
         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Audit-Report Silence Laboratories ECDSA lib 10.2022
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index
Introduction
Scope
Cryptography Review

Code analysis according to TSS protocol flow logic
Key generation subprotocol
Signing subprotocol

Comparison to third-party Rust implementation
Key generation subprotocol
Signing subprotocol

Conclusion

Cure53, Berlin · 10/28/22                              1/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Introduction
“The only library you need for Proofs supported MPC. Enabling enterprises to adopt
proofs-assisted  Threshold  Signatures  (MPC)  and  MFA  through  unique  fusion  of
cryptography and signal processing.”

From https://silencelaboratories.com/

This report describes the results of a thorough cryptography review and source code
audit performed by Cure53 against the ECDSA secp256k1 TSS(2,2) JS library, which is
maintained by Silence Laboratories Pte. Ltd. As for the context and timeline, the work
was requested by Silence Laboratories Pte. Ltd. in September 2022 and carried out by
Cure53 in early-to-mid October 2022, namely in CW40 and CW41.

Note  that  this  was  the  first  time  Cure53  looked  at  this  library  but  some  of  its
dependencies  have  been  subject  to  Cure53  audits  before,  for  example
noble/secp256k11. Regarding resources, a total of  ten days were invested to reach the
coverage expected for this project. It should also be noted that a team consisting of two
senior testers has been created and assigned to this project’s preparation, execution
and finalization.

The work was structured under one work package (WP):

• WP1: Cryptography reviews & Audits against ECDSA secp256k1 TSS(2,2) JS 
library

In preparation for this assessment, Cure53 was given access to sources as well as any
other means of information required to perform this audit, the methodology chosen here
was crystal-box. All  work necessary from the maintainers’ side was completed in late
September 2022, namely in CW39, so that the Cure53 team could have a smooth start
into the auditing stage in the following week.

Communications during the test were done using a dedicated shared Slack channel,
with which the two teams were connected and could exchange test-specific info, status
reports and Q&As. Test-related discussions were very smooth and not many questions
had to be asked. The scope was well prepared and clear, contributing to no noteworthy
roadblocks being encountered during this audit and review.

1 https://cure53.de/pentest-report_noble-lib.pdf

Cure53, Berlin · 10/28/22                              2/12

https://cure53.de/
https://cure53.de/pentest-report_noble-lib.pdf
https://silencelaboratories.com/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Cure53 gave frequent status updates about their progress and the related findings; live
reporting of major issues was not necessary, since none such findings were made.

On that note, the Cure53 team managed to get very good coverage over the WP1 scope
items. Neither vulnerabilities nor weaknesses of any kind were observed by the auditors
as negatively affecting the security premise of the secp256k1 TSS(2,2) JS library. This
means that the library presented itself in a very good light with regard to cryptographic
features  and  guarantees  it  makes.  As  this  report  will  describe  in  later  chapters,  all
relevant scope areas and key focus areas were inspected in depth, but none yielded
findings. Hence, the overall impression gained is very positive.

The report will now delineate the scope and test setup, as well as present the available
material  for  testing.  After  that,  the report  will  detail  the steps undertaken during the
cryptography audit and source code review, offering detailed descriptions of the adopted
approaches and corresponding outcomes.

The report will then close with a conclusion in which Cure53 will elaborate on the general
impressions  gained  throughout  this  test.  The responsible  test  team will  share  some
words  about  the  perceived  security  posture  of  the  ECDSA secp256k1  TSS(2,2)  JS
library.

Cure53, Berlin · 10/28/22                              3/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Scope
• Cryptography reviews & Code audits against ECDSA secp256k1 TSS(2,2) JS 

library
◦ WP1: Cryptography reviews & Audits of ECDSA secp256k1 TSS(2,2) JS library

▪ Library in scope:
• ecdsa-tss-js

▪ Repository URL:
• https://github.com/silence-laboratories/ecdsa-tss-js  

▪ Commit ID:
• 9eefe4ec90dab75904542df5fbfa50a535cb3ef6

▪ Key focus areas:
• Paillier cryptosystem

◦ External dependency:
▪ paillier-bigint (not in scope)

• ECDSA implementation
◦ External dependency:

▪ noble/secp256k1 (not in scope, audited before2)
• Key-generation

◦ ecdsa/keygen/P1KeyGen.ts
◦ ecdsa/keygen/P2KeyGen.ts

• Establishing a threshold signature
◦ ecdsa/signature/P1Signature.ts
◦ ecdsa/signature/P2Signature.ts

• Zero-knowledge proof logic
◦ Proofs of knowledge regarding discrete log:

▪ zkProofs/pDLProof
◦ Hash commitments:

▪ zkProofs/hashCommitments
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

2 https://cure53.de/pentest-report_noble-lib.pdf

Cure53, Berlin · 10/28/22                              4/12

https://cure53.de/
https://github.com/silence-laboratories/ecdsa-tss-js
https://cure53.de/pentest-report_noble-lib.pdf
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Cryptography Review
ECDSA-TSS is a clean-room implementation of Yehuda Lindell’s Fast Secure Two-Party
ECDSA Signing scheme3,  first  introduced in  2017  as  foundational  work  for  Lindell’s
startup company, Unbound Security Ltd., recently acquired by Coinbase. The scheme
proposes a faster, simpler protocol to tackle the restricted “2-of-2” threshold signature
case, which is especially useful in custodial cryptocurrency wallet scenarios.

Cure53 was tasked with a comprehensive cryptographic review of  ECDSA-TSS.  This
review was split into three major work components:

• Zero-knowledge logic library (zkProofs)
• Key generation protocol logic for parties 1 and 2 (ecdsa/keygen)
• Threshold signature establishment logic for parties 1 and 2 (ecdsa/signature)

For each of the above, the following review methodologies were performed:

• Code analysis according to the TSS protocol’s flow logic and comparison to the
original protocol. as specified in Lindell’s paper.

• Comparison  to  a  third-party  implementation  of  Lindell  paper’s  contribution  in
Rust.4

Review methodologies failed to identify any outstanding security issues or vulnerabilities
in ECDSA-TSS. As such, this documentation of the cryptography review aims to outline
the process adopted during the project, as it has been followed for each of the above-
mentioned methodologies.

It  is  crucial  to  note  that  Lindell  (2017)  does  not  provide  an  IETF-style  protocol
implementation spec, but rather sticks to high-level descriptions, leaving much of the
implementation details unspecified. This results in protocol engineers needing to fill  in
the  gaps.  Hence,  it  fosters  a  certain  lack  of  consistency  among  independent
implementations.

While  ECDSA-TSS does fill  these gaps with how it applies and implements low-level
primitives, the high-level specification is still sufficiently close to the 2017 description by
Lindell.  In essence, the paper can be used as a benchmark for evaluating the design
and security of the resulting software library.

3 https://eprint.iacr.org/2017/552
4 https://github.com/ZenGo-X/multi-party-ecdsa/tree/master/src/protocols/two_party_ecdsa/lindell_2017

Cure53, Berlin · 10/28/22                              5/12

https://cure53.de/
https://github.com/ZenGo-X/multi-party-ecdsa/tree/master/src/protocols/two_party_ecdsa/lindell_2017
https://eprint.iacr.org/2017/552
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Code analysis according to TSS protocol flow logic
ECDSA-TSS’s README.md provides a sample description of the top-level protocol flow
that is expected to be executed by both parties for session setup and signature. Session
ID generation is handled outside of  the scope of the library, with private keys being
optionally provided from a third-party source or generated internally as a random curve
scalar using secure pseudorandomness.

Key generation subprotocol
In accordance with the original protocol specification laid out by Lindell, Party 1 (P1) is
tasked with  generating  the Paillier  cryptosystem parameters  and  communicating  the
initial session commitment message to Party 2 (P2).

Figure 1. Key generation subprotocol description, from Lindell (2017).

Cure53, Berlin · 10/28/22                              6/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

In P1KeyGen.getKeyGenMessage1(), P1:

1. generates q1 in accordance with the spec, with a random x15 (line 102): this.q1 
= P1KeyGen.G.multiply(this.x1)

2. generates com-prove and creates a message containing two discrete log proof 
commitments, which are then communicated to P2.

In P2KeyGen._processKeyGenMessage1(), P2:

1. validates the state to ensure protocol context and correctness of session ID
2. generates q2 in accordance with the spec, whereas a random x2 (line 77) is q2 =

P2KeyGen.G.multiply(this.x2)
3. generates proof and creates a message containing two discrete log proof 

commitments, which are then communicated to P2.

In P1KeyGen._processKeyGenMessage2(), P1:

1. validates the state to ensure protocol context and correctness of the session ID
2. verifies dLogProof1 shared in the previous message by P2.
3. Step 3(c) of Figure 1 is pre-calculated by P1 before protocol messages occur, 

meaning that the Paillier cryptosystem keys are pre-generated. This is likely done
in order to optimize performance.

4. generates a Paillier cryptosystem commitment under the session ID.
5. generates and encrypts cKey in accordance with Step 3(c) of Figure 1.
6. calculates the proofs described in Step 4 in Figure 1.

In P2KeyGen._processKeyGenMessage3(), P2:

1. validates the state to ensure protocol context and correctness of the session ID
2. validates all of the necessary zero-knowledge proofs described in Step 4 of 

Figure 1 and is able to authenticate and derive the shared signing public key.

5 Note that Lindell (2017) describes x1 as being within the range {q/3, …, 2q/2}. ECDSA-TSS does not 
  enforce this restriction, allowing x1 to be generated and provided fully outside of the scope of the  
  implementation.

Cure53, Berlin · 10/28/22                              7/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Signing subprotocol

Figure 2: Signing subprotocol description, based on Lindell (2017).

In P1Signature._getSignMessage1(), P1:

1. generates k1 and r1 in accordance with Step 1(a) from Figure 2.
2. generates a discrete log proof over k1 and r1 for the session ID as the context,
3. creates a commitment which is shared with P2, in accordance with Step 1(b) of 

Figure 2.

In P2Signature._processSignMessage1(), P2:

1. validates the state to ensure protocol context and correctness of session ID.

Cure53, Berlin · 10/28/22                              8/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

2. generates k2 and r2 in accordance with Step 2(b) of Figure 2.
3. generates a discrete log proof over k2 and r2 for the session ID as the context,
4. creates a commitment which is shared with P1, in accordance with Step 2(c) of 

Figure 2.

In P1Signature._processSignMessage2(), P1:

1. validates the state to ensure protocol context and correctness of session ID.
2. validates the discrete log proof received from P2 (Step 3(a) of Figure 2).
3. performs Step 5(a) of Figure 2 in advance.

In P2Signature.processSignMessage3(), P2:

1. validates the state to ensure protocol context and correctness of session ID.
2. verifies the discrete log proof received from P1 (Step 4(a) of Figure 2).
3. performs Step 4(b) of Figure 2; the calculation of rUpper and r (r1 * k2 and rx % 

q is done.
4. performs all of the calculations described in Step 4(c) of Figure 2 in the same 

order, and with the same naming conventions:
const m = utils.Uint8ArraytoBigint(this.messageHash);
const ro = utils.randBelow(q ** 2n);
const k2Inv = utils.bigintModInv(this.k2, q);
const c1 = paillierPublicKey.encrypt(

ro * q + utils.modPositive(k2Inv * m,  q)
);
const v = k2Inv * r * this.p2KeyShare.x2;
const c2 = paillierPublicKey.multiply(cKeyX1, v);
const c3 = paillierPublicKey.addition(c1, c2);

Finally, in P1Signature._processSignMessage4(), P1:

1. validates the state to ensure protocol context and correctness of session ID
2. uses Paillier in order to decrypt the homomorphically calculated value c3.
3. performs Step 5(b) of Figure 2 (Step 5(a) was performed in advance in 

P1Signature._processSignMessage2()), choosing the smaller signature.
4. performs Step 5(c), verifying whether the signature communicated by P2 is valid.

Overall,  ECDSA-TSS constitutes an exceptionally readable and to-spec implementation
of Lindell 2017. No major deviations were found, except for the potential inclusion of the
additional discrete log  proofs  for ephemeral values. These values do not seem to be
described in the original paper.

Cure53, Berlin · 10/28/22                              9/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Comparison to third-party Rust implementation
The cryptographic protocol implemented by  ECDSA-TSS poses multiple challenges to
the security auditor. First, it involves a rarely implemented protocol. Second, the protocol
“specification”  is  limited  to  a  high-level  academic  description  with  no  engineering
specification for setting low-level details in stone. It  also fails to provide test vectors.
Third, the protocol depends on highly specialized low-level primitives, such as discrete
log  proofs and  commitment  schemes.  On  homomorphic  encryption,  it  requires  the
implementation of the rarely used Paillier cryptosystem.

In order to ascertain a higher level of assurance with regard to the results of this audit, a
third-party Rust implementation6 was chosen as an additional target for the ECDSA-TSS
code comparison. The results of the comparison are presented next.

Key generation subprotocol
For all key generation messages, the protocol flow was strikingly similar in terms of how
low-level primitives were designed. Similarities were also documented in the ordering
and separation  of  operation.  They mark the only  difference in  variable  names:  both
implementations use a hash-based approach in their commitment schemes.

Both implementations calculate a discrete log proof over P1’s initial secret share, q1, etc.
The involved parties structure their internal states similarly and communicate the same
messages over the wire. The same carries on for the entire key generation subprotocol.

Signing subprotocol
Similarly  to the key generation subprotocol,  the protocol flow, ordering of messages,
ordering of operations and low-level implementation details, were highly similar between
ECDSA-TSS  and  the  independent  Rust  implementation.  Only  minor  differences  in
variable names (with ECDSA-TSS being closer to Lindell 2017) were spotted.

6 https://github.com/ZenGo-X/multi-party-ecdsa/tree/master/src/protocols/two_party_ecdsa/lindell_2017

Cure53, Berlin · 10/28/22                              10/12

https://cure53.de/
https://github.com/ZenGo-X/multi-party-ecdsa/tree/master/src/protocols/two_party_ecdsa/lindell_2017
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Figure 3: Example of the strong similarity between ECDSA-TSS (right) and the
independent Rust implementation (left).

It can be explained that the figure above (Figure 3)  is showing implementations of Step
5 from Figure 2. The independent Rust implementation does not seem to immediately
validate the signature.

Cure53, Berlin · 10/28/22                              11/12

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Conclusion
This audit’s scope targeted a full and original implementation of the two-party threshold
signature scheme first described in 2017 in an academic paper by Yehuda Lindell. This
scheme was subsequently  deployed within  major  cryptocurrency wallet  infrastructure
instances.  In  autumn  2022,  Cure53  was  tasked  with  an  audit  of  the  cryptographic
correctness  of  the  protocol  logic  and  flow,  the  protocol  operations,  as  well  as  the
underlying  custom-implemented cryptographic  primitives.  The  latter  considered  items
outside of the core signing primitive and the Paillier cryptosystem primitive, both sourced
from external libraries.

To assess the ECDSA secp256k1 TSS(2,2) JS library, which is maintained by Silence
Laboratories, Cure53 carried out a rigorous analysis of ECDSA-TSS by evaluating its
protocol  flow logic.  The auditors were checking for  platform-specific  issues that  may
arise through the engineering of  cryptographic  protocols  in  TypeScript/JavaScript,  as
well as audited the custom-implemented low-level cryptographic primitives. Furthermore,
Cure53 performed a complete set of comparisons for the implementation, positioning it
both against the original 2017 Lindell paper, and an independent Rust implementation of
the same protocol.

For context, it should be noted that some consider the nature of Lindell’s 2017 work to
be relatively exotic. The project did not have a long or large implementation history and
is  characterized  by  unusual  dependencies  in  terms  of  cryptographic  primitives.  In
addition,  this  assignment  framed  the  unusual  target  of  TypeScript/JavaScript  as  a
runtime  for  the  implementation  of  cryptographic  protocols  involving  homomorphic
encryption and zero-knowledge proofs. Despite all these possibly adversarial conditions,
no outstanding issues could be identified within ECDSA-TSS within the scope of this
audit.

After  a  rigorous  comparison  to  both  the  original  2017  Lindell  paper  and  to  an
independent  Rust  implementation,  Cure53  determined  that  ECDSA-TSS  correctly
implemented both of the core subprotocols of Lindell’s 2017 work, and offered a high-
level API that is also relatively hardened against unintentional misuse by the application
layer.

Cure53 would like to thank Vlad Khomenko, Jay Prakash and Dr. Andrei Bytes from the
Silence Laboratories Pte. Ltd. team for their excellent project coordination, support and
assistance, both before and during this assignment.

Cure53, Berlin · 10/28/22                              12/12

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report Silence Laboratories ECDSA lib 10.2022
	Index
	Introduction
	Scope
	Cryptography Review
	Code analysis according to TSS protocol flow logic
	Key generation subprotocol
	Signing subprotocol

	Comparison to third-party Rust implementation
	Key generation subprotocol
	Signing subprotocol

	Conclusion



