
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Analysis-Report Chinese Police App “IJOP” 12.2018
Several Members of the Cure53 Team

Index
Introduction

Scope of the Assessment

Classification of Findings

Questions & Answers

XJ1-01-001 WifiDetector class implementing War Driving database (Assumed)

XJ1-01-002 NewCollection activity tracks blood type and political views (Proven)

XJ1-01-003 App feature of scanning for book titles (Unclear)

XJ1-01-004 Local database of religious atmosphere & re-education (Assumed)

XJ1-01-005 App receives electricity consumption data from HQ (Proven)

XJ1-01-006 Reporting feature for problematic tools (Proven)

XJ1-01-007 Problem Survey Feed tracks the use of crypto tools & VPNs (Evident)

XJ1-01-008 PII collection via OverduePersonAddFeedActivity (Assumed)

XJ1-01-009 PII collection via SuspiciousPhone[List]Activity (Assumed)

XJ1-01-010 PII collection via PeerPersonnel Add/List activities (Assumed)

XJ1-01-011 PII collection via MapRadioPersonnelDetailActivity (Assumed)

XJ1-01-012 PII data via OutOfPersonDetailActivity (Assumed)

XJ1-01-013 PII data via InfluxPersonDetailActivity (Assumed)

XJ1-01-014 PII collection via MissPhoneTrailFeedbackActivity (Assumed)

XJ1-01-015 PII collection via FourAssociationFeedbackActivity (Assumed)

XJ1-01-016 PII collection via VehicleAddActivity (Assumed)

XJ1-01-017 PII collection via ToolsAddActivity (Assumed)

XJ1-01-018 PII collection via BankAddActivity (Assumed)

XJ1-01-019 Mention of the 26 sensitive countries for Uyghurs (Unclear)

XJ1-01-020 Usage of the terms “Picked” and “Radio” (Unclear)

XJ1-01-021 Usage of the terms “illegal”, “suspicious” and “problem” (Unclear)

XJ1-01-022 HQ communications for investigations and arrest (Assumed)

XJ1-01-023 Review of Warn activities (Unclear)

Cure53, Berlin · 06/14/19 1/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-024 Review of AntiRefluxActivity (Assumed)

Conclusions

Appendix

Appendix 1: Working version of app APK and instructions on how to use it

Appendix 2: Guide for checking relations between activities

Introduction
“The Integrated Joint Operations Platform (IJOP) is a policing program based on big
data analysis in Xinjiang, one of the most repressive regions in the world. The program
aggregates data about people – often without their knowledge – and flags those it
deems potentially threatening to officials.”

From Memo on IJOP provided by HRW

This report documents the findings of a Cure53 assessment targeting the Integrated
Joint Operations Platform (IJOP) mobile app. This project was requested by Human
Rights Watch (HRW) and funded by Open Technology Fund (OTF). The main objective
of the assessment was to find out whether the IJOP mobile application compound could
violate human rights.

More specifically, Cure53 carried out a source code audit and a dedicated review of the
IJOP mobile application in late November 2018. The project followed a so-called white
box methodology as much as possible, particularly in a sense that the assessment
included reviewing and targeted investigations of the decompiled source code of the
application, which had been made available to Cure53 as an APK file by the HRW. In
addition, HRW furnished other, previously acquired data and material to Cure53, so that
a better coverage could be accomplished.

The assessment took a total of ten days, excluding a separate budget allocated to
preparations, communications and write-up of this report. Note that the project was
executed stealthily, as the Cure53 team aimed at avoiding detection. This meant
refraining from any form of behavior that could be perceived as “noisy” and, thus, alert
the maintainers of the application and/or server owners. As noted above, the
assessment tackled both the application source code and the running application which
has been repacked with English translations. The project also entailed a review of the
APK-exposed activities.

Throughout this assignment, the Cure53 and HRW teams maintained frequent contact
on a shared Slack channel. This allowed for fast communications and a good flow during

Cure53, Berlin · 06/14/19 2/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the test, additionally ascertaining that Cure53 does not pursue exploration avenues and
directions useless from the HRW’s point of view.

In should be emphasized that the European Convention on Human Rights (ECHR)
served as a baseline for this project. To reiterate, Cure53 set out to determine - through
the technical reviews and audits - what communication capabilities and functionality of
the IJOP mobile application can be seen as standing in direct opposition to what the
ECHR guarantees. Therefore, this was a search for any human rights violations that the
IJOP’s operational scope could enable and facilitate.

For the purpose of documenting the findings, Cure53 devised a classification system
that could help discern the level of harm and certainty about each potential violation of
human rights. This system is discussed in more detail below. At this stage, it can
nevertheless be stated that Cure53 managed to prove four cases of clear human rights
violations. All other items, in a vast array of as many as twenty-four total discoveries,
should also be considered, yet only in the context of having all vital information at hand.
In other words, twenty suspicious behaviors should be evaluated by HRW further as to
whether the supplied evidence is sufficient or needs to be extended with more data.

In the following sections the report first elaborates on the scope and then sheds light on
the link between severities of the findings and the employed classification system. The
questions posed by HRW, along with detailed answers and research results, are
discussed next. Further, Cure53 reiterates some of the key points in the Conclusions
and, last but not least, supplies a selection of attachments that are relevant to this report.
It is hoped that this will facilitate possible follow-up research or other actions that will be
taken by HRW or any other involved or interested parties.

Scope of the Assessment
• Chinese Police App

◦ In scope of the assessment was a mobile application for Android phones. The
application (labelled as IJOP) is supposedly used in specific regions of China by Law
Enforcement personnel to gather and manage data about specific groups of citizens
and/or minorities.

◦ In a nutshell, Cure53 got access to the APK of the app through HRW and was tasked
with finding out what the app is capable of doing. Of particular importance was
whether the activities and features of the app could be used in a way that violated
human rights.

◦ Cure53 received thorough briefing from HRW about the context of this assessment
and communicated with the HRW team using a dedicated Slack channel.

◦ Additional material that was collected by HRW prior to the assessment was also

Cure53, Berlin · 06/14/19 3/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

shared with Cure53. It showed that HRW also disassembled the apps and started
initial research into the identified features and activities.

Classification of Findings
During this assessment, Cure53 team has been using the following classification to
specify the level of certainty regarding the documented findings. Given that this research
had to happen on the basis of reverse-engineering and needed to be executed in a
stealthy manner, it is necessary to classify the findings to make sure which level of
reliability can be assumed.

• Proven - Source code and the analyzed activity clearly indicate a HR violation.

• Evident - Source code strongly suggests a HR violation.

• Assumed - Indications of a HR violation were found but a broader context
remains unknown.

• Unclear - Initial suspicion was not confirmed. No HR Violation can be assumed.

Questions & Answers
HRW and Cure53 participated in frequent discussions throughout the project. They also
shared and commented on the research results, largely doing so in real-time. In addition
to the reverse-engineering of the app’s features as means to finding HR Violation,
Cure53 was also tasked with responding to specific questions sent in by the HRW team.
To fully cover the scope of the assessment and all related exchanges, the questions
asked by HRW are incorporated to this report. Cure53’s research-based responses can
be found in the ensuing sections.

XJ1-01-001 WifiDetector class implementing War Driving database (Assumed)

A question from the HRW team was as follows:

“Wifi Detectors - please look into what this is?”

The Integration Joint Operations Platform (IJOP) application employs a WifiDetector
class which appears to collect data about wireless networks in range of the device.
These are seemingly placed in a database. The collected data includes SSID, encryption
method and GPS locations.

The Cure53 team assumes that this serves the purpose of creating a map of the existing
wireless networks in the region, also known as War Driving1. This could be potentially for

1 https://en.wikipedia.org/wiki/Wardriving

Cure53, Berlin · 06/14/19 4/51

https://cure53.de/
https://en.wikipedia.org/wiki/Wardriving
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

targeted locating of weakly-secured wireless networks and joining them for the purpose
of surveillance and infiltration. Furthermore, the evaluation of the metadata pertinent to
the wireless networks in a certain area may signify information on the population density,
connectivity and the produced data volume.

Affected File:
Collected Material/readable/code/com/fec/xjoneproject/xmpp/StatusManager.java

Affected Code:
private void sendLocationAndWifi(BDLocation paramBDLocation)
 {
 Object localObject1 = WifiHelper.getScanResult();
 ScanResult localScanResult = (ScanResult)((Iterator)localObject2).next();
 localObject4 = new com/fec/report/dao/WifiDetector;
 ((WifiDetector)localObject4).<init>();
 localObject3 = localScanResult;
 localObject3 = localScanResult.SSID;
 localObject5 = localObject3;
 ((WifiDetector)localObject4).setName((String)localObject3);

 [...]

Affected File:
Collected Material/readable/simple_classes/com/fec/xjoneproject/util/WifiHelper.java

Affected Code:
 private static WifiManager mWifiManager =
(WifiManager)IMSDroid.getInstance().getApplicationContext().getSystemService("wi
fi");
 public static WifiInfo getConnectionInfo()
 {
 return mWifiManager.getConnectionInfo();
 }
 public static List<ScanResult> getScanResult()
 {
 return mWifiManager.getScanResults();
 }
}

Affected Files:
Collected Material/readable/code/com/fec/report/dao/WifiDetector.java
Collected Material/readable/code/com/fec/report/dao/WifiDetectorDao.java

Affected Code:
localObject = "CREATE TABLE " + str + "\"WIFI_DETECTOR\" (\"MAC_ADDRESS\" TEXT
PRIMARY KEY NOT NULL ,\"NAME\" TEXT,\"ENCRYPTION_METHOD\" TEXT,\"SIGNAL_LEVEL\"

Cure53, Berlin · 06/14/19 5/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

INTEGER,\"CHANNEL_WIDTH\" INTEGER,\"CENTER_FREQUENCY\"
INTEGER,\"CHANNEL_FREQUENCY\" INTEGER,\"NOTE\" TEXT,\"LATITUDE\"
REAL,\"LONGITUDE\" REAL,\"LOCATION_DESCRIPTION\" TEXT);

XJ1-01-002 NewCollection activity tracks blood type and political views (Proven)

The HRW’s question was as follows:

“Recording of Height and Blood Type: We want to know to what extent the authorities
can justify this by saying this is all for counter-terrorism. So far, I see only a few
mentions of terrorism”

Based on the observations made by the Cure53 team when browsing the activities, it
can be assumed that the goal of this massive data collection is to have more reference
data when it comes to mining and gathering data on individuals. With increasingly strong
indicators, data that is not matching with information from the HQ might reveal more
suspicious and problematic subsets of users/ actual people and groups.

Affected File:
Collected Material/readable/code/com/fec/report/dao/PersonInfoDao.java

Affected Code:
localObject = "CREATE TABLE " + str + "\"PERSON_INFO\" (\"ID\" INTEGER PRIMARY
KEY AUTOINCREMENT ,\"SERVICE_ID\" TEXT,\"BUILDING_ID\" INTEGER,\"HOUSE_ID\"
INTEGER,\"NAME\" TEXT,\"CARD\" TEXT,\"ADDRESS\" TEXT,\"PHOTO\"
TEXT,\"MODIFY_TYPE\" INTEGER,\"PHONE\" TEXT,\"CAR\" TEXT,\"WORK\"
TEXT,\"EDUCATIONAL\" INTEGER,\"RELIGIOUS_ATMOSPHERE\" INTEGER,\"RELIGIOUS_NAME\"
INTEGER,\"RELIGIOUS_NAME_OTHER\" TEXT,\"POLITICAL_STATUS\"
INTEGER,\"POLITICAL_STATUS_OTHER\" TEXT,\"BIRTHDAY\" TEXT,\"HEIGHT\"
TEXT,\"BLOOD\" INTEGER,\"NATION\" TEXT,\"RELATIONSHIP\"
INTEGER,\"RELATIONSHIPOTHER\" TEXT,\"ADD_USER\" TEXT,\"PERSON_TYPE\"
TEXT,\"PERSON_TYPE_OTHER\" TEXT,\"CARD_TYPE\" INTEGER,\"CARD_NUMBER\"
TEXT,\"DESTINATION_COUNTRY\" TEXT,\"EXIT_TIME\" TEXT,\"EXIT_REASON\"
INTEGER,\"EXIT_OTHER_REASON\" TEXT,\"COLLECTION_THEME\" INTEGER,\"CERTI_AGREE\"
INTEGER,\"TO_CENSUS\" TEXT,\"IS_CHANGE_IDIN\" INTEGER,\"NEW_NAME\"
TEXT,\"NEW_CENSUS\" TEXT,\"NEW_ID_CARD\" TEXT,\"NEW_NATION\" TEXT,\"PASSPORT\"
TEXT,\"ASYLUM_EDUCATE_REASON\" TEXT,\"ACTION\" TEXT,\"DESCRIPTION\"
TEXT,\"CURRENT_ADDRESS\" TEXT,\"SEND_PHOTO\" TEXT,\"COUNT\" INTEGER);"

The following screenshot displays the NewCollection activity with the items of concern.

Cure53, Berlin · 06/14/19 6/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: NewCollection activity renders input fields for blood type and political views.

XJ1-01-003 App feature of scanning for book titles (Unclear)

HRW asked Cure53 team about the following:

“Does the app has the functionality of scanning for book titles on Google? Is this code
referring to a central database of banned titles?”

The HRW team discovered the file specified next during a review of the collected IJOP
material. It was suspected that police officers might use the app to scan books and look
up their ISBN via Google or possibly compare it with a database of banned titles.

Affected File:
Collected Material/readable/code/com/turui/bank/ocr/Intents$SearchBookContents.java

Affected Code:
public static final String ACTION =
"com.google.zxing.client.android.SEARCH_BOOK_CONTENTS";
 public static final String ISBN = "ISBN";

Cure53, Berlin · 06/14/19 7/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 public static final String QUERY = "QUERY";

However, the Cure53 team did not discover this class being used anywhere in the
reversed codebase.

XJ1-01-004 Local database of religious atmosphere & re-education (Assumed)

HRW raised the following questions to the testing team:

“With regard to RELIGIOUS_ATMOSPHERE and ASYLUM_EDUCATE_REASON.

It’s unclear how this bit of code is used.”

The Cure53 team reviewed the seemingly concerning code but found no traces of these
terms being used in the activities. It is very likely that this information is a data object
pushed by HQ and revealing how the collected data is grouped and categorized.

Affected File:
Collected Material/readable/code/com/fec/report/dao/PersonInfoDao.java

Affected Code:
localObject = "CREATE TABLE " + str + "\"PERSON_INFO\" (\"ID\" INTEGER PRIMARY
KEY AUTOINCREMENT ,\"SERVICE_ID\" TEXT,\"BUILDING_ID\" INTEGER,\"HOUSE_ID\"
INTEGER,\"NAME\" TEXT,\"CARD\" TEXT,\"ADDRESS\" TEXT,\"PHOTO\"
TEXT,\"MODIFY_TYPE\" INTEGER,\"PHONE\" TEXT,\"CAR\" TEXT,\"WORK\"
TEXT,\"EDUCATIONAL\" INTEGER,\"RELIGIOUS_ATMOSPHERE\" INTEGER,\"RELIGIOUS_NAME\"
INTEGER,\"RELIGIOUS_NAME_OTHER\" TEXT,\"POLITICAL_STATUS\"
INTEGER,\"POLITICAL_STATUS_OTHER\" TEXT,\"BIRTHDAY\" TEXT,\"HEIGHT\"
TEXT,\"BLOOD\" INTEGER,\"NATION\" TEXT,\"RELATIONSHIP\"
INTEGER,\"RELATIONSHIPOTHER\" TEXT,\"ADD_USER\" TEXT,\"PERSON_TYPE\"
TEXT,\"PERSON_TYPE_OTHER\" TEXT,\"CARD_TYPE\" INTEGER,\"CARD_NUMBER\"
TEXT,\"DESTINATION_COUNTRY\" TEXT,\"EXIT_TIME\" TEXT,\"EXIT_REASON\"
INTEGER,\"EXIT_OTHER_REASON\" TEXT,\"COLLECTION_THEME\" INTEGER,\"CERTI_AGREE\"
INTEGER,\"TO_CENSUS\" TEXT,\"IS_CHANGE_IDIN\" INTEGER,\"NEW_NAME\"
TEXT,\"NEW_CENSUS\" TEXT,\"NEW_ID_CARD\" TEXT,\"NEW_NATION\" TEXT,\"PASSPORT\"
TEXT,\"ASYLUM_EDUCATE_REASON\" TEXT,\"ACTION\" TEXT,\"DESCRIPTION\"
TEXT,\"CURRENT_ADDRESS\" TEXT,\"SEND_PHOTO\" TEXT,\"COUNT\" INTEGER);"; 35
paramDatabase.execSQL((String)localObject);

Cure53, Berlin · 06/14/19 8/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-005 App receives electricity consumption data from HQ (Proven)

HRW raised wanted to know about application’s data on electricity consumption.
Specifically, the questions were:

“Here’s the authorities logging people’s electricity use, how is it problematic? (it maybe
problematic because the authorities are logging everyone’s electricity use, and trying to
see if there’s a reason for “abnormal” level of electricity use, such as whether that
person is a farmer, or has purchased new electric equipment. This is people’s private
matter, and illustrating how their privacy is being intruded.”

The application employs a database which fetches various utility data about an
individual. The Cure53 team assumes that the cause for filing such a report is a new
task received from the HQ. In other words, a police officer can file a report to investigate
the occurrence of unusual power consumption at a particular date and can mark reasons
for it, preparing ground for further investigation by the public security agency. In case of
a false positive, the officer can file in the actual electricity meter’s value. A justification by
law enforcement might be to monitor the use of electricity for cryptocurrency mining or
growing cannabis indoors, as these types of activities lead to increased consumption.

Cure53, Berlin · 06/14/19 9/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Rendered Activity for CheckElcInfoActivity.

XJ1-01-006 Reporting feature for problematic tools (Proven)

HRW had doubts about the tools. Specifically,

“Tools they use and possess: An option under “electronic” appears to refer to
problematic tools—such as tools that can be used to make explosives.”

The Cure53 team found that officers are capable of saving and submit a report to the HQ
about explosive materials and tools. Furthermore, an officer can ask for an investigation
of the matter to be be carried on by the public security agency.

Cure53, Berlin · 06/14/19 10/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Rendered Activity for CheckElcInfoActivity.

XJ1-01-007 Problem Survey Feed tracks the use of crypto tools & VPNs (Evident)

HRW posed the following question to the Cure53 team:

“So there are a list of 9 “unlawful software” it seems that includes Whatsapp but here’s a
much longer list of “network tools”—what’s the relationship between the list of 9 and this
much longer list here?”

The IJOP app employs a Problem Survey Feed, which the team believes to act as a
reporting tool for police officers who are interviewing subjects at road checkpoints. The
Feed can be populated with various types of information about an individual, including
their usage of crypto messenger and VPN applications.

Cure53, Berlin · 06/14/19 11/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It appears to be a general reporting tool that could be used in all kinds of situations that
require filing a report about an individual like, for instance during an interrogation. The
relationship between the list of nine items and the longer list in question appears to also
include VPN services and various other crypto messengers. It could be assumed that
the more extensive list includes less popular software. It may have the purpose of
generally painting a picture of whether an individual knows and uses certain type of
software. When this report is sent to the HQ, this might be the basis to raise a red flag
on an individual’s case. However, the code does not reveal what happens with the report
next.

Affected File:
Collected Material/readable/code/com/fec/xjoneproject/ui/task/problem_survey/
ProblemSurveyAddFeedFragment.java

Affected Code:
localTextView = this.mNetworkToolCountTv;

Affected File:
Documentation/arrays file.docx

Affected Code:
<string-array name="network_tool">
 <item>line</item>
 <item>voxer</item>
 <item>SKYPE</item>
 <item>DiDi</item>
 <item>whatsapp</item>
 <item>ChatOn</item>
 <item>OpenVPN</item>
 <item>vpn dialogs</item>
 <item>easyVPN</item>
 <item>VPN Shield</item>
 <item>GreenVPN</item>
 <item>Astrill VPN</item>
 <item>VPN for Phone</item>
 <item>Global VPN</item>
[...]

Cure53, Berlin · 06/14/19 12/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-008 PII collection via OverduePersonAddFeedActivity (Assumed)

Another doubt shared by HRW was:

“Regarding OverduePersonAddFeedActivity, ‘Overdue person’ refers to people who
have stayed abroad. Authorities are punishing people simply for having been abroad—
we documented that, but it’d be good to flag that in this piece of research.”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of tracking people who have stayed abroad, along with geolocation, police
officer’s ID and other metadata. No data was found on actual punishment as that is likely
handled outside of the application. The fields used by the app for this purpose are:

actionSuspiciousInfo, activityDetail, addUser, censusRegisterDetial, enter, fkOp, idCard,
isActionSuspicious, isLeaveCountry, isSuspicious, kinship, latitude, leaveFor,
leaveReason, locationDescription, longitude, name, note, otherReason, otherRelation,
phone, relation, reson, sex, suspiciousActivity, suspiciousInfo, type, userOrganizationId,
userType

Detailed answer with technical details:
The targeted APK was modified so all activities could be invoked. Exploration of the
relevant activity is presented next.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.overdue_person.OverduePerso
nAddFeedActivity"

This resulted in the PII collection form being rendered and this can be observed next.

Cure53, Berlin · 06/14/19 13/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: PII collection form.

This activity, which includes the police officer’s ID as a key_warn_id intent extra, can be
consulted next.

File:
com/fec/xjoneproject/ui/task/CheckDetailFragment.java

Code:
Intent localIntent22 = new Intent(getActivity(),
OverduePersonAddFeedActivity.class);
 localIntent22.putExtra("key_warn_id",
this.mMissionCommand.getCheckedPersonnelId());
 startActivity(localIntent22);

By observing the activity itself, it can be seen that the actual data is processed via the
OverduePersonAddFeedFragment.

File:
com/fec/xjoneproject/ui/task/overdue_person/OverduePersonAddFeedActivity.java

Code:
return
OverduePersonAddFeedFragment.newInstance(getIntent().getStringExtra("key_id"));

The processed data fields include more options than the items displayed in the UI of the
app and were gathered with a specific command supplied below. This provides evidence
of information being captured by the app beyond the scope of what is displayed on the

Cure53, Berlin · 06/14/19 14/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

screen. Some examples pertain to geolocation or the reporting police officer’s
identification.

Command:
cat $(find . -name OverduePersonAddFeedFragment.java) | grep localJSONObject |
grep put|sed 's|^ *||'|sort -u

Output:
localJSONObject.put("actionSuspiciousInfo",
this.mSuspiciousInfoMaterialEditText.getText().toString());
localJSONObject.put("activityDetail",
this.mRecentEventsInfoMaterialEditText.getText().toString());
localJSONObject.put("addUser", str1);
localJSONObject.put("censusRegisterDetial",
this.mAddHouseMaterialEditText.getText().toString());
localJSONObject.put("enter",
this.mCountryEntryMaterialEditText.getText().toString());
localJSONObject.put("fkOp", this.mWarnId);
localJSONObject.put("idCard",
this.mAddIdentityMaterialEditText.getText().toString());
localJSONObject.put("isActionSuspicious", 0);
localJSONObject.put("isLeaveCountry", 0);
localJSONObject.put("isSuspicious", 0);
localJSONObject.put("kinship", this.mFamilySpinner.getSelectedItemPosition() +
"");
localJSONObject.put("latitude", getLatitude());
localJSONObject.put("leaveFor",
this.mCountryDestinationMaterialEditText.getText().toString());
localJSONObject.put("leaveReason",
this.mExitReasonSpinner.getSelectedItemPosition());
localJSONObject.put("locationDescription", getLocationDescription());
localJSONObject.put("longitude", getLongitude());
localJSONObject.put("name", localPeerItem.getName());
localJSONObject.put("note", localPeerItem.getNote());
localJSONObject.put("otherReason",
this.mExitReasonMaterialEditText.getText().toString());
localJSONObject.put("otherRelation",
this.mOtherFamilyMaterialEditText.getText().toString());
localJSONObject.put("phone", localPeerItem.getPhone());
localJSONObject.put("relation", localPeerItem.getRelation() + "");
localJSONObject.put("reson", this.mReasonMaterialEditText.getText().toString());
localJSONObject.put("sex", sexInfo());
localJSONObject.put("suspiciousActivity",
this.mSuspiciousEventsMaterialEditText.getText().toString());
localJSONObject.put("suspiciousInfo", 0);
localJSONObject.put("type", "2");
localJSONObject.put("userOrganizationId", str2);
localJSONObject.put("userType", str3);

Cure53, Berlin · 06/14/19 15/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-009 PII collection via SuspiciousPhone[List]Activity (Assumed)

HRW shared the following idea with Cure53:

“Phone activity would be of interest too. My guess is it has to do with people suddenly
stopping their phone use rather than, bone fide suspicious phone calls to ISIS, for
example…”

Summary answer:
Reviewing the activity and data processing from the related decompiled source code
provides evidence of the phone activity being tracked. However, the purpose of this
seems unclear. Perhaps more interestingly, the tracking also extends to cars’ radios.
This is performed on the same file and compounded together with the tracking of the
phone activity. Again, this includes information such as geolocation, police officer’s ID,
driver and vehicle details, mentions of contraband and other metadata.

The following list summarizes the fields used by the app for phone-tracking purposes:

idCard, phone, susDescription, susOther, addUser, userOrganizationId

The following list includes fields related to car radio tracking:

addUser, dfyy, driverConsDetail, driverConsistency, driverId, driverPhone, fkMv, idCard,
isConsistency, isDriverConsis, isForbiddenObj, isNeedSecondcheck, isPhoneSus,
latitude, locationDescription, longitude, monitPeopleRelation, noNeedCheckedReason,
phone, problemCarType, susDescription, susOther, userIdCard, userOrgName,
userOrganizationId, userType, username, vehicleOrgName, vehicleProperty

Source code related to car-radios can be seen below with mentions of contraband
highlighted.

setData(this.mEntity, this.mLocalRespondent.getDriver_id_number(),
this.mLocalRespondent.getDriver_phone(),
this.mLocalRespondent.getPerson_to_card(),
this.mLocalRespondent.getWhether_contraband(),
this.mLocalRespondent.getContraband_photo(),
this.mLocalRespondent.getReason_for_differ(),
this.mLocalRespondent.getOther_reason(),
this.mLocalRespondent.getCheck_relation_to_driver(),
this.mLocalRespondent.getVehicleProperty(),
this.mLocalRespondent.getVehicleOrgName(),
this.mLocalRespondent.getIsNeedSecondcheck(),
this.mLocalRespondent.getCheckedReason(),
this.mLocalRespondent.getNoNeedCheckedReason());

Cure53, Berlin · 06/14/19 16/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Detailed answer with technical details:
The targeted APK was modified so that all activities could be invoked. In terms of
exploration, the basic information gathered by the application was first trivially inferred by
invoking the pertinent [...]Add[...] activity, intended for data collection by the police
officer.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.radio_car.SuspiciousPhoneAc
tivity"

This resulted in the following PII collection form being rendered.

Fig.: SuspiciousPhoneActivity data collection form.

Secondly, the SuspiciousPhoneListActivity was invoked, yet this resulted in a blank
screen as the user is not logged into the application and the activity is not meant to be
invoked in this fashion (i.e. in a normal, logged-in app flow).

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.radio_car.SuspiciousPhoneLi
stActivity"

However, upon closer inspection of the decompiled source code, it was determined that
the List activity is called from the Java file furnished next.

File:
com/fec/xjoneproject/ui/task/radio_car/CheckRadioCarInfoFragment.java

Cure53, Berlin · 06/14/19 17/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Code:
Intent localIntent1 = new Intent(getActivity(),
SuspiciousPhoneListActivity.class)

The information sent from this Java class to the List activity was gathered with the
following command. This reveals substantially more information being collected,
including the user-information of the police officer gathering the data, as well as
geolocation.

Command:
cat $(find . -name CheckRadioCarInfoFragment.java) | grep localJSONObject.put|
sed 's|^ *||'|sort -u

Output:
localJSONObject.put("addUser", ConnectionUtils.getLoginName());
localJSONObject.put("dfyy",
this.uncheckReasonOneProjectSimpleSpinnerFieldView.getSelection());
localJSONObject.put("driverConsDetail",
this.differReasonOneProjectSimpleSpinnerFieldView.getOtherEditTextView());
localJSONObject.put("driverConsistency", 1);
localJSONObject.put("driverId",
this.dividerCardOneProjectSimpleEditTextFieldView.getText());
localJSONObject.put("driverPhone",
this.dividerPhoneOneProjectSimpleEditTextFieldView.getText());
localJSONObject.put("fkMv", this.mId);
localJSONObject.put("idCard", localPeerItem.getIdCard());
localJSONObject.put("isConsistency", i);
localJSONObject.put("isDriverConsis",
this.resultOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("isForbiddenObj",
this.contrabandOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("isNeedSecondcheck",
this.checkAgainOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("isPhoneSus", 2);
localJSONObject.put("latitude", getLatitude());
localJSONObject.put("locationDescription", getLocationDescription());
localJSONObject.put("longitude", getLongitude());
localJSONObject.put("monitPeopleRelation",
this.relationOneProjectSimpleSpinnerFieldView.getSelection());
localJSONObject.put("noNeedCheckedReason",
this.uncheckReasonOneProjectSimpleSpinnerFieldView.getOtherText());
localJSONObject.put("phone", localPeerItem.getPhone());
localJSONObject.put("problemCarType", this.mEntity.getProblemCarType());
localJSONObject.put("susDescription", localPeerItem.getReason());
localJSONObject.put("susOther", localPeerItem.getOtherReason());
localJSONObject.put("userIdCard", "");

Cure53, Berlin · 06/14/19 18/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

localJSONObject.put("userOrgName", str3);
localJSONObject.put("userOrganizationId", str);;
localJSONObject.put("userType", 3);
localJSONObject.put("username", str1);
localJSONObject.put("vehicleOrgName",
this.vehicleUnitOneProjectSimpleEditTextFieldView.getText());
localJSONObject.put("vehicleProperty",
String.valueOf(this.vehiclePropertyOneProjectSimpleSpinnerFieldView.getSelection
()));

XJ1-01-010 PII collection via PeerPersonnel Add/List activities (Assumed)

HRW raised the following question with the Cure53 team:

“Regarding PeerPersonnelAddActivity and PeerPersonnelListActivity, I believe this
refers to who a person is travelling with. It would be interesting. Not sure what
“personnel” refers to—it could be referred”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of tracking people who are travelling, along with destination, travel time,
geolocation, police officer’s ID and other metadata. The list below summarizes the fields
used by the app for this purpose:

action, addUser, arrest, fkMp, idCard, ifHavePeer, info, isDubious, isMatch, isWarnObj,
latitude, leave, leaveLocal, locationDescription, longitude, matchPerRes, name, phone,
returnTime, toInlandDesc, toInlandRes, userIdCard, userOrgName, userOrganizationId,
userType, username

Radio personnel appears to refer to police officers in charge of tracking accompanying
persons. These are looked up by Mission ID in a database.

File:
com/fec/xjoneproject/ui/task/radio_personnel/CheckRadioPersonnelInfoFragment.java

Code:
 private RadioPersonnelRespondent getLocalRespondentByCheckMissionID(String
paramString)
 {
 return
(RadioPersonnelRespondent)OneProjectDao.getInstance().getDaoSession().getRadioPe
rsonnelRespondentDao().queryBuilder().where(RadioPersonnelRespondentDao.Properti
es.Task_id.like(paramString), new WhereCondition[0]).build().unique();
 }

Cure53, Berlin · 06/14/19 19/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Detailed answer with technical details:
First, some of the information captured by the application was trivially confirmed by
invoking the PeerPersonnelAddActivity, designed for data capture by police officers.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.radio_personnel.PeerPersonn
elAddActivity"

This action resulted in the following PII collection form being rendered.

Fig.: PII collection form for PeerPersonnelAddActivity.

Secondly, the PeerPersonnelListActivity was invoked but this resulted in a blank screen
when called directly.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.radio_personnel.PeerPersonn
elListActivity"

Upon closer inspection of the decompiled source code, it was found that the reason
behind the screen being empty is because the list activity simply renders the data
provided via intent extras.

Cure53, Berlin · 06/14/19 20/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

File:
com/fec/xjoneproject/ui/task/radio_personnel/PeerPersonnelListActivity.java

Code:
 public Fragment createFragment()
 {
 return PeerPersonnelListFragment.newInstance((ArrayList)getIntent()

.getSerializableExtra("item_list"));
 }

 public void finish()
 {
 ArrayList localArrayList = (ArrayList)
((PeerPersonnelListFragment)getSupportFragmentManager().getFragments()

.get(0)).getItemList();
 Intent localIntent = new Intent();
 localIntent.putExtra("item_list", localArrayList);
 setResult(-1, localIntent);
 super.finish();
 }

The item_list was then found to be supplied to this activity from the Java file specified
next.

File:
com/fec/xjoneproject/ui/task/radio_personnel/CheckRadioPersonnelInfoFragment.java

The actual fields passed in the list were gathered with the command presented next and
this reveals the metadata gathered, in addition to geolocation information and other
details. The mentioned data goes beyond what is displayed on the screen.

Command:
cat $(find . -name CheckRadioPersonnelInfoFragment.java) | grep
localJSONObject.put|sed 's|^ *||'|sort -u

Output:
localJSONObject.put("action", this.mEntity.getAction());
localJSONObject.put("addUser", ConnectionUtils.getLoginName());
localJSONObject.put("arrest", 1);
localJSONObject.put("fkMp", this.mId);
localJSONObject.put("idCard", localPeerItem.getCard());
localJSONObject.put("ifHavePeer", 1);
localJSONObject.put("info", localPeerItem.getInfo());
localJSONObject.put("isDubious",
this.dubiousOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());

Cure53, Berlin · 06/14/19 21/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

localJSONObject.put("isMatch",
this.sameOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("isWarnObj",
this.warningOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("leave",
this.leaveOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("leaveLocal",
this.localOneProjectSimpleRadioGroupWithTwoButtonFieldView.getValue());
localJSONObject.put("locationDescription", getLocationDescription());
localJSONObject.put("latitude", getLatitude());
localJSONObject.put("longitude", getLongitude());
localJSONObject.put("name", localPeerItem.getName());
localJSONObject.put("phone", localPeerItem.getMobile());
localJSONObject.put("returnTime",
this.activityOneProjectSimpleDateSelectFieldView.getText());
localJSONObject.put("toInlandDesc",
this.reasonOneProjectSimpleSpinnerFieldView.getOtherText());
localJSONObject.put("toInlandRes",
this.reasonOneProjectSimpleSpinnerFieldView.getValue());
localJSONObject.put("userIdCard", "");
localJSONObject.put("userOrgName", str3);
localJSONObject.put("userOrganizationId", str2);
localJSONObject.put("userType", new
GetPrivilegeService(IMSDroid.getContext()).getString("privilege", ""));
localJSONObject.put("username", str1);

XJ1-01-011 PII collection via MapRadioPersonnelDetailActivity (Assumed)

HRW posed another question to the testing team:

“The map (or map radio) activity could be interesting—let’s investigate. Again, if it’s
referring to police’s location, not so; it’d be interesting if it’s about the person being
investigated.”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of information collection such as home address, ID card, ID photo, IMEI, IMSI,
geolocation, police officer’s ID and other metadata. It seems to refer to the person being
investigated. This can be inferred from the fields the application employs for this
purpose:

action, addTime, addUser, dataId, deviceCode, disposition, endTime, gatherPhoto,
gatherTime, homeAddress, id, idCard, idCardPhoto, imei, imsi, label, latitude, location,
longitude, mac, matchType, name, note, peopleType, similarity, startTime, stationId,
warnType

Cure53, Berlin · 06/14/19 22/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Detailed answer with technical details:
This activity was investigated by running the command detailed next.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.radio_personnel.MapRadioPer
sonnelDetailActivity"

Running the command resulted in the following PII collection form.

Fig.: PII collection form for MapRadioPersonnelDetailActivity.

Reviewing the decompiled application source code of MapRadioPersonnelDetail-
Activity.java leads to MapRadioPersonnelDetailFragment, which loads the person’s
details over the API.

File:
com/fec/xjoneproject/ui/task/radio_personnel/MapRadioPersonnelDetailFragment.java

Code:
AttendanceService.getApi().getRadioPersonDetail(paramString).enqueue(new
OneProjectCallback(this)
 {
 public void onResponse(MapRadioPersonnelResponse
paramAnonymousMapRadioPersonnelResponse)
[...]

Cure53, Berlin · 06/14/19 23/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

MapRadioPersonnelResponse.java then retrieves the response from the API and saves
it in a model called MatchPerWarnEntity.

File:
com/fec/xjoneproject/ui/map/MapRadioPersonnelResponse.java

Code:
 public List<MatchPerWarnEntity> getRes()
 {
 return this.res;
 }

 public void setRes(List<MatchPerWarnEntity> paramList)
 {
 this.res = paramList;
 }

The MatchPerWarnEntity data model defines the fields listed next. These are the ones
tracked by this activity and the relevant underlying logic. One can consult how they are
defined next.

File:
com/fec/xjoneproject/ui/task/bean/MatchPerWarnEntity.java

Field data was extracted from the above file and this is shown next.

Command:
cat $(find . | grep -i MatchPerWarnEntity | grep -i java) | grep -i private|cut
-f5 -d" "|cut -f1 -d';' | sort -u | tr "\n" ","|sed 's|,|, |g'

Output:
action, addTime, addUser, dataId, deviceCode, disposition, endTime, gatherPhoto,
gatherTime, homeAddress, id, idCard, idCardPhoto, imei, imsi, label, latitude,
location, longitude, mac, matchType, name, note, peopleType, similarity,
startTime, stationId, warnType

XJ1-01-012 PII data via OutOfPersonDetailActivity (Assumed)

Another item of interest for the HRW team was the following:

“OutOfPersonDetailActivity: This refers to people who have left Xinjiang—i.e. people of
interests to police.”

Cure53, Berlin · 06/14/19 24/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of tracking people who have left Xinjiang. The following list summarizes the
fields used by the app for this purpose:

addTime, addUser, addUserName, address, areaCode, description, feedbackTime,
fkCm, id, idCard, isChecked, mobilePhone, name, note, policeCheck, pushTime,
relationType, sendTime, sex, track, visitorAddress, visitorIdCard, visitorMobilePhone,
visitorName, visitorPic

Detailed answer with technical details:
This activity was investigated running the ADB command provided below.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.personnel_outflow.activity.
OutOfPersonDetailActivity"

This resulted in the following PII collection form being rendered:

Fig.: PII data via OutOfPersonDetailActivity.

Cure53, Berlin · 06/14/19 25/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Upon closer inspection of the decompiled source code, it appeared that data included
next was being gathered by this activity.

File:
com/fec/xjoneproject/ui/task/personnel_outflow/activity/OutOfPersonDetailActivity.java

Code:
this.tvWarningDescription.setText(paramPlaceOfDischargeEntity.getDescription());
 this.mWarnNameText.setText(paramPlaceOfDischargeEntity.getName());
 this.mWarnAddressText.setText(paramPlaceOfDischargeEntity.getAddress());
 this.mWarnPhoneText.setText(paramPlaceOfDischargeEntity.getMobilePhone());
 this.mWartIdCard.setText(paramPlaceOfDischargeEntity.getIdCard());
 this.tvOutPersonTrack.setText(paramPlaceOfDischargeEntity.getTrack());
 localInteger = paramPlaceOfDischargeEntity.getSex();
 if (localInteger == null) {}
 }
 switch (localInteger.intValue())
 {
 default:
 return;
 case 0:
 this.mWarnSexText.setText("女");
 return;
 }
 this.mWarnSexText.setText("男");
The list of fields was extracted from the above source code. A command used for this
purpose is furnished next.

Command:
cat $(find . -name OutOfPersonDetailActivity.java) | grep -i 'setText' | cut -f2
-d'.'|sort -u | sed 's| *||g' | tr "\n" ","|sed 's|,|, |g'

Output:
mTitleText, mWarnAddressText, mWarnNameText, mWarnPhoneText, mWarnSexText,
mWartIdCard, tvOutPersonTrack, tvWarningDescription

This data is retrieved by the app from the API as follows:

File:
com/fec/xjoneproject/ui/task/personnel_outflow/activity/OutOfPersonDetailActivity.java

Code:
private void getDataFromNet(String paramString)
 {

Cure53, Berlin · 06/14/19 26/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 try
 {
 AttendanceService.getApi().getOutOfPersonDetail(paramString).enqueue(new
Callback()
 {
 [...]
 public void onResponse(Call<OutOfPersonResponse>[...]

The above points to OutOfPersonResponse, which is defined on the following file and
expects a PlaceOfDischargeEntity data model.

File:
com/fec/xjoneproject/ui/task/personnel_outflow/bean/OutOfPersonResponse.java

Code:
 public List<PlaceOfDischargeEntity> getRes()
 {
 return this.res;
 }

 public void setRes(List<PlaceOfDischargeEntity> paramList)
 {
 this.res = paramList;
 }

The associated fields were then extracted from this Java file in a manner presented next.

Command:
cat $(find . -name PlaceOfDischargeEntity.java) | grep -i private|cut -f5 -d" "|
cut -f1 -d';' | sort -u | tr "\n" ","|sed 's|,|, |g'

Output:
addTime, addUser, addUserName, address, areaCode, description, feedbackTime,
fkCm, id, idCard, isChecked, mobilePhone, name, note, policeCheck, pushTime,
relationType, sendTime, sex, track, visitorAddress, visitorIdCard,
visitorMobilePhone, visitorName, visitorPic

XJ1-01-013 PII data via InfluxPersonDetailActivity (Assumed)

HRW similarly questioned another activity, specifically:

“Same as above. Though “inflow” and “influx” are referring to different concepts both are
about monitoring people for their movements.”

Cure53, Berlin · 06/14/19 27/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of monitoring people’s movements. The following list summarizes the fields
used by the app for this purpose:

address, description, feedbackTime, fkCm, id, idCard, isChecked, isLogicDelete,
mobilePhone, name, note, policeCheck, pushTime, relationAddress, relationIdCard,
relationName, relationPhone, relationSex, sendTime, sex, track, userOrgName,
userOrganizationId

Detailed answer with technical details:
This activity was investigated by running the ADB command included next.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.personnel_inflow.activity.I
nfluxPersonDetailActivity"

This resulted in the following PII collection form being rendered:

Fig.: PII data processed via InfluxPersonDetailActivity.

Upon closer inspection of the decompiled source code, it was found that the data is
retrieved from the API and expects an InfluxPersonReponse object.

Cure53, Berlin · 06/14/19 28/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

File:
com/fec/xjoneproject/ui/task/personnel_inflow/activity/InfluxPersonDetailActivity.java

Code:
 private void getDataFromNet(String paramString)
 {
 try
 {
 AttendanceService.getApi().getInfluxPersonDetail(paramString).enqueue(new
Callback()
 {

 [...]
 public void onResponse(Call<InfluxPersonReponse>

In turn, investigating InfluxPersonReponse.java reveals usage of a PlaceOfInfluxEntity
data model.

File:
com/fec/xjoneproject/ui/task/personnel_inflow/bean/InfluxPersonReponse.java

Code:
 public List<PlaceOfInfluxEntity> getRes()
 {
 return this.res;
 }

 public void setRes(List<PlaceOfInfluxEntity> paramList)
 {
 this.res = paramList;
 }

This leads to PlaceOfInfluxEntity.java, from where the tracking fields were extracted with
the command shown next.

Command:
cat $(find . -name PlaceOfInfluxEntity.java) | grep -i private|cut -f5 -d" "|cut
-f1 -d';' | sort -u | tr "\n" ","|sed 's|,|, |g'

Output:
address, description, feedbackTime, fkCm, id, idCard, isChecked, isLogicDelete,
mobilePhone, name, note, policeCheck, pushTime, relationAddress, relationIdCard,
relationName, relationPhone, relationSex, sendTime, sex, track, userOrgName,
userOrganizationId

Cure53, Berlin · 06/14/19 29/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-014 PII collection via MissPhoneTrailFeedbackActivity (Assumed)

HRW was also curious about another activity, namely:

“MissPhoneTrailFeedbackActivity: This refers to when someone’s gone off grid —
suddenly stopped using their phone.”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of tracking this information. The following list summarizes the fields used by
the app for this purpose:

addUser, addUserName, expression, expressionDesc, fkMptv, id, latitude,
locationDescription, longitude, missTrailReason, note, otherReason, police,
policeCheck, policeReason, relationship, telNumber, userOrgName, userOrganizationId

Detailed answer with technical details:
This activity was investigated with the command included in the following.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.miss_phone_trail.activity.M
issPhoneTrailFeedbackActivity"

This resulted in the following PII collection form being rendered:

Fig.: Data collection form rendered by MissPhoneTrailFeedbackActivity.

Cure53, Berlin · 06/14/19 30/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Upon closer inspection of the decompiled source code of the application, it was found
that MissPhoneTrailFeedbackActivity makes use of the MissPhoneTrailFeedback-
ViewModel.

File:
com/fec/xjoneproject/ui/task/miss_phone_trail/activity/
MissPhoneTrailFeedbackActivity.java

Code:
this.mBinding.setViewModel((MissPhoneTrailFeedbackViewModel)getViewModel());
protected void onCreate(Bundle paramBundle)
 {
 super.onCreate(paramBundle);
 this.mBinding =
((ActivityMissPhoneTrailFeedbackBinding)DataBindingUtil.setContentView(this,
2131427398));
 setViewModel(new MissPhoneTrailFeedbackViewModel(this,
getIntent().getStringExtra("key_warn_id"), 28));

The sequence submits the information to the API in a fashion illustrated next and making
use of a MissPhoneTrailResEntity.

File:
com/fec/xjoneproject/ui/task/miss_phone_trail/viewModel/
MissPhoneTrailFeedbackViewModel.java

Code:
 public void submit()
 {
 MissPhoneTrailFeedbackActivity localMissPhoneTrailFeedbackActivity =
(MissPhoneTrailFeedbackActivity)getActivity();
 String str = localMissPhoneTrailFeedbackActivity.check();
 if (TextUtils.isEmpty(str))
 {
 getActivity().mWaitingDialog.show(" ……正在上传…… ");
 Gson localGson = new Gson();
 HashMap localHashMap = new HashMap();
 ((MissPhoneTrailResEntity)this.resEntity.get()).setAddUser();

((MissPhoneTrailResEntity)this.resEntity.get()).setLongitude(getActivity().getLo
ngitude());
[...]

From the MissPhoneTrailResEntity.java file, a more readable list of fields was collected.

Cure53, Berlin · 06/14/19 31/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Command:
cat $(find . -name MissPhoneTrailResEntity.java) | grep -i private|cut -f5 -d"
"|cut -f1 -d';' | sort -u | tr "\n" ","|sed 's|,|, |g'

Output:
addUser, addUserName, expression, expressionDesc, fkMptv, id, latitude,
locationDescription, longitude, missTrailReason, note, otherReason, police,
policeCheck, policeReason, relationship, telNumber, userOrgName,
userOrganizationId

XJ1-01-015 PII collection via FourAssociationFeedbackActivity (Assumed)

HRW also wanted to know whether PII could collected with another activity. More
specifically:

“FourAssociationFeedbackActivity: Four associations refer to people’s relationships to
four categories of people the authorities are concerned about—people who have been
abroad, I believe.”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of tracking the following information about people’s relationships to the noted
four categories of people:

address, connectCount, connectDuration, description, idCard, name, peerCount,
peerFlightPlace, peerTime, personType, personTypeName, phone, phoneOrAccount,
photo, pushTime, relevanceType

Detailed answer with technical details:
This activity was investigated by running the following ADB command.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.four_association.activity.F
ourAssociationFeedbackActivity"

This resulted in the following PII collection form being rendered:

Cure53, Berlin · 06/14/19 32/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Data collection form rendered by FourAssociationFeedbackActivity.

At the source code level, FourAssociationFeedbackActivity makes use of the
FourAssociationFeedbackViewModel.

File:
com/fec/xjoneproject/ui/task/four_association/activity/
FourAssociationFeedbackActivity.java

Code:
setViewModel(new FourAssociationFeedbackViewModel(this,
getIntent().getStringExtra("key_warn_id")));

FourAssociationFeedbackViewModel.java then leads to FourRelevanceResponse. In
turn, this makes use of FourRelevanceEntity, from which data fields were extracted and
can be found below.

Command:
cat $(find . -name FourRelevanceEntity.java) | grep -i private|cut -f5 -d" "|cut
-f1 -d';' | sort -u | tr "\n" ","|sed 's|,|, |g'

Output:
address, connectCount, connectDuration, description, idCard, name, peerCount,
peerFlightPlace, peerTime, personType, personTypeName, phone, phoneOrAccount,
photo, pushTime, relevanceType

Cure53, Berlin · 06/14/19 33/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-016 PII collection via VehicleAddActivity (Assumed)

Another question from the HRW team concerned:

“VehicleListActivity: Vehicle—the intersection between people, things and vehicles is a
main way for mass surveillance.”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence of tracking the following data fields for this activity:

account, addUser, address, bank, dataType, fkMiw, fkSDic, idCard, latitude,
locationDescription, longitude, name, note, passport, phone, plateNumber, policeCheck,
policeReason, relation, response, userIdCard, userOrgName, userOrganizationId,
userType, username, vehicleColor, vehicleType, work, workUnit

Detailed answer with technical details:
First, an initially high-level view of the data gathered was trivially obtained via
VehicleAddActivity.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.manual_new_task.VehicleAddA
ctivity"

This resulted in the following PII collection form being rendered:

Cure53, Berlin · 06/14/19 34/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Data collection form rendered by VehicleAddActivity.

The relevant List activity was then investigated by running a specific command supplied
below.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.manual_new_task.VehicleList
Activity"

Unfortunately, this crashes the app as the user is not logged in. In that sense, the
application is not meant to be invoked this way. However, upon closer inspection of the
decompiled source code, it was found that this activity is invoked from the classes
presented next.

File:
com/fec/xjoneproject/ui/task/manual_new_task/NewTaskAddFeedFragment.java

Cure53, Berlin · 06/14/19 35/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Code:
Intent localIntent = new Intent(NewTaskAddFeedFragment.this.getActivity(),
VehicleListActivity.class);

File:
com/fec/xjoneproject/ui/task/problem_survey/ProblemSurveyAddFeedFragment.java

Code:
Intent localIntent = new Intent(ProblemSurveyAddFeedFragment.this.getActivity(),
VehicleListActivity.class);

As information passed from these activities is largely the same, it was gathered together
with the following command. The process reveals the information from the screen, as
well as all relevant metadata gathered by the app in the background (i.e. police officer’s
details, geolocation, etc.).

Command:
cat $(find . -name NewTaskAddFeedFragment.java) $(find . -name
ProblemSurveyAddFeedFragment.java) | grep localJSONObject.put|sed 's|^ *||'|
sort -u

Output:
localJSONObject.put("account", localPeerItem.getAccount());
localJSONObject.put("addUser", ConnectionUtils.getLoginName());
localJSONObject.put("address",
this.mOwnerLivingAddressMaterialEditText.getText().toString());
localJSONObject.put("bank", String.valueOf(localPeerItem.getBank()));
localJSONObject.put("dataType", "1");
localJSONObject.put("fkIi", this.mId);
localJSONObject.put("fkMiw", this.mId);
localJSONObject.put("fkSDic", String.valueOf(localPeerItem.getName()));
localJSONObject.put("idCard", localPeerItem.getIdCard());
localJSONObject.put("latitude",
Double.valueOf(this.mLocalRespondent.getLatitude()));
localJSONObject.put("latitude", getLatitude());
localJSONObject.put("locationDescription", getLocationDescription());
localJSONObject.put("longitude",
Double.valueOf(this.mLocalRespondent.getLongitude()));
localJSONObject.put("longitude", getLongitude());
localJSONObject.put("name", localPeerItem.getName());
localJSONObject.put("note", localPeerItem.getNote());
localJSONObject.put("passport",
this.mOwnerPassportMaterialEditText.getText().toString());
localJSONObject.put("phone", localPeerItem.getPhone());
localJSONObject.put("plateNumber", localPeerItem.getPlateNumber());
localJSONObject.put("policeCheck", "0");

Cure53, Berlin · 06/14/19 36/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

localJSONObject.put("policeReason",
this.mPoliceReasonMaterialEditText.getText().toString());
localJSONObject.put("relation", localPeerItem.getRelation() + "");
localJSONObject.put("response",
this.mProblemFeedbackMaterialEditText.getText().toString());
localJSONObject.put("userIdCard", "");
localJSONObject.put("userOrgName", str3);
localJSONObject.put("userOrganizationId", str);
localJSONObject.put("userType", str4);
localJSONObject.put("username", str1);
localJSONObject.put("vehicleColor", localPeerItem.getVehicleColor() + "");
localJSONObject.put("vehicleType", localPeerItem.getVehicleType() + "");
localJSONObject.put("work",
this.mOwnerProfessionMaterialEditText.getText().toString());
localJSONObject.put("workUnit",
this.mOwnerWorkUnitMaterialEditText.getText().toString());

A more readable list of fields was extracted and can be found below.

Command:
cat $(find . -name NewTaskAddFeedFragment.java) | grep localJSONObject | grep
put|sed 's|^ *||'|sort -u | cut -f2 -d'"' | sort -u| tr "\n" "," | sed 's|,|, |
g'

Output:
account, addUser, address, bank, dataType, fkMiw, fkSDic, idCard, latitude,
locationDescription, longitude, name, note, passport, phone, plateNumber,
policeCheck, policeReason, relation, response, userIdCard, userOrgName,
userOrganizationId, userType, username, vehicleColor, vehicleType, work,
workUnit

XJ1-01-017 PII collection via ToolsAddActivity (Assumed)

HRW raised the following doubt with the Cure53 team:

“ToolsListActivity: Tools can be interesting—I know they look for people with certain
tools—like to sharpen stuff.”

Summary answer:
This activity simply seems to record information about the applications installed on the
phone.

Detailed answer with technical details:
This activity was investigated by running the following ADB command.

Cure53, Berlin · 06/14/19 37/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.problem_survey.ToolsListAct
ivity"

Although this crashes the app because the user is not logged in into the system, it is
possible to determine the information gathered via the relevant Add activity.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.problem_survey.ToolsAddActi
vity"

This resulted in the following PII collection form being rendered:

Fig.: Data collection form rendered by ToolsAddActivity.

It is shown that ToolsAddActivity makes use of ToolsListFragment and
ToolsAddFragment in a manner included below.

File:
com/fec/xjoneproject/ui/task/manual_new_task/ToolsAddActivity.java

Cure53, Berlin · 06/14/19 38/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Code:
 public Fragment createFragment()
 {
 ToolsListFragment.PeerItem localPeerItem =
(ToolsListFragment.PeerItem)getIntent().getSerializableExtra("peer_bean");
 Integer localInteger = Integer.valueOf(getIntent().getIntExtra("state", 9));
 int i = getIntent().getIntExtra("bean_position", -1);
 return ToolsAddFragment.newInstance(localPeerItem, localInteger.intValue(),
i);
 }

Looking at these fragments further reveals that this activity is simply tracking installed
software.

File:
com/fec/xjoneproject/ui/task/manual_new_task/ToolsListFragment.java

Code:
ToolsListFragment.PeerItem localPeerItem =
(ToolsListFragment.PeerItem)ToolsListFragment.this.mItemList.get(paramInt);
 localView.setTag(localPeerItem);

localTextView1.setText(ToolsListFragment.this.getSoftWareName(localPeerItem.getN
ame()));

XJ1-01-018 PII collection via BankAddActivity (Assumed)

Another concern of raised by HRW was:

“BankAddActivity: We know the authorities monitor how much money Uyghurs withdraw
or keep in banks”

Summary answer:
Reviewing the activity and data processing from the decompiled source code provides
evidence that the bank’s name is selected from a dropdown, the bank account is entered
in a text field, and a police officer can enter free-form notes in a text-area field. An
inspection of the source code confirmed this finding.

Detailed answer with technical details:
This activity was investigated by running the following ADB command.

Cure53, Berlin · 06/14/19 39/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.manual_new_task.BankAddActi
vity"

This resulted in the following PII collection form being rendered:

Fig.: Data collection form rendered by BankAddActivity.

At the source code level, this activity makes use of two fragments specified next.

File:
com/fec/xjoneproject/ui/task/manual_new_task/BankAddActivity.java

Code:
BankListFragment.PeerItem localPeerItem =
(BankListFragment.PeerItem)getIntent().getSerializableExtra("peer_bean");
 int i = getIntent().getIntExtra("peer_state", 9);

Cure53, Berlin · 06/14/19 40/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

return BankAddFragment.newInstance(localPeerItem,
getIntent().getIntExtra("bean_position", -1), i);

From here, it can be confirmed that the account number and free-form notes are taken.

File:
com/fec/xjoneproject/ui/task/manual_new_task/BankAddFragment.java

Code:
this.mItem.setBank(Integer.valueOf(this.mBankSpinner.getSelectedItemPosition()))
;
this.mItem.setAccount(this.mAccountText.getText().toString());
this.mItem.setNote(this.mNoteText.getText().toString());
Intent localIntent = new Intent();
localIntent.putExtra("peer_bean", this.mItem);
localIntent.putExtra("bean_position", this.mPosition);

XJ1-01-019 Mention of the 26 sensitive countries for Uyghurs (Unclear)

HRW asked Cure53 the following question:

“The authorities consider any Uyghur’s links to 26 “sensitive countries” grounds for
detention—these countries are Turkey, Indonesia, etc.—and yet I can’t find any of these
country names in the app…or maybe I’m not looking in the right place?”

The Cure53 team found no arrays or strings that indicate a list of twenty-six sensitive
countries. However, it might be that this information is nevertheless present in the form
of codes or IDs that are used internally by the Ministry of Security.

XJ1-01-020 Usage of the terms “Picked” and “Radio” (Unclear)

HRW shared the following doubts:

“Then there’s —比中— it means “picked” (by the IJOP system, possibly)—there’s picked
car, picked people. Can you see what this means? It’s a key concept but it seems to be
referred to differently in the codes and the only consistency is the Chinese term.
However, “radio” seems to refer to 比中— at times.”

The CheckSearchActivity has two mentions of 比中—, however it remains unclear how this
activity is used in a broader context. For further investigation, it is recommended to
review all mentions of “picked” and see which activities employ the classes related to it.
By reviewing these activities, certain patterns in usage might provide more context about
the use.

Cure53, Berlin · 06/14/19 41/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XJ1-01-021 Usage of the terms “illegal”, “suspicious” and “problem” (Unclear)

Related to the above, HRW raised the following issue:

“Each category has “illegal” to it—illegalperson, illegalcar, illegalthing. And then there’s
also the term “suspicious.” What’s the difference between “illegal” and “suspicious”?
There’s also the term “problem.” What’s the difference between these terms?”

Based on the various activities, the Cure53 team browsed during this test, it is assumed
that illegal refers to an object like a car or a tool that is not authorized to be driven or be
in possession of a certain person. Suspicious appears to be related to events pushed by
the HQ to be investigated by a police officer. For instance, the activity example provided
next updates an officer on photos, date and location of a suspicious car that was
recorded.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.report.ui.activity.SusCarDetailA
ctivity"

The term problem appears to be used in the context of persons that have raised several
red flags with the police, likely because of unauthorized possession of dangerous
objects, government-opposing political views or being abroad for too long.

Affected File:
Collected
Material/readable/code/com/fec/xjoneproject/dao/OneProjectDao$OpenHelper.java

Affected Code:
 private void updateDatabaseTo40(Database paramDatabase)
 {
 safeAlterDB(paramDatabase, "ALTER TABLE RADIO_CAR_RESPONDENT ADD
CHECKED_REASON INTEGER");
 dropTable(paramDatabase, "CHECK_MISSION");
 dropTable(paramDatabase, "ELECTRON_CHECK_FEEDBACK");
 dropTable(paramDatabase, "MISSING_PERSON_CONTACT");
 dropTable(paramDatabase, "MISSING_PERSON_INFO");
 dropTable(paramDatabase, "MISSING_PERSON_VISITOR");
 dropTable(paramDatabase, "MISS_RESPONDENT");
 dropTable(paramDatabase, "MISS_RESULT");
 dropTable(paramDatabase, "MISS_VISITOR");
 dropTable(paramDatabase, "PERSON_CAR_MATCH");
 dropTable(paramDatabase, "POPULATION_CHECK_INFO");
 dropTable(paramDatabase, "POPULATION_INFO");
 dropTable(paramDatabase, "POPULATION_SOCIAL");

Cure53, Berlin · 06/14/19 42/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 dropTable(paramDatabase, "PROBLEM_CAR");
 dropTable(paramDatabase, "PROBLEM_FAMILY");
 dropTable(paramDatabase, "PROBLEM_HOUSE");
 dropTable(paramDatabase, "PROBLEM_INFO");
 dropTable(paramDatabase, "PROBLEM_SOCIAL");
 }

XJ1-01-022 HQ communications for investigations and arrest (Assumed)

HRW was also wondering about the following:

“How does the officer communicate with the HQ. I see there are terms like “immediate
arrest” or “detain for investigation”—are these decisions officers make or HQ makes.”

Most likely communication and some form of chat exchange takes place via the XMPP
protocol. This can be assumed from the functions shown next.

Affected File:
com/fec/xjoneproject/ui/LoginFragment.java

Affected Code:
 private void initAccount()
 {
 String str1 = this.mXmppConfig.getString("uum_username", "");
 String str2 = this.mXmppConfig.getString("uum_password", "");
 if (this.loginFlag == 1)
 {
...
 private void initXmppConfig()
 {
 String str = this.mXmppConfig.getString("xmpp_host", "61.182.226.81");
 int i = this.mXmppConfig.getInt("xmpp_prot", 5222);
 ConnectionConfiguration localConnectionConfiguration = new

ConnectionConfiguration(str, i, "");
 localConnectionConfiguration.setSecurityMode(

ConnectionConfiguration.SecurityMode.enabled);
 localConnectionConfiguration.setSASLAuthenticationEnabled(true);
 localConnectionConfiguration.setReconnectionAllowed(true);
 localConnectionConfiguration.setSendPresence(true);
 ConnectionUtils.setHostPord(str, i);
 ConnectionUtils.setConnectionConfig(localConnectionConfiguration);
 Log.d("LoginFragment", "init XMPP host:" + str + " port:" + i);

While it is unclear how exactly these variables are used in the context of the app, there
are indicators that information pushed by the HQ is setting the values for immediate

Cure53, Berlin · 06/14/19 43/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

investigations and and immediate arrests. However, it seems police officers might be
able to edit this information as well.

Affected File:
Collected Material/readable/code/com/fec/xjoneproject/ui/task/radio_personnel/
CheckRadioPersonnelInfoFragment.java

Affected Code:
 private String checkInput()
 {
 String str = CheckUtils.check(this.mScrollView);
 Object localObject = this.mImmediateArrestLinearLayout;
 int i = ((LinearLayout)localObject).getVisibility();
 if (i == 0)
 {
 localObject = this.mArrestCheckBox;
 boolean bool = ((CheckBox)localObject).isChecked();
 if (!bool)
 {
 bool = TextUtils.isEmpty(str);
 if (bool) {
 str = "请选择反馈已抓捕";
 }
 }
 }
 return str;
 }

 private void getDataFromNet(String paramString)
 {
 try
 {
 localObject = AttendanceService.getApi();
 Call localCall =
((AttendenceApi)localObject).getRadioPersonDetail(paramString);
 localObject = new
com/fec/xjoneproject/ui/task/radio_personnel/CheckRadioPersonnelInfoFragment$3;
 ((CheckRadioPersonnelInfoFragment.3)localObject).<init>(this, this);
 localCall.enqueue((Callback)localObject);
 return;
 }
 catch (RetrofitUrlNullException localRetrofitUrlNullException)
 {
 for (;;)
 {
 Object localObject = IMSDroid.getContext();

Cure53, Berlin · 06/14/19 44/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 FecUtil.showUrlIsNullToast((Context)localObject);
 }
 }
 }

XJ1-01-023 Review of Warn activities (Unclear)

HRW asked the following question:

“What are "warn activities"? I presume it's when officers file a warning (a discrepancy, a
lost of track) to the HQ as well as when HQ tells officers about such a warning?”

Judging from the variable names, Cure53 assumes that Warn activities are something
pushed by the HQ to the officer. There are multiple mentions of setting a "new mission",
as well as an "update a task" and “retrieving” matters.

Affected File:
com/fec/xjoneproject/ui/task/face_warning/FaceWarningListActivity.java

Affected Code:
 public void getDataFromNet(String paramString)
 {
 Object localObject = this.mWaitingDialog;
 String str = "正在获取……";
Furthermore, most of the warning classes inherit their capabilities from the
SingleFragmentActivity class, which seems to establish a connection with HQ. The
inheritance relationship is implemented by writing, for instance, that FaceWarning-
ListActivity extends SingleFragmentActivity in the source code.

Affected File:
com/fec/xjoneproject/ui/task/face_warning/FaceWarningListActivity.java

Affected Code:
public class FaceWarningListActivity
 extends SingleFragmentActivity

 Object localObject = ConnectionUtils.isConnect();
 boolean bool1 = ((Boolean)localObject).booleanValue();
 if (bool1)
 {
 localObject = ConnectionUtils.getConnection();
 bool1 = ((XMPPConnection)localObject).isAuthenticated();
 if (bool1) {}

Cure53, Berlin · 06/14/19 45/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 }
 else
 {
 localObject = LogUtil.getLogger(getClass());
 String str = "XMPP 未连接，发送重连广播";
 ((Logger)localObject).error(str);
 Intent localIntent = new android/content/Intent;
 localIntent.<init>("network_activated");
 localObject = ConnectionUtils.isConnect();
 bool1 = ((Boolean)localObject).booleanValue();
 if (bool1)
 {
 localObject = ConnectionUtils.getConnection();
 bool1 = ((XMPPConnection)localObject).isAuthenticated();
 if (bool1) {}
 }
 else
 {
 localObject = "connect_xmpp";
 boolean bool2 = true;
 localIntent.putExtra((String)localObject, bool2);

This is used by developers to avoid double work for what is basically the same
functionality. As a general rule of thumb, from the experience of reviewing most activities
of IJOP, activated input fields, as well as save and submit buttons are strong indicators
of an activity that is initiated by a user. If all the fields are static and not editable, this
means an item likely being sent from the HQ. Furthermore, the FaceWarningActivity
contains an ID check which a police officer can confirm, thus showing that Warning
activities are intended to send some information back.

Cure53, Berlin · 06/14/19 46/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Confirming an ID Check in FaceWarning Activity.

XJ1-01-024 Review of AntiRefluxActivity (Assumed)

HRW also asked for attention to be given to:

“AntiRefluxActivity: This, again, refers to movement of people—from abroad—definitely
interesting.”

Summary answer:
An inspection of AntiRefluxActivity led to AntiRefluxFragment, which revealed that this
functionality requires “Passport Manager” privileges from the police officer. While the
screen is empty when one is not logged in, inspecting the source code suggests that it is

Cure53, Berlin · 06/14/19 47/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

used for XMPP communications with the server, whereby notification updates are shown
to the user.

Detailed answer with technical details:
This activity was investigated by running the following ADB command.

ADB Command:
adb shell am start -n
"com.hbfec.xjoneproject/com.fec.xjoneproject.ui.task.anti_reflux.AntiRefluxActiv
ity"

This resulted in the following PII collection form being rendered:

Fig.: The screen is empty due to not being logged into the database.

At the source code level, it can be seen that AntiRefluxFragment is referenced.

File:
com/fec/xjoneproject/ui/task/anti_reflux/AntiRefluxActivity.java

Code:
AntiRefluxFragment localAntiRefluxFragment = new AntiRefluxFragment();

Cure53, Berlin · 06/14/19 48/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

getSupportFragmentManager().beginTransaction().add(2131296837,
localAntiRefluxFragment).commit();

Further inspection of AntiRefluxFragment.java reveals that this requires “Passport
Manager” privileges and updates notification information via XMPP communications.

File:
com/fec/xjoneproject/ui/task/anti_reflux/AntiRefluxFragment.java

Code:
public View onCreateView(LayoutInflater paramLayoutInflater, ViewGroup
paramViewGroup, Bundle paramBundle)
 {
 View localView = paramLayoutInflater.inflate(2131427645, paramViewGroup,
false);
 this.privilege = new
GetPrivilegeService(IMSDroid.getContext()).getString("privilege", null);
 ArrayList localArrayList = new ArrayList();
 if
(PrivilegeUtil.isHavePrivilege(PrivilegeUtil.PRIVILEGE_RIGHT_PASSPORT_MANAGER))
{
 localArrayList.add(new MyTaskIconRecyclerViewAdapter.TaskIcon(2131231250,
2131690341, 26));
 }
[...]
 public void update(Observable paramObservable, Object paramObject)
 {
 if (((paramObject instanceof XmppObservable.UpdateData)) &&
(((XmppObservable.UpdateData)paramObject).getType() ==
XmppObservable.UpdateType.refreshTaskNumber) &&
("SmartUc_notify".equals(((XmppObservable.UpdateData)paramObject).getBundle().ge
tString("key_type", null))))
 {
 new
XMPPConfiguration(IMSDroid.getContext()).putBoolean(ConnectionUtils.getLoginName
() + "notify_not_get_list", true, true);
 this.mAdapter.notifyDataSetChanged();
 }

Cure53, Berlin · 06/14/19 49/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
This technical analysis and review of the Integrated Joint Operations Platform (IJOP)
mobile application has demonstrated that the concerns expressed by Human Rights
Watch are valid. Funded by The Open Technology Fund and carried out by Cure53 in
close collaboration with the Human Rights Watch team, this November 2018 project
sheds light on twenty-four items from a perspective of potential violations of human
rights.

In a nutshell, judging by the research outputs and results of an in-depth analysis, the
Cure53 team finds it evident and undeniable that the application is capable of collecting
and managing vast amounts of very specific data. It is certain that the gathered material
can become a basis for further action concerning a specific group (or groups) of citizens.
According to the European Convention on Human Rights, which stands among other
examples of agendas and corresponds to related court rulings, the above practice can
be considered a human rights violation.

The main aspects that should be highlighted among the many findings with differently-
evaluated severities pertain to the possible Wardriving capability of the app (see XJ1-01-
001). Beyond mentioning re-education reasons, the application has a tracking of power
over energy consumption, the recording of political views and the religious atmosphere
(see XJ1-01-004). The presence of those terms gives away information about the scope
and type of data the Ministry of Security collects and shares with its police officers.

In a broader sense, the application's functionality makes an impression that leads
Cure53 to believe that it can indeed violate human rights. Especially the items noted with
a “Proven” status serve as solid evidence of this fact. At the same time, it should be
noted that Cure53 operated as a purely technically-driven team and an unbiased
investigating entity. Therefore, it is not a party in any way involved in making final
judgements as to whether human right violations take place from legal, social or political
standpoints. The Cure53 team works from a premise of technical evidence, which is
based on reverse-engineering operations

The Appendix incorporated to this document is intended as means to enable HRW to
investigate the app more on their own, which Cure53 believes to be of a critical
importance given the above borders of expertise. Among other deliverables, this
Appendix contains a guide to browsing through all activities that were previously hidden,
as well as can help understand the relationship between them. Based on the technical
evidence and material provided by Cure53, it should be possible for HRW to rely on the
deliverables and build a solid case if the results indeed allow it.

Cure53, Berlin · 06/14/19 50/51

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 would like to thank Maya Wang, Greg Walton and Seamus Tuohy from the
Human Rights Watch team for their excellent project coordination, support and
assistance, both before and during this assignment.

Appendix

Appendix 1: Working version of app APK and instructions on how to use it

HRW asked the following question:

“One way to investigate the app would be for Cure53 to construct a working version of
the app so I can explore the functions myself—let me know if it’s possible?

The Cure53 team reverse-engineered the provided IJOP app and repackaged it with all
activities being exported. Furthermore, a step-by-step guide and commands to browse
these activities was written and shared with the HRW team.

Appendix 2: Guide for checking relations between activities

HRW requested the following:

“Is it possible to sketch out the workflow of particularly important Activities though? I find
it hard to understand without knowing how the screens relate to each other.”

The Cure53 team provided a guide to back-check the relations between activities, which
can be further elaborated to construct a flow diagram detailing which activity is called by
which other activity. This might help understanding the workflow of a police officer using
this app better.

The following files were shared with the HRW team:
• IJOP_App_exported_in_chinese.apk
• IJOP_App_exported_in_english.apk
• Activity_adb_commands.txt
• HowTo_invoke_Activities_and_fetch_Screenshots.txt
• HowTo_Flow_Diagram_Guide.txt

Cure53, Berlin · 06/14/19 51/51

https://cure53.de/
mailto:mario@cure53.de

