
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit-Report Privy.io Shamir Secret Sharing 02.2023
Cure53, Dr.-Ing. M. Heiderich, Dr. M. Conde

Index
Introduction
Scope
Cryptography review

Choice of the finite field
Functional correctness of field operations
Choice of other relevant parameters
Resistance to side-channel attacks
Future work & Considerations

Identified Vulnerabilities
PVY-01-002 WP1: Degree of polynomial might be less than t-1 (High)

Miscellaneous Issues
PVY-01-001 WP1: Computationally suboptimal recovery of secrets (Info)
PVY-01-003 WP1: Non-resistance to cache side-channel attacks (Info)

Conclusions

Cure53, Berlin · 04/24/23 1/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Easily onboard your users to web3 with a simple, robust library. Add beautiful
authentication flows in minutes and serve every user, whether they have a wallet or not,
across mobile and desktop.”

From https://www.privy.io/

This report describes the results of a cryptography review and source code audit
targeting the Privy.io Shamir secret-sharing TypeScript implementation. The work was
requested by Horkos, Inc., in February 2023.

Cure53 carried out the assessment shortly after it was requested, namely in CW06
2023. Regarding resources allocated to this project, registered as PVY-01, it should be
clarified that a total of two days had been invested to reach the coverage expected for
this project. Further, a team of two senior testers were assigned to this project’s
preparation, execution and finalization. The work was structured within a single work
package (WP):

• WP1: Crypto review and code audit against the Privy.io SSS implementation

White-box methodology was employed to complete the goals of this assignment. Cure53
was provided with the sources via GitHub, as well as received all other means of access
required to complete the review. All preparations were done in late January and early
February, namely in CW05, to foster a smooth transition into the testing phase. Over the
course of the engagement, the communications were done using a private, dedicated
and shared Slack channel set up between Horkos, Inc., and Cure53. All involved
personnel from both parties could join the discussions on Slack.

The discussions throughout the test were very good and productive and not many
questions had to be asked. Ongoing interactions positively contributed to the overall
outcomes of this project. The scope was well-prepared and clear, greatly contributing to
the fact that no noteworthy roadblocks were encountered during the test. Cure53 offered
frequent status updates about the test and the emerging findings. Live-reporting was
offered and executed in the aforementioned Slack channel.

The Cure53 team managed to get very good coverage over the WP1 scope items.
Among three security-relevant discoveries, one was classified to be a security
vulnerability and two should be considered general weaknesses with lower exploitation
potential. It needs to be noted that the time assigned for this review was relatively short,
which already led to an expectation towards a small number of findings. It is
nevertheless a good sign that this prediction has become reality.

Cure53, Berlin · 04/24/23 2/14

https://www.privy.io/
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. A dedicated chapter
pertaining to the results of the cryptographic review is then included in this report.

Next, all three findings will be discussed in grouped vulnerability and miscellaneous
categories, then following a chronological order in each group. Alongside technical
descriptions, PoC and mitigation advice are supplied when applicable. Finally, the report
will close with broader conclusions pertinent to this February 2023 project. Cure53
elaborates on the general impressions and reiterates the verdict based on the testing
team’s observations and collected evidence. Tailored hardening recommendations for
the Privy.io Shamir secret-sharing TypeScript implementation complex are also
incorporated into the final section.

Cure53, Berlin · 04/24/23 3/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Crypto review & code audit against the Privy.io Shamir secret-sharing

implementation
◦ WP1: Cryptography review & Code audit of the Privy.io Shamir secret-sharing

TypeScript implementation
▪ Sources:

• https://github.com/privy-io/shamir-secret-sharing/blob/main/src/index.ts
▪ Commit:

• 3383ad927211615f3d70b5ceb5489f8a149be191

Cure53, Berlin · 04/24/23 4/14

https://github.com/privy-io/shamir-secret-sharing/blob/main/src/index.ts
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cryptography review
This section discusses the premise and outcomes of the cryptography adopted by
Privy.io. It begins with some general clarifications pertaining to the project, so as to
facilitate a more detailed understanding of subsequent comments and claims made by
Cure53 in the frames of this PVY-01 crypto-review.

A (t,n)-threshold secret sharing scheme - as devised by Shamir - makes it possible to
split a secret among n parties in such a way that two conditions are met. First, any
subset of t or more parties can jointly combine their shares and reconstruct the secret.
Second, no group of less than t parties - i.e., the threshold, can learn anything about the
secret.

The mathematical foundation of Shamir’s secret-sharing scheme is rather simple, relying
on the fact that any polynomial f of degree t-1 over a finite field is uniquely determined by
t evaluations and can be reconstructed from those evaluations using Lagrange
interpolation. In particular, if a dealer wishes to split a secret, they can choose a random
polynomial f of the form:

f (x)=secret+a1 x+...+a t−1 x
t−1

Based on that, they can distribute n shares of the form (x i , f (x i)) among the parties, with
i∈ {0 ,... , t−1}.

Choice of the finite field
The mathematical foundation of the Shamir’s secret-sharing scheme holds, irrespective
of the finite field chosen. In other words, this choice does not affect the security of the
scheme as such, but has bearing on efficiency.

By design, the secret needs to be represented as an element of the finite field, which
might mean that several executions of the Shamir’s secret-sharing scheme must be run,
depending on the length of the secret. This clearly adds complexity.

The finite field chosen by the developers of Privy is GF(2), which effectively means that⁸
if the secret consists of more than one byte, say len bytes, Shamir’s secret sharing
scheme will have to be run len number of times independently to generate len shares for
each of the parties. It should be noted that GF(2) constitutes a common choice in⁸
cryptography due to the speed of its field operations, so it is a good trade-off between
complexity and efficiency.

Cure53, Berlin · 04/24/23 5/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Functional correctness of field operations
Aside from the addition operation (add), which is trivially implemented as a xor,
multiplication and division operations (mult and div) have been facilitated with look-up
tables, which is a good choice in terms of speed.

It has been verified that the look-up tables fixed in the code (LOG_TABLE and
EXP_TABLE) are correct in regard to the use of the irreducible polynomial:

x ⁸+x ⁴+x ³+x+1.

This polynomial is not explicitly mentioned in the code documentation, and it is
recommended to include it, so as to ensure a better readability.

Choice of other relevant parameters
This subsection focuses on the correctness of the choices behind certain parameters.
These parameters were reviewed, as they might negatively impact the security of
Shamir’s secret-sharing scheme when executed poorly.

Construction of the polynomials involved in function split

As stated before, if the secret consists of len bytes, Shamir’s secret-sharing scheme will
have to be run len number of times independently. There is a requirement for this to be
done in such a way that it does not break the security of the scheme. This requirement
states that the polynomials chosen to generate the share need to be chosen
independently at random in each execution of the scheme This has been implemented
correctly by the developers of Privy.

Construction of x i in function newCoordinates
The x i can be chosen in different ways without a security impact as long as:

• No x i is equal to zero, as this would trivially reveal the secret to the party
receiving the share.

• All x i are pairwise-different.
Both conditions are met and guaranteed in the code.

Cure53, Berlin · 04/24/23 6/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Resistance to side-channel attacks
As the shamir-secret-sharing library is written in JavaScript and JavaScript is commonly
just-in-time compiled, it is not possible to guarantee constant-time operations. As a result
of this, Cure53 did not focus on reporting any findings related to non-constant time
operations.

Furthermore, it should be noted that field operations are implemented with look-up
tables, which constitute a very performant option in terms of speed, but introduce a poor
resistance against cache side-channel attacks.

Future work & considerations
The Shamir’s secret-sharing scheme - as implemented by Privy - can be considered as
secure under the following assumptions:

• The dealer is honest: A dishonest dealer could corrupt the shares and the parties
would have no way of knowing it prior to the secret reconstruction.

• The parties are honest: A dishonest party could corrupt their share and convince
t-1 parties to jointly reconstruct the secret, which would result in an incorrect
reconstruction of the secret output by the function combine.
◦ In this regard, it shall be remarked that the combine function can output an

incorrect secret and there is no way to check whether that is the case or not
solely on the secret output by the function. In essence, this is something that
users of the library need to take care of. Thus, it is recommended to clearly
state that these limitations are present, doing so in the code and
documentation to avoid misuse. In case the developers of Privy wish to
include the option for parties to detect whether or not their shares reconstruct
the correct secret solely based on the output of the function combine, it would
be possible to do so by using some identifying information of the secret (e.g.,
a hash).

• The secret is uniformly distributed at random: This is the typical scenario, as
encryption keys are usually split. If a non-random secret shall be split, it is
recommended to encrypt it and split the encryption key instead.

Once again, Cure53 recommends acknowledging these considerations in the
documentation to avoid potential problems.

Cure53, Berlin · 04/24/23 7/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. PVY-01-001) for the purpose of facilitating any
future follow-up correspondence.

PVY-01-002 WP1: Degree of polynomial might be less than t-1 (High)
Note: This issue has been fixed and the fix was verified by Cure53, the issue as
described no longer exists in the implementation.

While reviewing the shamir-secret-sharing repository, it was observed that the
polynomial generated at random in the function split might not satisfy the necessary
conditions to instantiate a (t,n)-threshold Shamir’s secret sharing scheme, as it is
expected from the function. As can be recalled from the cryptography review, such a
polynomial must be of the following form.

f (x)=secret+a1 x+...+at−1 x
t−1 ,

In particular, the degree of the polynomial needs to be exactly t-1, as this is the condition
that guarantees that no group of less than t parties can jointly recover the secret. To be
more clear, if the degree of the polynomial generated is actually t-2, this means that t-1
parties, i.e., a number of parties under the threshold, could jointly reconstruct the secret.
As a consequence, the function split would not be behaving as it is supposed to,
producing an outcome that happens to be a (t-1,n)-threshold scheme instead of a (t,n)-
threshold scheme.

The probability of generating the coefficient a t−1 to be non-zero is 1−
1
28
, which

approximately equals 0.996. Hence, it is expected that for approximately every 1000
executions of the split function, four of the executions will yield an incorrect (t,n)-
threshold scheme, resulting in a (t-1,n)-threshold scheme instead.

To illustrate it further, if the split function is called in order to split an AES-128 key into
shares, the secret scheme runs 16 times (as 16 bytes are being split). In this case, the

probability of generating the coefficients of the 16 polynomials correctly is (1− 1
28

)
16

,

Cure53, Berlin · 04/24/23 8/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

which comes up to ca. 0.94. Therefore, if the split function is executed 100 times in order
to generate a (t,n)-threshold scheme and share an AES-128 key, approximately 4 times
the resulting scheme will not be a correct (t,n)-threshold scheme. In practice, t-1 parties -
which is one fewer than expected as a demand - can jointly recover at least one byte of
the secret, hence learning something from said secret. This does not meet the definition
of a (t,n)-threshold scheme and represents an undesired behavior of the split function.

Affected file:
shamir-secret-sharing/src/index.ts

Affected code:
function newCoefficients(intercept: number, degree: number):
Readonly<Uint8Array> {
 const coefficients = new Uint8Array(degree + 1);
 coefficients[0] = intercept;
 coefficients.set(getRandomBytes(degree), 1);
 return coefficients;
}

The function newCoefficients that implements the generation of the coefficients of the
polynomial f fails to check that the coefficient a t−1 is not a zero, which might result in
incorrect instantiations of a (t,n)-threshold scheme.

To avoid this issue, it is necessary to add a check that prevents generating a polynomial
that is of a degree strictly less than what is actually input as the degree.

Cure53, Berlin · 04/24/23 9/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

PVY-01-001 WP1: Computationally suboptimal recovery of secrets (Info)
Note: This issue has been fixed and the fix was verified by Cure53, the issue as
described no longer exists in the implementation.

While reviewing the shamir-secret-sharing repository, it was observed that the function
interpolatePolynomial provides functionality in order to evaluate Lagrange’s interpolation
polynomial at a generic point x. However, this function is later called exclusively on input
x = 0, since it is solely this evaluation that is relevant for reconstructing the secret in
Shamir’s secret-sharing scheme.

The general expression of the Lagrange interpolation polynomial evaluated at a generic
point x is as follows, where (x i , f (xi)) are the t evaluations given:

∑
i=0

t−1

y i ∏
m=0 , m≠i

t−1 x−xm
xm−x i

 .

Considering that this evaluation needs to be performed only for x=0, the above
expression can be slightly simplified to the following, when taking into account that
xm=−xm in GF(2):⁸

∑
i=0

t−1

yi ∏
m=0 , m≠i

t−1 xm
xm−xi

 .

Directly coding the latter expression affords t-1 calls to the function add (implementing a
xor operation), which is a minor efficiency improvement. This is why the flaw has only
been placed in the Miscellaneous category.

Cure53, Berlin · 04/24/23 10/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
shamir-secret-sharing/src/index.ts

Affected code:
function interpolatePolynomial(xSamples: Uint8Array, ySamples: Uint8Array, x:
number): number {
 if (xSamples.length !== ySamples.length) {
 throw new Error('sample length mistmatch');
 }

 const limit = xSamples.length;

 let basis = 0;
 let result = 0;

 for (let i = 0; i < limit; i++) {
 basis = 1;

 for (let j = 0; j < limit; ++j) {
 if (i === j) {
 continue;
 }
 const num = add(x, xSamples[j]!);
 const denom = add(xSamples[i]!, xSamples[j]!);
 const term = div(num, denom);
 basis = mult(basis, term);
 }

 result = add(result, mult(ySamples[i]!, basis));
 }

 return result;
}

It is recommended to refactor the function interpolatePolynomial. The interpolation
polynomial should be directly evaluated at x=0, which also avoids passing a value (x)
that is fixed to zero as an input in calls to the function.

Cure53, Berlin · 04/24/23 11/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PVY-01-003 WP1: Non-resistance to cache side-channel attacks (Info)
Note: This issue has been fixed and the fix was verified by Cure53, the issue as
described no longer exists in the implementation.

As already indicated in the crypto-review section, field operations are implemented with
look-up tables that are input-dependent (particularly dependent on shares). This very
premise makes the implementation vulnerable to cache side-channel attacks.

Affected file:
shamir-secret-sharing/src/index.ts

Affected code:
const LOG_TABLE: Readonly<Uint8Array> = new Uint8Array([
 0x00, 0xff, 0xc8, 0x08, 0x91, 0x10, 0xd0, 0x36, 0x5a, 0x3e, 0xd8, 0x43, 0x99,
0x77, 0xfe, 0x18,
[...]
 0x3b, 0x52, 0x6f, 0xf6, 0x2e, 0x89, 0xf7, 0xc0, 0x68, 0x1b, 0x64, 0x04, 0x06,
0xbf, 0x83, 0x38,
]);

// Provides the exponentiation value at each index X.
const EXP_TABLE: Readonly<Uint8Array> = new Uint8Array([
 0x01, 0xe5, 0x4c, 0xb5, 0xfb, 0x9f, 0xfc, 0x12, 0x03, 0x34, 0xd4, 0xc4, 0x16,
0xba, 0x1f, 0x36,
[...]
 0x66, 0xb2, 0x76, 0x60, 0xda, 0xc5, 0xf3, 0xf6, 0xaa, 0xcd, 0x9a, 0xa0, 0x75,
0x54, 0x0e, 0x01,
]);

This class of side channel attacks can be prevented by implementing field operations
without look-up tables. For example, one can review the dsprenkels/sss repository1,
which is designed to be resistant to cache side-channel attacks and side-channel attacks
more broadly. Using a dedicated solution is recommended if preventing this class of
attacks is desired.

1 https://github.com/dsprenkels/sss

Cure53, Berlin · 04/24/23 12/14

https://cure53.de/
https://github.com/dsprenkels/sss
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Drawing on the collected evidence, Cure53 argues that the Privy.io Shamir secret-
sharing TypeScript implementation leaves a good impression. Two members of the
Cure53 team completed this project in February 2023 and observed that the examined
code has been well-written. Many common best practices were found to guard the
scope, with only three findings ultimately reported in the frames of this PVY-01
assessment. Yet, there is still some room for improvement and the herein discovered
issues need to be addressed for the Privy.io to achieve even stronger security posture.

To reiterate the context of this assessment, the SSS-Typescript library is an
implementation of Shamir's threshold secret-sharing scheme. As for its use-cases, it is a
good solution for settings in which both the dealer and the participants are honest (i.e.,
they are assumed to not act maliciously by corrupting shares, for example). The
disclaimers about the raised security considerations stemming from this and discussed
in the dedicated section should be added to the code documentation. Privy.io needs to
promote a consistently safe use of the library by consumers who rely on it.

As noted, Cure53 believes that safe choices were made for the parameters that might
negatively impact the security of the scheme. To give one example, correct paths were
selected for the generation of the polynomials independently at random for each run of
the scheme. This means that the security of Shamir’s secret-sharing scheme is well-
understood by the maintainers. In terms of flaws, the library failed to validate a subtle
condition in order to make sure that the coefficient of the term of the highest degree in
the generated polynomials is non-zero. With a certain probability, this introduces a
vulnerability in which fewer parties than intended can jointly reconstruct the secret.
However, this should be a very easy fix.

Relatively major changes of the library would be required in order to include functionality
to detect a dishonest dealer. Changes of such nature would involve implementing a
verifiable version of Shamir’s secret-sharing scheme, which would need to use zero-
knowledge proofs. However, a nice addition to the library could be the detection of the
potentially dishonest parties (with corrupt shares), caught at trying to reconstruct a
secret. This could be realized by using a collision-resistant hash function for the purpose
of generating a validation check for the reconstructed secret, as explained in the section
dedicated to the review of the cryptography. Remaining potential room for improving the
library also concerns including support to verify the validity of the secret recovered by
the combine function. At the moment it does not meet this standard and the validity of
the recovered secret has to be managed by a higher-level application.

Cure53, Berlin · 04/24/23 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is hoped that the findings shared by Cure53 as a result of this February 2023 project
can assist the Privy.io team in focused efforts towards the already robust
implementation. Since the code is well-written, validity checks are usually enforced,
edge conditions are managed well, and common implementation errors are avoided, the
testing team is convinced that the Shamir secret-sharing TypeScript implementation by
Privy.io is on the right path in terms of security.

Cure53 would like to thank Asta Li, Ben Reinhart and Henri Stern from the Horkos, Inc.
team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · 04/24/23 14/14

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report Privy.io Shamir Secret Sharing 02.2023
	Index
	Introduction
	Scope
	Cryptography review
	Choice of the finite field
	Functional correctness of field operations
	Choice of other relevant parameters
	Resistance to side-channel attacks
	Future work & considerations

	Identified Vulnerabilities
	PVY-01-002 WP1: Degree of polynomial might be less than t-1 (High)

	Miscellaneous Issues
	PVY-01-001 WP1: Computationally suboptimal recovery of secrets (Info)
	PVY-01-003 WP1: Non-resistance to cache side-channel attacks (Info)

	Conclusions

