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Introduction

“Crypto  creates  economic  freedom by  ensuring  that  people  can participate  fairly  in  the  
economy, and Coinbase is on a mission to increase economic freedom for more than 1  
billion  people.  We’re  updating  the  century-old  financial  system  by  providing  a  trusted  
platform  that  makes  it  easy  for  people  and  institutions  to  engage  with  crypto  assets,  
including trading, staking, safekeeping, spending, and fast, free global transfers.”

From https://www.coinbase.com/en-de/about

This report, assigned the unique reference ID CBS-02, presents the results and verdict of a 
cryptography audit and source code audit against the Coinbase cb-mpc library codebase, as 
performed by Cure53 in Q4 2024.

For  background information,  this  security-centered initiative  was requested by Coinbase 
Global, Inc. in April 2024 and follows an inaugural engagement targeting Coinbase cb-mpc 
library held in July of the same year (see report CBS-01). The evaluations for CBS-02 were 
performed by a three-person review team in November and early December 2024 (CW46-
CW48). For maximum coverage and yield of findings, the client invested twenty-five days for 
analysis. All tasks for this procedure were placed into a single Work Package named WP1: 
Cryptography audits & security assessments against Coinbase cb-mpc library code.

Sources, test-supporting documentation, a detailed testing-priority roadmap, and any other 
assets deemed necessary to facilitate the undertakings were handed over to the Cure53 
consultants  in  advance.  This  unfettered  access  was  mandated  by  the  selection  of  and 
conformance with  a  white-box  pentest  methodology.  These items were  also  referred  to 
during the preliminary phase, whereby Cure53 set some time aside during the week before 
the active evaluation window (i.e., CW45) to prepare the setup and foster a seamless start.

Communications between all relevant Coinbase and Cure53 personnel were enabled using 
a  dedicated  Mail  thread.  The  discussions  were  efficient  and  productive,  with  minimal 
clarifying questions required. No delays or hindrances were encountered at any stage of the 
collaboration.  Cure53 also performed live reporting of  all  pertinent  discoveries using the 
aforementioned channel, encouraging swift remedial efforts.

The extensive examinations against the components in scope raised a total of nine negative 
circumstances for  the internal  team to  consider.  Only  two were categorized as security 
vulnerabilities, while the remaining eight pertained to best practice alignments or general 
hardening measures.

The sum of tickets is generally moderate, which reflects positively on the security posture of 
the Coinbase cb-mpc library  codebase.  Even though only  two exploitable  vulnerabilities 
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were identified during this audit, one was graded with a High severity rating and should be 
resolved as soon as possible (see CBS-02-004).

Furthermore,  Cure53  detected  several  general  weaknesses  and  potential  improvement 
vectors that would help to strengthen the Coinbase codebase if addressed.

As of January 6th, 2025, and in collaboration with the Coinbase cb-mpc team, Cure53 was 
able to verify that all outstanding security issues identified within this engagement were fully 
addressed.

All  in all,  Cure53 can state with confidence that the scrutinized project prioritizes crucial 
factors  such  as  security  and  readability.  Certain  performance  optimizations  are  viable, 
particularly  concerning  batch  exponentiation,  though  these  are  not  essential  if  the 
aforementioned assurances are consequently compromised. Application safeguarding and 
maintainability should remain the primary focus.

A number of key chapters are presented next, delineating various phases of the project as a 
whole. Firstly, the Scope documents all general insights in bullet point form, such as WPs, 
credentials,  and  any  materials  handed  over  by  the  internal  team  to  facilitate  the 
examinations.  Next,  the  Identified  Vulnerabilities and  Miscellaneous  Issues categories 
outline the security limitations observed by Cure53. These are provided in chronological 
order of detection and attach a high-level description, Proof-of-Concept (PoC) and/or steps 
to  reproduce  to  verify  the  pitfall,  and  effective  fix  solutions.  The  report  closes  by 
summarizing  Cure53’s  estimation  of  the  researched  features,  discussing  the  construct’s 
security posture and offering next steps for the client to action.
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Scope

• Cryptography audits & security assessments against Coinbase cb-mpc library code
◦ WP1: Cryptography audits & security assessments against Coinbase cb-mpc library 

code
▪ Source code:

• All relevant sources were shared in the form of .ZIP files with Cure53
◦ Commit: abcea5455c9d4f13735b0e3ce2c0361dee5f1420

▪ High-priority coverage:
• EdDSA
• Ec25519
• Underlying libraries for the above
• Cryptographic commitments
• DRBG
• Secret sharing
• MPC protocols
• Paillier
• RSA
• Elgamal
• ECC
• ZK
• BigNum
• Lagrange

▪ Low-priority coverage:
• RSA
• PKI
• Secp259k1

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53
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Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the 
testing period. Notably, findings are cited in chronological order rather than by degree of 
impact,  with  the  severity  rank  offered  in  brackets  following  the  title  heading  for  each 
vulnerability.  Furthermore,  all  tickets  are  given a  unique identifier  (e.g.,  CBS-02-001)  to 
facilitate any future follow-up correspondence.

CBS-02-003 WP1: Missing check stipulated by ECC-Refresh-MP security proof (Low)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

The ECC-Refresh-MP function is designed to refresh key shares in a multiparty setting for 
elliptic  curve cryptography and is  part  of  a suite of  cryptographic protocols that  support 
secure key management and transaction signing. For MPC protocols, all participating parties 
must agree on common parameters, such as session identifiers (sid), public keys (Q), and 
public key shares in order to ensure the correctness and security of the protocol execution.

The current  implementation of  the  ECC-Refresh-MP function lacks a check that  verifies 
whether all participating parties share the same session identifier, public key, and public key 
shares.  Specifically,  the  function  neglects  to  incorporate  a  mechanism  that  imposes  a 
consensus  on  these  parameters.  This  omission  is  acceptable  in  Coinbase’s  internal 
production code due to higher-level system protocols that ensure parameter consistency. 
However, in an open-source context whereby system-level assurances may not exist, the 
absence of these checks could lead to protocol deviations and potential security breaches.

The security proofs and formal analyses of MPC protocols typically assume that all honest 
parties agree on common parameters. The absence of parameter agreement checks in the 
implementation  violates  these  assumptions,  rendering  theoretical  security  guarantees  at 
least partially inapplicable. Specifically, the check stipulated in Section 3, 1.a of the ec-dkg-
theory.pdf specification is absent from the code:
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Fig.: Section 3, 1.a of ec-dkg-theory.pdf specification.

This situation raises numerous potential breach vectors. The first of those could allow an 
adversarial  party  to  manipulate  the  shared  parameters  during  protocol  execution  via 
parameter mismatch attacks. Without consensus checks, honest parties may unknowingly 
proceed with inconsistent views of the protocol state, leading to incorrect computations or 
leakage of sensitive information.

Secondly,  replay  and  injection  attacks  are  plausible  here.  An  attacker  could  replay  old 
messages  or  inject  forged  messages  with  altered  parameters,  causing  the  protocol  to 
malfunction or disclose private key shares.

Affected file:
src/cbmpc/protocol/ec_dkg.cpp

Affected code:
// Spec-API: EC-Refresh-MP
error_t key_share_mp_t::refresh(job_mp_t& job, mem_t local_sid, 
key_share_mp_t& current_key, key_share_mp_t& new_key) {
  error_t rv = 0;
  int n = job.get_n_parties();
  int i = job.get_party_idx();
  const crypto::pid_t& pid = job.get_pid();

  if (current_key.party_index != i) return coinbase::error(E_BADARG, "Wrong 
role");
  if (current_key.Qis.size() != n) return coinbase::error(E_BADARG, "Wrong 
number of peers");

  ecurve_t curve = current_key.curve;
  const mod_t& q = curve.order();
  const ecc_generator_point_t& G = curve.generator();
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  }

  // Function continues without check…

}

To mitigate this vulnerability,  Cure53 advises modifying the  ECC-Refresh-MP function to 
include checks that ensure all participating parties hold the same  sid,  Q, and  Q_j values. 
Alternatively,  the  Coinbase  cb-mpc  library  documentation  should  clearly  state  that  the 
function  assumes  all  parties  agree  on  shared  parameters  and  that,  without  additional 
checks, the protocol may be insecure in certain environments. In addition, guidelines on 
implementing consensus mechanisms at the application layer should be provided if they are 
not incorporated into the Coinbase cb-mpc library functions.
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CBS-02-004 WP1: ECC-Refresh-MP vulnerable to small subgroup attacks (High)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

In general, elliptic curve cryptography relies on the properties of an elliptic curve’s prime-
order subgroup in order to ensure security. All group elements involved in the protocol must 
belong to the correct subgroup to prevent attacks that exploit smaller subgroups within the 
curve.  In  an  MPC  context,  validating  the  received  elliptic  curve  points  for  subgroup 
membership guarantees that adversarial participants cannot introduce invalid or malicious 
points  into  the  protocol  execution.  The  continued  failure  to  perform  these  checks  can 
ultimately compromise the protocol’s security guarantees.

The provided  ECC-Refresh-MP implementation neglects to validate whether the received 
elliptic curve points, specifically the set  {R_{j, \ell}},  are valid group elements belonging to 
the prime-order subgroup. This validation step is explicitly required in the  ec-dkg-spec.pdf 
reference specification under Step 3.a. on Page 8:

Fig.: Step 3.a. on Page 8 in reference specification.

Without  this  verification,  an  adversary  could  introduce  points  that  do  not  belong  to  the 
subgroup, potentially exploiting small subgroup attacks to compromise the protocol. Viable 
attack  vectors  include  a  key  compromise,  whereby  an  adversary  could  force  protocol 
participants to compute with points in a small subgroup, effectively leaking information about 
their  private key shares. Furthermore, invalid points may cause the protocol to compute 
invalid results or fail altogether, leading to protocol disruption and a Denial of Service (DoS) 
for honest participants. 
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Lastly, certain security assumptions may be circumvented; small subgroup attacks break the 
discrete logarithm hardness assumption (ECDLP) upon which the security of ECC is based, 
rendering the protocol vulnerable to cryptanalysis.

Affected file:
src/cbmpc/protocol/ec_dkg.cpp

Affected code:
// Spec-API: EC-Refresh-MP
error_t key_share_mp_t::refresh(job_mp_t& job, mem_t local_sid, 
key_share_mp_t& current_key, key_share_mp_t& new_key) {
  error_t rv = 0;
  int n = job.get_n_parties();
  int i = job.get_party_idx();
  const crypto::pid_t& pid = job.get_pid();

  if (current_key.party_index != i) return coinbase::error(E_BADARG, "Wrong 
role");
  if (current_key.Qis.size() != n) return coinbase::error(E_BADARG, "Wrong 
number of peers");

  ecurve_t curve = current_key.curve;
  const mod_t& q = curve.order();
  const ecc_generator_point_t& G = curve.generator();
  }

  // Function continues without check…

}

To mitigate this vulnerability, Cure53 suggests altering the corresponding code to ensure 
that all received elliptic curve points are validated for subgroup membership prior to protocol 
usage.  This  can  be  achieved  via  Coinbase  cb-mpc  library’s  existing  curve.check 
functionality, which already implements all necessary checks:

error_t ecurve_t::check(const ecc_point_t& point) const {
  if (!point.valid()) return crypto::error("EC-point invalid");
  if (point.get_curve() != *this) return crypto::error("EC-point of wrong 
curve");
  if (!point.is_in_subgroup()) return crypto::error("EC-point is not on 
curve");

  if (!tls_allow_ecc_infinity) {
    if (point.is_infinity()) return crypto::error("EC-point is infinity");
  }
  return 0;
}
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Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may 
assist an attacker in successfully achieving malicious objectives in the future. Most of these 
results are vulnerable code snippets that did not provide an easy method by which to be 
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

CBS-02-001 WP1: Ed25519 signing deviates from specification (Info)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

Ed25519 is a widely adopted public-key signature system that offers high performance and 
strong security guarantees. One aspect of its security design is the deterministic generation 
of nonces, which are derived from a cryptographic hash of a private key prefix and the 
signed  message.  This  approach  aims  to  assert  nonce  uniqueness,  preventing  potential 
vulnerabilities associated with nonce reuse.

However, Coinbase cb-mpc library’s implementation of Ed25519 deviates from the standard 
concerning  nonce  generation.  Rather  than  derive  the  nonce  deterministically  from  the 
private  key  and  message,  the  code  leverages  OpenSSL’s  RAND_bytes.  This  approach 
effectively  transforms the signature algorithm into a Schnorr  signature scheme over  the 
Ed25519  curve,  with  formatting  adjustments  to  maintain  compatibility  with  EdDSA 
verification processes.

Affected file:
src/cbmpc/crypto/ec25519_core.cpp

Affected code:
extern "C" int ED25519_sign_with_scalar(uint8_t* out_sig, const uint8_t* 
message, size_t message_len, const uint8_t public_key[32], const uint8_t 
scalar_bin[32]) {
  uint8_t nonce[64];
  RAND_bytes(nonce, 64);

  uint8_t az[32];
  for (int i = 0; i < 32; i++) az[i] = scalar_bin[31 - i];

  sign_with_nonce(out_sig, message, message_len, public_key, az, nonce);
  OPENSSL_cleanse(az, sizeof(az));
  return 1;
}

static void sign_with_nonce(uint8_t* signature, const uint8_t* message, 
size_t message_len, const uint8_t public_key[32], const uint8_t az[32], 
const uint8_t nonce[32]) {
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  bn_t nonce_bn = from_le_mod_q(mem_t(nonce, 64));
  point_t R = point_t::mul_to_generator(nonce_bn);
  R.to_bin(signature);
  bn_t hram_bn = hash_hram(signature, mem_t(message, int(message_len)), 
public_key);
  bn_t az_bn = from_le_mod_q(mem_t(az, 32));
  const mod_t& q = get_order();
  bn_t s = q.mul(hram_bn, az_bn);
  s = q.add(s, nonce_bn);
  s.to_bin(signature + 32, 32);
  mem_t(signature + 32, 32).reverse();
}

The signatures produced by this implementation are computationally indistinguishable from 
those  generated  by  the  standard  EdDSA,  except  for  the  lack  of  determinism in  nonce 
generation. Albeit, this deviation is not directly prone to risk as long as each message is 
signed only once and the nonce remains unique.

However, certain threats remain as a result of this alteration. Firstly, if the random nonce 
generation does not guarantee uniqueness (e.g., due to a flawed random number generator 
or  insufficient  entropy),  nonce  reuse  could  occur.  Reusing  a  nonce  in  a  Schnorr-like 
signature scheme can lead to private key recovery.

Secondly, the lack of deterministic nonce generation may prove problematic in systems that 
rely  on  deterministic  signatures  for  auditability,  reproducibility,  and  certain  types  of 
authentication protocols.

Finally,  any  deviation  from  the  standard  may  introduce  compatibility  issues  with  other 
implementations expecting standard-compliant signatures, potentially facilitating verification 
failures.

To  mitigate  this  issue,  Cure53  suggests  updating  the  Coinbase  cb-mpc  library 
documentation and clearly  stating that  the implementation employs a  Schnorr  signature 
scheme  over  the  Ed25519  curve  with  formatting  adjustments  for  EdDSA  verification 
compatibility.  The  implementation’s  security  assurances  should  be  documented, 
emphasizing  the  importance  of  nonce  uniqueness  and  the  risks  associated  with  nonce 
reuse.
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CBS-02-002 WP1: Variable time branching & recalculation in modular inversion (Info)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

The mod_t::_inv function computes the modular inverse of an integer modulo to a prime m. 
Modular  inversion is  a fundamental  operation in cryptographic algorithms such as those 
used  in  elliptic  curve  cryptography.  Ensuring  that  these  operations  are  optimized  and 
performed in  constant  time is  crucial  for  nullifying side-channel  attacks and maintaining 
efficiency.

Two potential flaws persist in relation to mod_t::inv. Firstly, the function introduces variable-
time behavior through the use of a conditional branch. The branching occurs based on the 
result of the BN_mod_inverse function, which checks whether the masked input (masked_a) 
and modulus (m) are co-prime. This introduces a timing variation that depends on the input 
data, potentially introducing timing side-channel attacks in function use locations.

Secondly,  the  masked  value  masked_a is  computed  and  stored  earlier  in  the  code. 
However,  the  function  recalculates  its  stored  value  (mul(a,  mask))  later  when  calling 
BN_mod_inverse.  While  this  evokes  negligible  security  implications,  performance 
optimizations can be administered here.

Affected file:
src/cbmpc/crypto/base_mod.cpp

Affected code:
void mod_t::_inv(bn_t& r, const bn_t& a) const {
  if (vartime_scope) {
    a.correct_top();
    auto res = BN_mod_inverse(r, a, m, bn_t::tls_bn_ctx());
    cb_assert(res && "vartime mod_t::inv failed");
  } else {
    bn_t mask = rand();
    bn_t masked_a = mul(a, mask);
    masked_a.correct_top();
    auto res = BN_mod_inverse(r, mul(a, mask), m, bn_t::tls_bn_ctx());
    if (!res) {  // The failure is likely due to masked_a and m are not co-
prime
      inv_mod_odd_const_time(r, a, m);
      return;
    }
    r = mul(r, mask);
  }
}
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In certain scenarios such as handling private keys or nonces, timing side-channel attacks 
could compromise secret data confidentiality.  Since modular inversions are ubiquitous in 
cryptography,  this  function  may  be  utilized  in  a  situation  whereby  timing  attacks  incur 
detrimental effects on security.

To  mitigate  this  issue,  Cure53  suggests  replacing  the  variable-time  branching  with  a 
constant-time approach,  thus ensuring that  the function in  question cannot  inadvertently 
interfere with security-critical functions elsewhere in the codebase.

CBS-02-005 WP1: Inconsistent function tagging between code/specification (Info)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

Cure53 noted certain instances in the Coinbase cb-mpc library code whereby fundamental 
cryptographic functions that benefit from tag links to formal documentation descriptions (e.g., 
//  Spec-API:  EC-Refresh-MP)  do  not  match  the  naming  conventions  used  in  the 
accompanying  documentation  or  specifications  (e.g.,  ECC-Refresh-MP).  These 
inconsistencies can increase the difficulty of tracing the code back to the specification for 
developers,  researchers,  or  reviewers,  particularly  when working in  a multi-developer  or 
open-source environment.

While this issue is evidently minor, resolving it will improve the clarity and maintainability of 
the Coinbase cb-mpc library. By standardizing naming conventions and aligning the code 
with the documentation, the development process will become increasingly seamless and 
intuitive for both internal and external parties.

CBS-02-006 WP1: Absent checks in Paillier key generation (Medium)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

The Paillier cryptosystem relies on the mathematical properties of a modulus  N = p * q, 
where  p  and  q are  large  primes.  To  guarantee  security  and  functionality,  the  following 
conditions must be met:

• p  ≠  q: Ensures  that  the  modulus  N is  not  a  perfect  square  and  supports  the 
system’s underlying assumptions.

• gcd(N,  (p -  1)(q -  1))  =  1:  Ensures that  the modular  arithmetic  used in  Paillier 
operates correctly.

While  the aforementioned checks are  likely  to  hold  with  strong probability  for  randomly 
chosen primes, these checks are still considered mandatory for Paillier’s security proofs to 
be valid and are standard across the vast majority of cryptographic implementations. Their 
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absence  could  undermine  adherence  to  best  practices  and  standards,  particularly  in 
environments where compliance or formal proofs are required.

Affected file:
src/cbmpc/crypto/base_paillier.cpp

Affected code:
void paillier_t::generate(int bits, bool safe) {
  int rv = 0;
  DYLOG_FUNC(LOG(bits), LOG(safe));

  p = bn_t::generate_prime(bits / 2, safe);
  q = bn_t::generate_prime(bits / 2, safe);

  N = p * q;

  update_private();
  has_private = true;
}

To mitigate this issue, Cure53 recommends integrating validation for the aforementioned 
checks, which will  contribute to the construct’s robustness, ensure adherence to security 
proofs, and guarantee compliance with industry standards.

CBS-02-008 WP1: Missing parameter checks in internal functions (Info)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

Cure53 observed that certain internal functions lack parameter checks, which compromises 
the code’s resilience to risk. While these omissions are non-exploitable at present unless 
calling functions elsewhere do not follow the necessary preconditions, the code will become 
more readable and easier to maintain if the checks are integrated.

Affected file #1:
zk/fischlin.h

Affected code #1:
struct fischlin_params_t {
  int rho, b, t;

  int e_max() const { return 1 << t; }
  uint32_t b_mask() const { return (1 << b) - 1; }
  void convert(coinbase::converter_t& c) { c.convert(rho, b); }  // t is 
not sent
};
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Notably,  e_max and  b_mask can  overflow if  the  t and  b variables  are  larger  than  32. 
Selecting parameters  outside of  the required range would  result  in  proofs  with  reduced 
strength.

Affected file #2:
 zk/small_primes.h

Affected code #2:
static error_t check_integer_with_small_primes(const bn_t& prime, int 
alpha) {
  for (int i = 0;; i++) {

int small_prime = small_primes[i];
if (small_prime > alpha) break;
if (mod_t::mod(prime, small_prime) == 0) return 

coinbase::error(E_CRYPTO);
  }
  return 0;
}

To mitigate this issue, Cure53 advises ensuring that the caller of this function is aware of the 
maximal prime in small_primes. Since calling this function with a value alpha larger than the 
maximal prime leads to an out-of-bounds error, the value should be checked.

CBS-02-009 WP1: Batch exponentiation efficiency recommendations (Info)

While  reviewing  the  code  and  corresponding  documentation,  Cure53  noted  that  some 
methods would benefit  from optimization,  particularly  with regards to the computation of 

value:

Points  Gi and scalars  ci can be computed using short addition sequences. Since constant 
time computation is unnecessary during the proof verification process, methods proposed by 
De Roij1 and Pippenger2 can be utilized.

A few locations whereby additional sequences can be leveraged for efficiency gains are 
outlined below; all proposed alterations would be local and would not require modifying the 
function headers.

Batch exponentiation can be used within the algorithm described in section 8.1.2 of  zk-
proof.pdf under the Verification optimization paragraph.

1 https://iacr.org/cryptodb/data/paper.php?pubkey=2769
2 https://cr.yp.to/papers/pippenger.pdf
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Affected file #1:
src/cbmpc/zk/zk_ec.cpp

Affected code #1:
error_t uc_dl_t::verify(const ecc_point_t& Q, mem_t session_id, uint64_t 
aux)

const {

  [...]

  bn_t z_sum = 0;
  bn_t e_sum = 0;
  ecc_point_t A_sum = curve.infinity();

  for (int i = 0; i < rho; i++) {
bn_t sigma = bn_t::rand_bitlen(SEC_P_STAT);
MODULO(q) {
  z_sum += sigma * z[i];

  e_sum += sigma * bn_t(e[i]);
}
A_sum += sigma * A[i];

uint32_t h = hash32bit_for_zk_fischlin(
common_hash, i, e[i], z[i]) & b_mask;

if (h != 0)
return rv = coinbase::error(E_CRYPTO,
"invalid proof: zk_fischlin hash not equal zero");

  }

  if (A_sum != z_sum * G - e_sum * Q)
return coinbase::error(E_CRYPTO, "invalid proof: A != z * G - e * 
Q");

  return 0;
}

Steps 5 and 6 of the Verification optimization described in zk-proof.pdf, section 8.4.1 can be 
modified with additional sequences.

Affected file #2:
src/cbmpc/zk/zk_elgamal_com.cpp

Affected code #2:
error_t uc_elgamal_com_t::verify(

const ecc_point_t& Q, const elg_com_t& UV,
mem_t session_id, uint64_t aux) const {

  [...]
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  bn_t z1_sum = 0;
  bn_t z2_sum = 0;
  bn_t e_sum = 0;
  ecc_point_t A_sum = curve.infinity();
  ecc_point_t B_sum = curve.infinity();

  for (int i = 0; i < rho; i++) {

       [...]

bn_t sigma = bn_t::rand_bitlen(SEC_P_STAT);
MODULO(q) {
  z1_sum += sigma * z1[i];

  z2_sum += sigma * z2[i];
  e_sum += sigma * bn_t(e[i]);

}
A_sum += sigma * AB[i].L;
B_sum += sigma * AB[i].R;

[...]
}

Regarding section 8.7.2 in zk-proof.pdf, steps 5 and 6 of the verification algorithm described 
in the Verification optimization paragraph can be enhanced.

Affected file #3:
src/cbmpc/zk/zk_elgamal_com.cpp

Affected code #3:
error_t uc_elgamal_com_mult_private_scalar_t::verify(

const ecc_point_t& Q, const elg_com_t& eA,
const elg_com_t& eB, mem_t session_id, uint64_t aux) {

  
  [...]

  bn_t z1_sum = 0;
  bn_t z2_sum = 0;
  bn_t e_sum = 0;
  ecc_point_t A1_sum = curve.infinity();
  ecc_point_t A2_sum = curve.infinity();

  for (int i = 0; i < rho; i++) {
if (rv = curve.check(A1_tag[i])) return rv;
if (rv = curve.check(A2_tag[i])) return rv;

bn_t sigma = bn_t::rand_bitlen(SEC_P_STAT);
MODULO(q) {

  z1_sum += sigma * z1[i];
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  z2_sum += sigma * z2[i];
  e_sum += sigma * bn_t(e[i]);

}
A1_sum += sigma * A1_tag[i];
A2_sum += sigma * A2_tag[i];

uint16_t h = hash32bit_for_zk_fischlin(
common_hash, uint16_t(i), e[i], z1[i], z2[i]) & b_mask;

if (h != 0) return coinbase::error(E_CRYPTO);
  }
  [...]
}

Furthermore, step (j) of the verification algorithm described in section 8.11.2 of zk-proof.pdf 
can be optimized with additional sequences.

Affected file #4:
src/cbmpc/zk/zk_pedersen.cpp

Affected code #4:
error_t range_pedersen_t::verify(

const bn_t& q, const bn_t& g, const bn_t& h,
const bn_t& c, mem_t session_id, uint64_t aux) const {

  [...]

  bn_t local_c_tilde[param::t];
  bn_t D = 0;
  bn_t F = 0;
  bn_t C = 1;

  bn_t c_tilde2[param::t];
  for (int i = 0; i < param::t; i++) {
       [...]

MODULO(p) c_tilde2[i] = c_tilde[i] * c_tilde[i];

bn_t rho_i = bn_t::rand_bitlen(64);

MODULO(p_tag) {
  D += d[i] * rho_i;

  F += f[i] * rho_i;
}

bn_t c_tilde_c_ei = c_tilde2[i];
MODULO(p) {
  if (ei) c_tilde_c_ei *= c;
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  C *= c_tilde_c_ei.pow(rho_i);
}

  }
  [...]
}

The aforementioned code snippets pertain to areas whereby performance is critical and one 
can  feasibly  implement  batch  exponentiation  without  issuing  alterations  to  the  calling 
functions.  Cure53  estimates  that  these  functions  can  be  accelerated  by  a  factor 
approximately between 3 and 5, though the impact on overall performance remains unclear.

CBS-02-010 WP1: Typographical errors in documentation (Info)

Fix Note: As of January 6th 2025, Coinbase has implemented a fix for this issue in the latest  
version of the Coinbase cb-mpc library, and this fix has been verified by Cure53.

Generally speaking, the implementation documentation is commendably composed, offering 
precise insights and facilitating straightforward comprehension of the corresponding source 
code.  Necessary  checks  such  as  parameter  verification  are  also  included,  which  other 
conference papers on similar topics oftentimes omit.

Nonetheless, a small number of typos were detected in relation to cross references provided 
for reader context, as enumerated below:

• zk-proofs-spec.pdf: p.25, ZK-Two-Paillier-Equal-Interactive-2P step 4 (l): reduction 
should be (mod N_1) rather than (mod N_0)

• ecdsa-2pc-theory.pdf: The operations  and  are used without a definition.⊙ ⨁
• ecdsa-2pc-spec.pdf: Section 6.2: This identifier c'key is used for both the encryption 

of x1 and x'1 under N’. The adoption of two distinct identifiers would be preferable.

To mitigate this issue, Cure53 suggests rectifying the minor errors in question via the 
guidance offered above.
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Conclusions

Coinbase  cb-mpc  is  a  library  that  implements  highly  sophisticated  zero-knowledge  and 
secure multi-party computation cryptography code in C++. The internal maintainers have 
paired clean and well-organized code with documentation of outstanding quality, enabling 
easier code understanding and seamless external evaluation. The protocol descriptions are 
precise and optimally structured to allow the creation of alternative implementations. The 
minor  typographical  errors  described  in  ticket  CBS-02-010 do  not  detract  from the  dev 
team’s admirable efforts here, as no algorithmic errors or major omissions were discovered 
during Cure53’s investigations.

The project’s disciplined use of C++ and its exceptional documentation strongly facilitated 
the audit and deep dives into unusually complex cryptographic primitives. In summary for 
the notable findings, the library exhibited significant leeway for improvement, while a  High 
severity vulnerability and numerous miscellaneous detriments were also encountered.

A two-phase exploration of the implemented protocols was conducted, the first entailing an 
assessment  of  the  protocol  documentation,  which  Cure53  verified  for  specification 
comprehensiveness. Contemporary conference papers typically omit insights into aspects 
such as parameter verification, for example, while the documentation in question is intended 
to closely reflect the implementation and hence includes checks and restrictions.

The  second  phase  involved  a  holistic  code  evaluation  and  verification  of  the  code’s 
alignment with the specification.

Ticket  CBS-02-003 confirms that  the  ECC-Refresh-MP function in  the Coinbase cb-mpc 
library lacks a check to ensure that all participating parties agree on shared parameters, 
such as session identifiers, public keys, and public key shares, which is necessary for the 
correctness and security of MPC protocols. While this omission is acceptable in Coinbase’s 
internal production due to higher-level assurances, it  poses security risks in open-source 
environments,  including  parameter  mismatch,  replay,  and  injection  attacks.  Moreover, 
theoretical security assumptions could be violated.

In addition, ECC-Refresh-MP neglects to validate that received elliptic curve points belong to 
the correct  prime-order  subgroup,  which is  a  critical  step for  preventing small  subgroup 
attacks as outlined in the reference specification (see  CBS-02-004). This omission could 
lead  to  significant  disruptions  in  protocol  security  guarantees  and  a  breakdown  of  the 
security assumptions underlying elliptic curve cryptography, explaining the upgraded impact 
score of  High. Subgroup membership checks should always be integrated using Coinbase 
CoreCMS’s curve.check functionality.
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Elsewhere, Cure53 acknowledged that the Ed25519 signing in the Coinbase cb-mpc library 
deviates from the standard specification by using random rather than deterministic nonces, 
as  highlighted  in  ticket  CBS-02-001.  This  approach  could  introduce  behavioral 
incompatibilities  with  standard  Ed25519  implementations  and  expand  the  risk  of  nonce 
reuse.

Another  weakness  was  observed  whereby  the  modular  inversion  function  in  mod_t::inv 
introduces  variable-time  behavior  due  to  conditional  branching,  potentially  exposing  the 
construct  to  timing  side-channel  attacks  (see  CBS-02-002).  Additionally,  this  situation 
redundantly recalculates a stored masked value, which impacts performance.

Certain inconsistencies between function tags in the code and their corresponding names in 
the documentation were located and documented under ticket CBS-02-005, which increases 
the difficulty of tracing code back to specifications. Standardizing naming conventions will 
improve clarity and maintainability.

In addition, the Paillier key generation function in Coinbase cb-mpc library lacks essential 
algebraic  checks  that  are  mandatory  for  security  proofs.  These  validations  should  be 
installed to strengthen security and assure adherence to best practices, as detailed in ticket 
CBS-02-006.

Cure53 also honed in on code clarity and reusability, since the project may be published as 
open source and reference implementation. These endeavors verified that the source code 
is ideally structured and the translation of protocols into code are clearly legible. Reusability 
means that individual functions can be repurposed without requiring the function caller to 
check preconditions. This condition is generally satisfied, though the careless use of internal 
functions could result in bugs, as enumerated in ticket CBS-02-008.

As of 6 January 2025, Cure53, working with the Coinbase cb-mpc team, has verified that all 
outstanding security issues identified during this engagement have been fully addressed.

Finally,  Cure53 believes that  several  code functions can be accelerated by using batch 
exponentiation. The project generally prioritizes security over performance, considering that 
the  code optimizations  do  not  hinder  the  solution’s  security  effectiveness  or  readability. 
Nonetheless,  ticket  CBS-02-009 presents  an  enhancement  proposal  incurring  minimal 
readability interference.

Cure53 would like to thank Eli Salm, Yehuda Lindell, Valery Osheter, Yi-Hsiu Chen, Arash 
Afshar, and Jeff Barksdale from the Coinbase Global, Inc. team for their excellent project 
coordination, support, and assistance, both before and during this assignment.
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