGuard (Critical)

It was found that the privileged daemon embeds user-input, which it receives from the
unprivileged  IVPN  user-interface,  in  an  unsanitized  form  into  the  WireGuard
configuration file. Further, it was verified that this configuration file was loaded with wg-
quick, letting attackers pass arbitrary commands via the PreUp configuration parameter
that will be executed with  root  privileges. This can be abused by attackers to escalate
from lower to privileges up to root.

It is recommended for the application to only permit the minimal base64 character set in
user-input before having it embedded into the WireGuard configuration file. By doing so,
attackers cannot escape from the configuration parameter that they inject and the issue
is mitigated.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Cure53, Berlin · 03/03/21                              7/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

IVP-03-001 WP1: Lack of restricted segments for dylib code injection (Info)

While reviewing the IVPN binary on iOS, it was noted that it lacks a __restrict segment to
ignore  Dynamic  Loader (dyld) environment  variables  which  could  facilitate  code
injection. The impact of this issue was evaluated as Info since no code injection could be
achieved in the limited time available for this engagement.

It is likely that this kind of code injection is only feasible in a jailbroken environment or on
iOS below version 10. However, the latter is not supported by the IVPN build in scope.  

The  absence  of  the  __restrict  segment  can  be  verified  on  MacOS  with  the  size
command.  The  following  command  has  to  be  run  on  the  binary  contained  in  the
extracted IPA archive of the application.

It is recommended to consider whether the described countermeasure is required in the
security  model  of  the  IVPN  iOS  app.  The  official  documentation  for  this  type  of
exploitation,  as  well  as its  countermeasure,  is  scarce for  iOS and largely  based on
analogous code injection  exploits  on MacOS or  app modifications  on jailbroken  iOS
devices. Therefore, any steps to counter this on iOS can only be seen as an optional
hardening measure.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

IVP-03-002 WP4: Buffer overflow and erroneous parsing in Wifi notifier (High)

It was found that the IVPN daemon on Linux periodically logs unexpected crashes due to
segmentation faults within the  setWifiNotifier function. On further inspection, it can be
observed that the function erroneously parses multipart netlink messages received from
the kernel.

The primary issue is that the nhl pointer is progressed through the buffer for each packet
processed in the inner while loop.  However,  once the inner while loop returns,  4096
bytes  are  received  and  written  to  the  nhl pointer  in  the  middle  of  the  buffer.  This
increases the risk of the received data being too large for the remaining buffer. resulting
in a classic buffer overflow.

Cure53, Berlin · 03/03/21                              8/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Another issue is that the application logic assumes that the beginning of recv()’d data is
always a netlink message header. This is done without anticipating netlink messages
that spread over more than 4096 bytes. This can be observed since the recv() function
receives a pointer to a nlmsghdr struct. The current handling is dangerous because the
payload of a netlink message could be interpreted as a header. leading to unintended
behaviors.

It is recommended to use the Linux syscalls offered by Golang’s built-in syscall module1.
By doing so, transparency and security can be improved by sticking to the safe modules
of Go, thus mitigating memory corruption bugs that arise from raw pointer arithmetics
and re-using well-test code.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

IVP-03-003 WP4: Buffer Out-Of-Bounds read in WiFi notifier (Low)

It was found that the get_essid function of the WiFi notifier on Linux uses a buffer that is
too small to hold an SSID with a maximum size of a WiFi network. This translates to the
risk of the buffer not being null-terminated, resulting in the daemon over-reading bytes
from the memory returned to the unprivileged IVPN client. This could be used to extract
sensitive memory from the daemon.

It  is recommended to increase the length of  the buffer.  As a consequence,  the null-
terminating  null-character  is  not  going  to  be  overwritten  by  the  underlying  driver.
Additionally, a strndup call can be used to read a maximum number of 32 bytes, so as to
cope with potential security flaws within the driver.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

IVP-03-004 WP4: Trivial bypass of allowedClients list on Linux (Medium)

The IVPN daemon uses an interesting approach to validate the incoming connection.
When a client connects, it will parse all existing sockets on the system, match the port to
a process ID and look up the process’ binary. This is then compared to a strict allow-list.
However, it was found that code-injection techniques can be used to bypass this check.
On Linux, the  LD_PRELOAD  environment variable can be employed to hook a library
function  and  execute  one’s  own  code  in  the  context  of  the  process.  This  is  not
necessarily a vulnerability in itself:  when the protocol is safely designed, then a local

1 https://golang.org/src/syscall/netlink_linux.go

Cure53, Berlin · 03/03/21                              9/16

https://cure53.de/
https://golang.org/src/syscall/netlink_linux.go
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

program cannot exploit the service. This setup also prevents attacks where a malicious
website  would  try  to  send commands via  HTTP requests to the  local  port.  It  points
towards the strategy working well-enough, yet also means that the daemon must handle
commands securely. Countering this, it was shown in IVP-03-007 and IVP-03-011, that
there are still some weaknesses that attackers can capitalize on. This issue could also
exist in some form on Windows or Mac. 

Generally, those operating systems differ in attempting to limit code injections, though
there  are  a  lot  of  different  techniques  and  it  is  probably  impossible  to  prevent  all
approaches. However, on Linux or Mac, a new IVPN user could be created and the
IVPN clients use setuid to run as IVPN. The daemon could then reject processes that do
not run as the IVPN user, likely preventing code injections via libraries or debugging
features like ptrace. Alternatively, the current handling could be an accepted risk, as long
as more emphasis is placed on designing a safe daemon protocol.

Note: This issue was not yet fixed by the IVPN team but is seen as a WIP and will be
addressed with in future releases.

IVP-03-005 WP4: Invalid pointer conversion via unsafe package (Medium)

It was found that the doGetPortOwnerPID function on Windows casts an unsafe.Pointer
to a  uintptr pointer  and stores it  into a variable before casting the  uintptr back to a
unsafe.Pointer several expressions later. This behavior is an invalid pointer conversion,
as documented in the official Golang documentation2. It could lead to memory corruption
bugs  due  to  internal  behavior  of  the  Garbage  Collector  in  Go.  The  bugs  could  be
coupled by attackers with heap spraying, resulting in the potential for Local Privilege
Escalation and Remote Code Execution vulnerabilities.

It  is  recommended  to  store  the  pointer  held  by  the  rowsStartPtr variable  as  an
unsafe.Pointer,  thus  strictly  adhering  to  the documentation.  Conversions  to a uintptr
should only be done in the same expression, as specified in the Golang documentation.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

IVP-03-006 WP1: Enabled NSURLCache logs login credentials (Low)

It was discovered that the NSURLCache is enabled for some API communications of the
iOS  app.  This  could  accidentally  expose  sensitive  data  such  as  user-credentials,
authentication tokens or PII. The impact of this issue was evaluated as Low. While these

2 https://golang.org/pkg/unsafe/#Pointer

Cure53, Berlin · 03/03/21                              10/16

https://cure53.de/
https://golang.org/pkg/unsafe/#Pointer
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

credentials are logged in clear-text, leaking them would require physical access to the
device.

Client-side  caching  should  be  disabled  to  prevent  automatic  recording  of  API
communications in the cache. The Secure Mobile Development guide3 can be reviewed
for further instructions regarding the aforementioned cache getting disabled. It should be
noted that the default NSURLCache does not support altering the protection level of its
store, as advised in IVP-03-008.

Consequently, this means that all requests and responses will still be cached and left
unprotected at rest via the  NSURLCache,  even when an application implements Data
Protection at the application level. If the URLCache is required, this can be avoided with
a custom NSURLCache subclass, thus storing responses on an SQLite DB file with the
NSFileProtectionComplete attribute set.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

IVP-03-008 WP1: Incomplete iOS filesystem protections (Low)

It was found that the iOS app does not take full advantage of the native iOS filesystem
protections and fails to fully protect some of its data files at rest. The affected files are
only protected until the user authenticates for the first time after booting the phone. The
problem is that the key to decrypt these files will remain readable in memory even while
the device is locked.  The impact of  this issue was evaluated as  Low as some login
credentials are exposed.

This issue requires physical access to an iDevice set to a locked screen and a method of
accessing the local storage, for instance, through an SSH connection established via a
jailbreak. While being locked, the files represented below remain protected whenever
they are not flagged with “Operation not permitted”.

In order to solve the issues related to file-access, it is recommended to implement the
NSFileProtection-Complete entitlement at the application level4 for all  files, as well as
considering implementing changes to the NSUrlCache described in IVP-03-006.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

3 https://github.com/nowsecure/secure-mobile-development/blob/master/en/io...-requests-responses.md
4 https://developer.apple.com/library/ios/documentation/iP...App/StrategiesforImplementingYourApp.html

Cure53, Berlin · 03/03/21                              11/16

https://cure53.de/
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/StrategiesforImplementingYourApp/StrategiesforImplementingYourApp.html
https://github.com/nowsecure/secure-mobile-development/blob/master/en/ios/avoid-caching-https-requests-responses.md
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

IVP-03-009 WP2: Lack of FORTIFY_SOURCE for third-party shared objects (Info)

While analyzing the IVPN Android app, it was noticed that some of the included shared
objects  are  not  compiled  using  the  FORTIFY_SOURCE5 compiler  option.  The
FORTIFY_SOURCE macro provides basic support for detecting buffer overflows within
various functions that perform memory and string operations, including the following list
of functions: memcpy, mempcpy,  memmove, memset,  strcpy,  stpcpy, strncpy,  strcat,
strncat, sprintf, vsprintf, snprintf, vsnprintf and gets.

It is recommended to consider compiling the referred shared objects and other libraries
with FORTIFY_SOURCE enabled. This should be accomplished by using the compiler
option -D_FORTIFY_SOURCE=26.

Note:  This  issue  was  not  yet  fixed  by  the  IVPN  team  but  is  currently  treated  as
acceptable risk, which was also confirmed with Cure53.

IVP-03-010 False Alert: Unencrypted login credentials in local storage (Info)

This issue of unencrypted login credentials appearing in local storage affects all desktop
operating  systems.  For  instance,  in  Windows,  sensitive  information  such  as  the
configuration files which include the accountID or OpenVPN credentials are being stored
as  plain-text  files  in  the  application  directory.  A  better  practice  is  to  encrypt  such
information in order to offer additional protections against attackers who have reading
capabilities for local files. A file example drawn from the etc directory is shown below,
together with its sensitive contents.

An attacker with local file read capabilities could be considered too powerful already.
Nevertheless, taking it into account can foster an additional hardening step and increase
the  defense-in-depth.  For  Windows,  the  Data  Protection API7 is  recommended  to
facilitate the encryption of either another custom decryption key or the encryption of the
files themselves. Similar strategies are recommended for other operating systems.

Note: After discussing this issue with the IVPN development team it was concluded that
the issue can be marked as a false alert.  The cause was a testing artifact  with the
chosen environment.

5 https://man7.org/linux/man-pages/man7/feature_test_macros.7.html
6 https://github.com/hashbang/hardening#source-fortification
7 https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection

Cure53, Berlin · 03/03/21                              12/16

https://cure53.de/
https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection
https://github.com/hashbang/hardening#source-fortification
https://man7.org/linux/man-pages/man7/feature_test_macros.7.html
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

IVP-03-014 WP4: Potential CSRF allows stealing VPN credentials (Medium)

It was found that the daemon listens on a local TCP port for the OpenVPN management
interface without leveraging authentication and protocol checks. This is dangerous as
the daemon ignores all messages that do not match a specific format, making [protocol
downgrade attacks possible.  In turn, these could allow malicious websites to send a
HTTP GET request to the listener, extracting the VPN credentials remotely.

The OpenVPN management interface should be accessed via pipes on Windows and
via UNIX domain sockets on Linux systems, respectively.  It  should require privileged
access instead of TCP network sockets. Revisions in this realm will preclude the local
browser  from  connecting  to  the  OpenVPN  management  interface,  mitigating  this
vulnerability.

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Cure53, Berlin · 03/03/21                              13/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Conclusions
This project  broadly  focused on mobile  and desktop applications,  as well  as demon
software, offered within the IVPN complex. After eighteen days dedicated to examining
the scope in early 2021, five members of the Cure53 team could observe both strengths
and weaknesses across various WPs/targets. To facilitate better understanding of the
pervasive  shortcomings  and  specific  efforts  that  are  advised  per  component,  the
following paragraphs will  discuss the impressions in two blocks: the first dedicated to
Android and iOS applications (WP1 and WP2), and the second honing in on the IVPN
Electron and demon software (WP3 and WP4).

Both  WP1  and  WP2  enveloped  code-assisted  penetration  testing  of  the  respective
Android and iOS branches of the IVPN application. On Android, the exposed activities,
broadcasts, content providers and services were audited for manipulation via intents, as
well as in relation data leakage. However, none of the exported features were found to
be exploitable, demonstrating strengths of this app.

In addition, the local storage on Android was found to take advantage of encryption for
protecting  its  secrets  at  rest.  Common  Android  hardening  measures  such  as
FLAG_SECURE and  filterTouchesWhenObscured were  found  to  be  employed.  This
further  reduces the potential  attack  surface.  Still  focusing  on  Android,  an  error  was
spotted in the shared objects, which could be improved to be compiled with an option
preventing buffer overflows (IVP-03-009). Notably, this is merely a hardening suggestion
and does not signify an exploitable flaw.

More mistakes were clearly pinpointed on the iOS app branch. The IVPN iOS app was
analyzed for insecure storage which could lead to information leaks and here further
improvements should be considered in terms of restricting filesystem permissions (I  VP-  
03-008) and disabling client-side caching (IVP-03-006). While it was positively noted that
the iOS app takes advantage of the most common compiler and linker flags such as PIE,
ARC or the Stack Canary flag, additional enhancements concern restricted segments
(IVP-03-001), which would harden the app against DyLib code injections.

Summing up,  neither  of  the  app branches revealed information via  insecure  logging
practices and, more broadly, both IVPN mobile applications make a robust impression
and  aptly  minimize  the  attack  surface.  The  few  mobile  issues  documented  mainly
concern hardening measures and improving security for local storage, especially in the
context of unauthorized physical access. The proposed measures should be interpreted
as suggestions rather than necessary steps. At the same time, they will help harden the
IVPN mobile apps further.

Cure53, Berlin · 03/03/21                              14/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Moving on to WP3 and WP4, here Cure53 focused on how IVPN implements UI, CLI
and demon for different operating systems via one shared codebase. The idea keeps the
complexity low and makes security reviews easier.  As many VPN applications,  IVPN
also uses a privileged service to handle the networking configuration part.

To begin with the communication between the user application and the privileged port,
IVPN  implements  it  via  a  local  TCP  server  and  protects  it  through  a  client  binary
verification. However, it was found that this client verification can easily be bypassed by
a local attacker who can then directly communicate with the daemon (IVP-03-004). On
its  own,  this  does  not  constitute  a  security  issue  because  the  mechanism  prevents
malicious websites from attempting to communicate with the daemon via maliciously
crafted HTTP requests, despite not stopping a fully-local attacker.

From  a  meta-level  perspective,  the  protocol  with  the  daemon  is  designed  safely,
meaning that no easy privilege escalations are possible.  For example, commands to
execute arbitrary programs or update the daemon with a malicious file do not exist. At
the  same  time,  the  communication  between  the  IVPN  daemon  and  the  OpenVPN
management interface was revealed to be prone to both local (IVP-03-011) and remote
(IVP-03-014) attack-vectors. This is an indicator that the transport protocol should be
reconsidered as a whole. Cure53 advises looking into pipes and unix domain sockets as
a means to prevent such attacks.

While specifically  looking for  privilege escalation  issues allowing to execute arbitrary
commands,  it  was  found  that  the  daemon  trusts  responses  from  the  OpenVPN
management interface when the latter specifies the commands for execution. This could
be triggered by a local attacker to gain root level position on the system IVP-03-013.

Many  memory  corruption  bugs  represent  a  security  hazard  in  relation  to  privileged
processes. IVP-03-002 shows that many challenges can be solved without  unsafe and
CGO, which are typically vulnerable. This could be a general indicator to refactor unsafe
and CGO code into safe alternatives. The firewall  rules were found to be overly lax,
allowing  potential  deanonymization  of  the  remote  peers  against  strong/state-funded
attackers. As described in IVP-03-012, no connections to outer peers should be allowed.
With the exception of the IVPN daemon and VPN process.

Finally, the Electron UI has been audited for common vulnerabilities. The templates and
JavaScript code has been checked for all potential sinks which could lead to XSS. Here,
user-input is being handled in a safe manner, partly due to the correct and secure usage
of  the  Vue.js  framework.  In  some instances,  the JavaScript  code makes use of  the
potentially dangerous  innerHTML  property, which however relies on data stored on a
user's filesystem or returned via the demon, hence requiring a powerful attacker.

Cure53, Berlin · 03/03/21                              15/16

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Electron  has  been  configured  in  a  secure  manner  by  employing  all  state-of-the-art
security flags and not enabling additional, potential harmful, features. Accessing critical
Electron-specific APIs, like openExternal or more implicit things like redirects of the main
window, was found secure. The IVPN team did a good job by either allow-listing the
arguments, or disabling the problematic features.

The general file handling has been reviewed. The Linux client, for instance, writes its
settings into files which are guarded by 0664 access permissions, which are readable by
anyone, however rely on the fact that the .config directory is 0600. This is the case for a
default  Ubuntu  installation  while  other  distributions  could  not  adhere  to  this.  It  is
recommended  to  specify  the  file  permission  explicitly  when  it  comes  to  potentially
sensitive files.

Across  all  desktop  platforms,  some  of  the  most  sensitive  files  have  been  found
unencrypted, as shown by full  accoundIDs  or OpenVPN credentials (see  IVP-03-010).
Moreover, some of the JavaScript dependencies were found to be quite old, hence a
quick check on a potentially impactful lib,  deepmerge, has been conducted to see if it
was vulnerable to prototype pollution. Cure53 strongly advises to keep the dependencies
as  current  as  possible.  The  main  business  logic  was  found  to  be  very  lightweight,
meaning that there is not much room to exploit potential features. This design decision
contributes greatly to this rather good security posture of the UI component.

It needs to noted that all relevant issues have been addressed by the IVPN team before
this final report document was authored and released. It needs to further be noted that
the IVPN daemon software inspected in WP3 was not released to the public before the
IVP-03 security audit was finished. This means, that none of the WP3- and WP4-related
issues were exposed to regular IVPN users.

Cure53 would like to thank Nick Pestell, Alexandr Stelnykovych, Iain Douglas as well as
the rest of the IVPN team for their excellent project coordination, support and assistance,
both before and during this assignment.

Cure53, Berlin · 03/03/21                              16/16

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report IVPN Apps & Daemon 03.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	IVP-03-007 WP4: Root privilege escalation via race condition (Critical)
	IVP-03-011 WP4: OpenVPN management interface injection (Medium)
	IVP-03-012 WP4: Firewall allows deanonymization for eavesdropper (Medium)
	IVP-03-013 WP4: Root privilege escalation via WireGuard (Critical)

	Miscellaneous Issues
	IVP-03-001 WP1: Lack of restricted segments for dylib code injection (Info)
	IVP-03-002 WP4: Buffer overflow and erroneous parsing in Wifi notifier (High)
	IVP-03-003 WP4: Buffer Out-Of-Bounds read in WiFi notifier (Low)
	IVP-03-004 WP4: Trivial bypass of allowedClients list on Linux (Medium)
	IVP-03-005 WP4: Invalid pointer conversion via unsafe package (Medium)
	IVP-03-006 WP1: Enabled NSURLCache logs login credentials (Low)
	IVP-03-008 WP1: Incomplete iOS filesystem protections (Low)
	IVP-03-009 WP2: Lack of FORTIFY_SOURCE for third-party shared objects (Info)
	IVP-03-010 False Alert: Unencrypted login credentials in local storage (Info)
	IVP-03-014 WP4: Potential CSRF allows stealing VPN credentials (Medium)

	Conclusions


