
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit-Report micro-btc-signer TS Library 01.2023
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index
Introduction
Scope
Cryptography Review

Scope & Findings
Key Goals
Threat & Attacker Model
Test Methodology
Future Work & Considerations

Identified Vulnerabilities
MBS-01-001 Crypto: addOutputAddress handles denomination via input type (High)

Miscellaneous Issues
MBS-01-002 Crypto: Overloaded compare function for numeric values (Info)
MBS-01-003 Crypto: Unsafe exported functionality (Medium)
MBS-01-004 Crypto: Byte array cast to boolean in comparison (Info)

Conclusions

Cure53, Berlin · 02/25/23 1/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Create, sign & decode BTC transactions with minimum deps.”

From https://github.com/paulmillr/micro-btc-signer

This report details the scope, results, and conclusory summaries of a cryptography
review and source code audit against the micro-btc-signer library.

The work was requested by Ryan Shea in December 2022 and initiated by Cure53 in
January 2023, namely through CW02 and CW04. A total of eleven days were allocated
to reach the coverage expected for this project. The testing conducted for this audit was
divided into one distinct Work Package (WP) for execution efficiency, as follows:

• WP1: Cryptography review & code audit against micro-btc-signer library

Cure53 was granted access to the libraries and commits via GitHub, as well as any
alternative means of access required to ensure a smooth review completion. For this
purpose, the methodology chosen was white-box and a team comprising two
skillmatched senior testers was assigned to the project’s preparation, execution, and
finalization.

All preparatory actions were completed in January 2023, namely in CW01, to ensure the
review could proceed without hindrance or delay. Communications were facilitated via a
dedicated, shared Signal channel deployed between Ryan Shea, Paul Miller and
Cure53, thereby creating an optimal collaborative working environment. All participatory
personnel from both parties were invited to partake throughout the test preparations and
discussions.

In light of this, communications proceeded smoothly on the whole. The scope was well-
prepared and transparent, no noteworthy roadblocks were encountered throughout
testing, and cross-team queries remained minimal as a result.

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was offered and subsequently conducted via the
aforementioned Signal channel. Concerning the findings specifically, the Cure53 team
achieved widespread coverage over the WP1 and WP2 scope items, detecting a total of
four. One of the findings was categorized as a security vulnerability, whilst the remaining
three were deemed general weaknesses with lower exploitation potential.

Cure53, Berlin · 02/25/23 2/16

https://cure53.de/
https://github.com/paulmillr/micro-btc-signer
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Even though the total yield of findings is relatively minimal, the overall impression gained
of the micro-btc-signer TS library is rather negative, primarily owing to the fact that three
closely-related programming paradigm issues were visible in the micro-btc-signer’s
code. These were considered inappropriate for the library’s designated high-assurance
deployment contexts and have been extrapolated in detail via the following
Cryptography Review section.

Whilst this assessment was unable to detect any directly-exploitable issues within the
micro-btc-signer library, Cure53 can only conclude that the library requires a rewrite in
order to fully leverage TypeScript’s enhanced type safety features. The report will now
shed more light on the scope and testing setup as well as provide a comprehensive
breakdown of the available materials. This section will be followed by a chapter that
details the performed cryptography review, which serves to provide in-depth analysis of
the provided scope and findings, as well as stipulate the key goals of this audit and
threat/attacker model.

Subsequently, the in-scope infrastructure coverage and advanced approaches instigated
are detailed, in lieu of significant findings detected. Next, Cure53 highlights potential
focus areas for future work and the considerations that should be adhered to for any
micro-btc-signer TS library improvements moving forward.

The report will then list all findings identified in chronological order, starting with the
detected vulnerabilities and followed by the general weaknesses unearthed. Each
finding will be accompanied by a technical description and Proof of Concepts (PoCs)
where applicable, plus any relevant mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the micro-
btc-signer library, giving high-level hardening advice where applicable.

Cure53, Berlin · 02/25/23 3/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Cryptography reviews & code audit against Paul Miller’s micro-btc-signer TS

library
◦ WP1: Cryptography review & code audit against micro-btc-signer library

▪ Library in scope:
• https://github.com/paulmillr/micro-btc-signer

▪ Commit in scope:
• https://github.com/paulmillr/scure-btc-signer/commit/

397ed56cd98e1908b3345572a123b953057531e9
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 02/25/23 4/16

https://github.com/paulmillr/scure-btc-signer/commit/397ed56cd98e1908b3345572a123b953057531e9
https://github.com/paulmillr/scure-btc-signer/commit/397ed56cd98e1908b3345572a123b953057531e9
https://cure53.de/
https://github.com/paulmillr/micro-btc-signer
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cryptography Review
This section documents the testing methodology applied during this cryptography review
and code audit, shedding light on the advanced approaches initiated to evaluate the
micro-btc-signer TS library. Further clarification concerning areas of investigation
subjected to deep-dive assessment is offered, particularly considering the absence of
findings exhibiting significant security vulnerabilities on the scope examined by Cure53
for this audit.

Scope & Findings
micro-btc-signer implements a set of standard functionalities relevant to Bitcoin
applications, such as Bitcoin wallets. During this deep-dive investigation, Cure53 verified
the correct implementation of payment and transaction encoding functionality. micro-btc-
signer’s API encompassed classic Bitcoin functionality plus relatively recent extensions,
such as SegWit optimizations and Taproot-based multisig. All of these functionalities
were reviewed, with the confirmation made that they match the expected behavior.

Given the complete lack of issues regarding the validity of the implemented functionality
in micro-btc-signer - as well as the fact that the library exists purely as a protocol and
application agnostic API and is not tied to specific use-case scenarios - this audit
primarily focussed on best practices for programming a Bitcoin library intended for
deployment in the significantly-sensitive context of cryptocurrency transactions within
web-browser runtime environments.

Here, one must consider that micro-btc-signer cannot control the method by which it is
called from the application layer that adopts it, since it constitutes a utility library for
Bitcoin transaction functionality. In light of this, ensuring that the library remains resilient
to misuse should be considered a critical requirement. Unfortunately, despite the usage
of TypeScript, the library’s stated focus on auditability, and the lack of outright
vulnerabilities in the library’s code, this assessment’s conclusory outcomes neither
confirm nor suggest that micro-btc-signer is designed with abuse-resistance as a
paramount criteria. On the contrary, the library accommodates potential misuse in order
to allow lax type inputs into critical transaction functionality.

Whilst one can argue that micro-btc-signer’s minimal code target renders security
auditing easier to achieve and security bugs less likely to emerge, and even though this
audit was unable to identify any directly exploitable cryptographic vulnerabilities in the
library, Cure53 nevertheless observed the presence of three closely-related
programming paradigm issues. These are visible in micro-btc-signer’s code and were
deemed inappropriate for the library’s designated high-assurance deployment context,
as follows:

Cure53, Berlin · 02/25/23 5/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Extreme permissiveness for high-level API functionality input types: An
excessive volume of both private functions and exported API functionality for
micro-btc-signer permit users to input surprisingly varied types for highly-
sensitive data. For example, MBS-01-001 documents a scenario whereby an
input value’s data type can cause Bitcoin transactions to shift denominations in
multiple orders of magnitude. This is particularly relevant given the extreme lack
of type safety that JavaScript is known for.

• Acute type overloading facilitates code that is tangibly more succinct, but
technically and logically more challenging to audit in comparison with
longer code: Certain areas of micro-btc-signer’s code serve to illustrate that
more succinct code does not always equal more auditable code. Specific core
functionalities utilize extreme type overloading and other hacks in order to reduce
effective lines of code, though this renders the library increasingly challenging to
audit, as demonstrated in ticket MBS-01-002. Particularly in the context of a
cryptographic library intended for deployment in high-assurance situations, this
coding paradigm may be deemed inappropriate.

• Inappropriately lacking use of TypeScript’s enhanced type safety
functionality: Despite the fact that micro-btc-signer is written in TypeScript,
testing confirmed that the majority of TypeScript’s enhanced type safety features
are leveraged inappropriately across the library’s code and do not meet their full
functionality potential. This behavior incurs a number of issues, including those
detailed in tickets MBS-01-003 and MBS-01-004.

Key Goals
During the micro-btc-signer evaluation, the key goals from an audit perspective were to:

• Ensure that all Bitcoin transaction functionality - as well as Bitcoin script encoding
and decoding - were implemented correctly, in adherence with the specification,
and produced expected output when used over the wire by a high-level
application adopting micro-btc-signer as its core Bitcoin functionality library.

• Ensure micro-btc-signer was misuse resistant, with due consideration of the
excessively-lax type discipline for data inputs and outputs exhibited by the web
runtime environment and JavaScript.

Threat & Attacker Model
Micro-btc-signer constitutes an application-agnostic library. As a result, typical
cryptocurrency applications attack vectors - such as device compromise, network
compromise, impersonation, and similar - are not immediately relevant in this context. In
light of this, any would-be attacker may be attracted to any potential compromise
opportunity offered by this library for a couple of reasons, as follows:

Cure53, Berlin · 02/25/23 6/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Inattentive application developers: Scenarios whereby application developers
using micro-btc-signer in their apps overly rely on the library itself for input
validation, either for data types or data structures.

• Uninformed subsequent micro-btc-signer maintainers: Scenarios whereby
future micro-btc-signer maintainers are not necessarily comprehensively aware
of the specific tricks and programming styles adopted to minimize the library’s
code size or otherwise render it more “compact”, which is one of the library’s
stipulated design objectives.

As demonstrated in this audit report - and considering micro-btc-signer from the
perspective of both of the attack scenarios described above - a number of actual
vulnerabilities and miscellaneous issues are incurred, despite the library’s lack of
outright implementation errors.

Test Methodology
Micro-btc-signer was evaluated through adoptance of two independent methodologies:

• Implementation correctness verification: Each of micro-btc-signer’s top-level
functionalities were verified to be correctly implemented, whilst the test suite was
verified to produce expected output in line with standard Bitcoin implementations.

• Manual source code review: A line-by-line manual reading of virtually the entire
source code was initiated in order to determine the integration of best practices
and potential for either underlying security issues or unhandled edge-case
scenarios.

As alluded to above, the former methodology yielded no noteworthy findings, though the
latter review raised a number of potential issues from the perspective of the attacker
model considered for this audit.

Future Work & Considerations
Micro-btc-signer purports code line minimization as one of its primary goals in order to
render the library more portable, more auditable, and easier to review. However, micro-
btc-signer makes the fundamental mistake of confusing less lines of code with less
complexity; despite achieving a minimal code footprint, micro-btc-signer does not fulfill
the expectancy of code complexity minimization. On the contrary, code complexity is
elevated in order to minimize code footprint. This elemental design error increases both
the difficulty of auditing the library, as well as its susceptibility to application layer misuse
and potential erroneous behaviors in the hands of subsequent maintainers.

Cure53, Berlin · 02/25/23 7/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Given the aforementioned design fault, Cure53 advises rewriting the library in order to
focus on reducing complexity, rather than simply removing lines of code and expecting
that to automatically translate into a reduction in code and logical complexity.

Whilst many pertinent instances were observed throughout the codebase, the issue
described in ticket MBS-01-002 acts as the perfect standalone demonstration of how
micro-btc-signer eschews TypeScript’s advanced type safety features, proper input
validation, and a lessening of code complexity for the purpose of simply reducing
effective lines of code. Ultimately, the library must be rewritten to avoid these erroneous
behaviors, particularly in respect of its highly sensitive deployment use case and
extremely malleable target runtime environment.

Cure53, Berlin · 02/25/23 8/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, all tickets are given a unique identifier (e.g., MBS-01-
001) to facilitate any future follow-up correspondence.

MBS-01-001 Crypto: addOutputAddress handles denomination via input type (High)
Testing confirmed that the addOutputAddress functionality in the micro-btc-signer library
handles the Bitcoin input amount in entirely different currency denominations, depending
on the input data type passed to the function. Notably, if the amount is passed as a
string, it is interpreted as a Bitcoin; if the amount is passed as a number or BigInt, it will
be handled as a satoshi (i.e. 0.00000001 BTC).

This is problematic for three reasons: firstly, the micro-btc-signer will be leveraged in
sensitive contexts such as cryptocurrency wallets; secondly, the significantly malleable
nature of data types in JavaScript; and finally, the micro-btc-signer authors lack control
over how the library’s exposed top-level API functionality (addOutputAddress and
alternative functions) will be utilized in third-party application layer code. Generally
speaking, permitting the denomination of a currency to shift radically depending on the
data-type input represents an insufficiently secure programming paradigm, given the
library’s security context. Take, for example, the following JavaScript code:

> typeof(1 + "")
'string'

The code offered above serves to demonstrate that the language environment for micro-
btc-signer exposes third-party application developers to an atypical degree of risk
pertaining to the introduction of type confusion bugs. Rather than being accommodated
by the underlying cryptographic library, these type confusion bugs should always throw
errors and abort. This is particularly valid since micro-btc-signer is written in TypeScript,
which allows developers to benefit from stronger compile-time type safety; in actuality,
TypeScript’s integrated safety features are not exploited to their full potential in many
code areas.

Affected file:
index.ts

Cure53, Berlin · 02/25/23 9/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
private normalizeOutput(

o: TransactionOutputUpdate,
cur ? : TransactionOutput,
allowedFields ? : (keyof typeof PSBTOutput)[]

): TransactionOutput {
let {

amount,
script

} = o;
if (typeof amount === 'string') amount = Decimal.decode(amount);
if (typeof amount === 'number') amount = BigInt(amount);

[...]

addOutputAddress(address: string, amount: string | bigint, network = NETWORK):
number {
 return this.addOutput({
 script: OutScript.encode(Address(network).decode(address)),
 amount: typeof amount === 'string' ? Decimal.decode(amount) :
amount,
 });

To mitigate this issue, Cure53 advises rewriting all exposed, high-level micro-btc-signer
API functionality to adopt strict type safety measures, and ensuring it invariably fails in
the event that input types do not meet expected requirements. This analysis applies to
addOutputAddress above all, though the same recommendation can be made to many
other code snippets in the library that equally allow lax type handling, which is
inappropriate given the library’s sensitive deployment context and as documented
elsewhere in this report.

Cure53, Berlin · 02/25/23 10/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

MBS-01-002 Crypto: Overloaded compare function for numeric values (Info)
Testing confirmed that the micro-btc-signer library compresses the comparison function
for numeric values represented as strings, numbers, BigInts, bytes, or even booleans
into a single function. Whilst this behavior was most likely implemented in order for the
library to fulfill its primary stipulation of offering the most Bitcoin functionality with the
least amount of code, the resulting code ultimately renders the library increasingly
challenging to audit, despite the achieved compositional compactness.

Furthermore, adopting such a high level of type malleability into a low-level logical
primitive as fundamental as integer comparison risks rendering the library vulnerable to
bugs introduced by future developers, who may not completely understand the subtle
tricks employed in the functionality that allows a vast array of types to be compared
against one another simultaneously.

Affected file:
index.ts

Affected code:
type CmpType = string | number | bigint | boolean | Bytes | undefined;
export function cmp(a: CmpType, b: CmpType): number {

if (isBytes(a) && isBytes(b)) {
// -1 -> a<b, 0 -> a==b, 1 -> a>b
const len = Math.min(a.length, b.length);
for (let i = 0; i < len; i++)

if (a[i] != b[i]) return Math.sign(a[i] - b[i]);
return Math.sign(a.length - b.length);

} else if (isBytes(a) || isBytes(b)) throw new Error(`cmp: wrong values
a=${a} b=${b}`);

if (
(typeof a === 'bigint' && typeof b === 'number') ||
(typeof a === 'number' && typeof b === 'bigint')

) {
a = BigInt(a);
b = BigInt(b);

}

Cure53, Berlin · 02/25/23 11/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

if (a === undefined || b === undefined) throw new Error(`cmp: wrong
values a=${a} b=${b}`);

// Default js comparasion
return Number(a > b) - Number(a < b);

}

To mitigate this issue, Cure53 advises dividing comparison functions into separate
explicit functionality for each of the data types that must be compared against one
another. Furthermore, one can recommend blocking the exportation and exposure of all
comparison functions to the third-party application layer, since one cannot fully
determine whether this functionality is intended for employment by the application layer.

MBS-01-003 Crypto: Unsafe exported functionality (Medium)
Testing confirmed that some of micro-btc-signer’s exported functionality, including p2sh
and p2wsh, access internal properties for input arguments without first validating their
structure. This could lead to applications passing incorrectly structured data, which could
be incorrectly interpreted by underlying cryptographic operations.

Affected file:
index.ts

Affected code:
export const p2sh = (child: P2Ret, network = NETWORK): P2Ret => {

const hash = hash160(child.script);
const script = OutScript.encode({

type: 'sh',
hash

});
checkScript(script, child.script, child.witnessScript);
const res: P2Ret = {

type: 'sh',
redeemScript: child.script,
script: OutScript.encode({

type: 'sh',
hash

}),
address: Address(network).encode({

type: 'sh',
hash

}),
};
if (child.witnessScript) res.witnessScript = child.witnessScript;
return res;

};

Cure53, Berlin · 02/25/23 12/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[...]

export const p2wsh = (child: P2Ret, network = NETWORK): P2Ret => {
const hash = sha256(child.script);
const script = OutScript.encode({

type: 'wsh',
hash

});
checkScript(script, undefined, child.script);
return {

type: 'wsh',
witnessScript: child.script,
script: OutScript.encode({

type: 'wsh',
hash

}),
address: Address(network).encode({

type: 'wsh',
hash

}),
};

};

To mitigate this issue, Cure53 advises rewriting any exposed, high-level API for micro-
btc-signer to ensure that the structure of input arguments is thoroughly validated before
being passed into any internal library logic.

MBS-01-004 Crypto: Byte array cast to boolean in comparison (Info)
Testing confirmed that certain areas of the micro-btc-signer library exploited JavaScript
type conversion hacks in order to obtain cryptographically sensitive validations. For
example, a double negation in isValidPubkey is exploited in order to convert a byte array
into a boolean value.

Affected file:
index.ts

Affected code:
function validatePubkey(pub: Bytes, type: PubT): Bytes {

const len = pub.length;
if (type === PubT.ecdsa) {

if (len === 32) throw new Error('Expected non-Schnorr key');
} else if (type === PubT.schnorr) {

if (len !== 32) throw new Error('Expected 32-byte Schnorr key');
} else {

throw new Error('Unknown key type');
}

Cure53, Berlin · 02/25/23 13/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

secp.Point.fromHex(pub); // does assertValidity
return pub;

}

function isValidPubkey(pub: Bytes, type: PubT): boolean {
try {

return !!validatePubkey(pub, type);
} catch (e) {

return false;
}

}

Whilst this behavior does not appear to incur any security weakness in isolation at
present, Cure53 nevertheless strongly advises adopting more coherent practices when
writing sensitive cryptographic functionality. Generally speaking, cryptographic APIs
remain an inappropriate area for potential type conversion hacks. Alternatively, code
should be compositionally clear, maintainable, and idiomatic throughout. Hence, this
coding style should not be adopted throughout the rest of the micro-btc-signer library.

Cure53, Berlin · 02/25/23 14/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW02 and CW04 testing against the micro-btc-signer library by the
Cure53 team - will now be discussed at length. To summarize, the confirmation can be
made that the components under scrutiny have garnered a rather mixed impression. In
context, micro-btc-signer represents a JavaScript/TypeScript library purported to offer
transaction creation, signing, decoding, and processing for Bitcoin ecosystem
applications in a highly compact code target.

Cure53 was tasked with auditing micro-btc-signer’s cryptographic implementations and
determining whether the library is suitable for real-world deployment in sensitive
application layer contexts, such as Bitcoin wallets. This review spanned the entirety of
the ~2,700 LoC library codebase, covering the correctness of the implementation of
various Bitcoin transaction processing functionality, in relation to extensions such as
SegWit and Taproot in addition.

Whilst one could argue that micro-btc-signer’s smaller code target renders auditing
easier to achieve and security bugs less likely to emerge - and with due consideration to
the fact that this assessment could not detect any directly exploitable cryptographic
vulnerabilities in the library - the testing team still noted three closely-related
programming paradigm issues visible in micro-btc-signer’s code. These were considered
inappropriate for the library’s chosen high-assurance deployment contexts, as covered in
the introduction:

• Issues such as MBS-01-001 underline the risk created by scenarios whereby
micro-btc-signer alters the currency denomination of input amounts by orders of
magnitude, depending on their input-data type.

• Issues such as MBS-01-002, MBS-01-003, and MBS-01-004 demonstrate
insufficiently lax coding paradigms, given the sensitive contexts in which micro-
btc-signer is likely to be deployed.

Cure53, Berlin · 02/25/23 15/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As such, whilst this audit was unable to detect directly exploitable issues in the micro-
btc-signer library, one can conclude by reiterating the recommendations from the
introduction. Namely, Cure53 advises rewriting the library in order to comprehensively
integrate TypeScript’s enhanced type safety features, which can be achieved by:

• Specifying full custom data types for all input data structures.

• Fully validating all input types to all high-level API functionality, and rendering
private all functionality that does not require exposure to the application layer.

• Avoiding overloading functions with type conversion hacks, and enforcing that
each function only accepts one data type for each input. As argued previously, in
the eventuality this behavior facilitates repeated or more verbose code, this will
not necessarily guarantee that micro-btc-signer will be more challenging to audit.

Cure53 would like to thank Ryan Shea and Paul Miller for their excellent project
coordination, support, and assistance, both before and during this assignment.

Cure53, Berlin · 02/25/23 16/16

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report micro-btc-signer TS Library 01.2023
	Index
	Introduction
	Scope
	Cryptography Review
	Scope & Findings
	Key Goals
	Threat & Attacker Model
	Test Methodology
	Future Work & Considerations

	Identified Vulnerabilities
	MBS-01-001 Crypto: addOutputAddress handles denomination via input type (High)

	Miscellaneous Issues
	MBS-01-002 Crypto: Overloaded compare function for numeric values (Info)
	MBS-01-003 Crypto: Unsafe exported functionality (Medium)
	MBS-01-004 Crypto: Byte array cast to boolean in comparison (Info)

	Conclusions

